Fundamentals of fluid power control:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2009
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | XIII, 494 S. Ill., graph. Darst. |
ISBN: | 9780521762502 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV035674564 | ||
003 | DE-604 | ||
005 | 20100311 | ||
007 | t | ||
008 | 090812s2009 xxkad|| |||| 00||| eng d | ||
010 | |a 2008054781 | ||
020 | |a 9780521762502 |c hardback |9 978-0-521-76250-2 | ||
035 | |a (OCoLC)298112192 | ||
035 | |a (DE-599)GBV58934028X | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxk |c GB | ||
049 | |a DE-703 |a DE-634 | ||
050 | 0 | |a TJ843 | |
082 | 0 | |a 629.8/042 | |
084 | |a ZQ 5460 |0 (DE-625)158143: |2 rvk | ||
100 | 1 | |a Watton, John |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fundamentals of fluid power control |c John Watton |
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2009 | |
300 | |a XIII, 494 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Fluid power technology | |
650 | 4 | |a Hydraulic control | |
650 | 4 | |a Hydraulic motors | |
650 | 0 | 7 | |a Fluidtechnik |0 (DE-588)4154793-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hydraulische Regelung |0 (DE-588)4160864-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fluidtechnik |0 (DE-588)4154793-7 |D s |
689 | 0 | 1 | |a Hydraulische Regelung |0 (DE-588)4160864-1 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017728788&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017728788&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-017728788 |
Datensatz im Suchindex
_version_ | 1804139372091539456 |
---|---|
adam_text | Contents
Preface
page
xi
1
Introduction, Applications, and Concepts
....................1
1.1
The Need for Fluid Power
1
1.2
Circuits and Symbols
8
1.3
Pumps and Motors
11
1.4
Cylinders
16
1.5
Valves
17
1.6
Servoactuators
25
1.7
Power Packs and Ancillary Components
26
1.8
References and Further Reading
31
2
An Introduction to Fluid Properties
......................33
2.1
Fluid Types
33
2.2
Fluid Density
39
2.3
Fluid Viscosity
40
2.4
Bulk Modulus
41
2.5
Fluid Cleanliness
49
2.6
Fluid Vapor Pressure and Cavitation
50
2.7
Electrorheological
(ER)
Fluids and Magnetorheological (MR)
Fluids
54
2.8
References and Further Reading
58
3
Steady-State Characteristics of Circuit Components
.............61
3.1
Flow Through Pipes
61
3.1.1
The Energy Equation
61
3.1.2
Laminar and Turbulent Flow in Pipes; the Effect
of Fluid Viscosity
62
3.1.3
The Navier-Stokes Equation
62
3.1.4
Laminar Flow in a Circular Pipe
64
3.1.5
The General Pressure-Drop Equation
66
3.1.6
Temperature Rise in
3D
Flow
68
3.1.7
Computational Fluid Dynamics (CFD) Software Packages
69
Vj
Contents
3.2
Restrictors,
Control
Gaps, and Leakage Gaps
74
3.2.1
Types
74
3.2.2
Orifice-Type Restrictors
74
3.2.3
Flow Between Parallel Plates
80
3.2.4
Flow Between Annular Gaps
81
3.2.5
Flow Between an Axial Piston Pump Slipper and
Its Swash Plate
82
3.2.6
Flow Between a Ball and Socket
89
3.2.7
Flow Between
Nonparallel
Plates
-
Reynolds Equation
90
3.2.8
Flow Through Spool Valves of the Servovalve Type
and the Use of a CFD Package for Analysis
95
3.2.9
Flow Characteristics of a Cone-Seated Poppet Valve
100
3.2.10
A Double Flapper-Nozzle Device for
Pressure-Differential Generation
104
3.2.11
The Jet Pipe and Deflector-Jet Fluidic Amplifier
109
3.3
Steady-State Flow-Reaction Forces
112
3.3.1
Basic Concepts
112
3.3.2
Application to a Simple Poppet Valve
112
3.3.3
Application to the Main Stage of a Two-Stage
Pressure-Relief Valve
113
3.3.4
Application to a Spool Valve
115
3.3.5
Application to a Cone-Seated Poppet Valve
117
3.3.6
Application to a Flapper-Nozzle Stage
119
3.4
Other Forces on Components
120
3.4.1
Static and Shear-Stress Components
120
3.4.2
Transient Flow-Reaction Forces
121
3.5
The Electrohydraulic Servovalve
122
3.5.1
Servovalve Types
122
3.5.2
Servovalve Rating
123
3.5.3
Flow Characteristics, Critically Lapped Spool
125
3.5.4
Servovalve with Force Feedback
127
3.5.5
Servovalve with Spool-Position Electrical
Feedback
129
3.5.6
Flow Characteristics, Underlapped Spool
130
3.6
Positive-Displacement Pumps and Motors
133
3.6.1
Flow and Torque Characteristics of Positive-
Displacement Machines
133
3.6.2
Geometrical Displacement of a Positive-Displacement
Machine
137
3.6.3
Flow Losses for an Axial Piston Machine
142
3.6.4
Torque Losses for an Axial Piston Machine
148
3.6.5
Machine Efficiency
-
Axial Piston Pump
152
3.6.6
Machine Efficiency
-
Axial Piston Motor
155
3.7
Pressure-Relief Valve Pressure-Flow Concepts
158
3.8
Sizing an Accumulator
159
3.9
Design of Experiments
161
3.10
References and Further Reading
163
Contents
vii
4
Steady-State Performance of Systems
.....................171
4.1
Determining the Power Supply Pressure Variation during
Operation for a Pump-PRV-Servovalve Combination:
A Graphical Approach
171
4.2
Meter-Out Flow Control of a Cylinder
172
4.3
A Comparison of Counterbalance-Valve and an Overcenter-Valve
Performances to Avoid Load Runaway
174
4.4
Drive Concepts
177
4.5
Pump and Motor Hydraulically Connected: A Hydrostatic Drive
179
4.6
Pump and Motor Shaft Connected: A Power Transfer Unit (PTU)
183
4.7
Servovalve-Motor Open-Loop and Closed-Loop Speed Drives
189
4.7.1
Open-Loop Control
189
4.7.2
Closed-Loop Control
192
4.8
Servovalve-Linear Actuator
195
4.8.1
Extending
195
4.8.2
Retracting
196
4.8.3
A Comparison of Extending and Retracting Operations
198
4.9
Closed-Loop Position Control of an Actuator by a Servovalve
with a Symmetrically Underlapped Spool
200
4.10
Linearization of a Valve-Controlled Motor Open-Loop
Drive: Toward Intelligent Control
203
4.11
References and Further Reading
207
5
System Dynamics
.................................209
5.1
Introduction
209
5.2
Mass Flow-Rate Continuity
211
5.3
Force and Torque Equations for Actuators
211
5.4
Solving the System Equations, Computer Simulation
213
5.5
Differential Equations, Laplace Transforms, and Transfer
Functions
216
5.5.1
Linear Differential Equations
216
5.5.2
Nonlinear Differential Equations, the Technique of
Linearization for Small-Signal Analysis
219
5.5.3
Undamped Natural Frequency of a Linear Actuator
221
5.5.4
Laplace Transforms and Transfer Functions
223
5.6
The Electrical Analogy
225
5.7
Frequency Response
229
5.8
Optimum Transfer Functions, the ITAE Criterion
235
5.9
Application to a Servovalve-Motor Open-Loop Drive
239
5.9.1
Forming the Equations
239
5.9.2
An Estimate of Dynamic Behavior by a Linearized
Analysis
239
5.9.3
A Comparison of Nonlinear and Linearized Equations
Using the Phase-Plane Method
244
5.10
Application to a Servovalve-Linear Actuator Open-Loop Drive
245
5.10.1
Forming the Equations
245
5.10.2
An Estimate of Dynamic Behavior by a Linearized
Analysis
247
viii
Contents
5.10.3
Transfer
Function Simplification for a Double-Rod
Actuator
248
5.11
Further Considerations of the Nonlinear Flow-Continuity
Equations of a Servovalve Connected to a Motor or
a Double-Rod Linear Actuator
249
5.12
The Importance of Short Connecting Lines When the Load
Mass Is Small
250
5.13
A
Single-Stage
PRV
with Directional Damping
253
5.13.1
Introduction
253
5.13.2
Forming the Equations, Transient Response
255
5.13.3
Frequency Response from a Linearized Transfer
Function Analysis
257
5.14
Servovalve Dynamics
259
5.15
An Open-Loop Servovalve-Motor Drive with Line Dynamics
Modeled by Lumped Approximations
261
5.16
Transmission Line Dynamics
265
5.16.1
Introduction
265
5.16.2
Lossless Line Model for
Z
and
Y
267
5.16.3
Average and Distributed Line Friction Models
for
Z
and
У
270
5.16.4
Frequency-Domain Analysis
271
5.16.5
Servovalve-Reflected Linearized Coefficients
275
5.16.6
Modeling Systems with Nonlossless Transmission
Lines, the Modal Analysis Method
278
5.16.7
Modal Analysis Applied to a Servovalve-Motor
Open-Loop Drive
282
5.17
The State-Space Method for Linear Systems Modeling
285
5.17.1
Modeling Principles
285
5.17.2
Some Further Aspects of the Time-Domain Solution
291
5.17.3
The Transfer Function Concept in State Space
292
5.18
Data-Based Dynamic Modeling
293
5.18.1
Introduction
293
5.18.2
Time-Series Modeling
294
5.18.3
The Group Method of Data Handling (GMDH)
Algorithm
296
5.18.4
Artificial Neural Networks
297
5.18.5
A Comparison of Time-Series, GMDH, and ANN
Modeling of a Second-Order Dynamic System
300
5.18.6
Time-Series Modeling of a Position Control System
304
5.18.7
Time-Series Modeling for Fault Diagnosis
306
5.18.8
Time-Series Modeling of a Proportional
PRV
309
5.18.9
GMDH Modeling of a Nitrogen-Filled Accumulator
311
5.19
Some Comments on the Effect of Coulomb Friction
314
5.20
References and Further Reading
318
6
Control Systems
..................................323
6.1
Introduction to Basic Concepts, the Hydromechanical Actuator
323
6.2
Stability of Closed-Loop Linear Systems
326
Contents ix
6.2.1
Nyquisťs
Stability Criterion
326
6.2.2
Root Locus Method
330
6.2.3
Routh Stability Criterion
332
6.2.4
The State-Space Approach
334
6.2.5
Servovalve-Motor Closed-Loop Speed Control
335
6.2.6
Servovalve-Linear Actuator Position Control
338
6.2.7
The Effect of Long Lines on Closed-Loop Stability,
Speed Control of a Motor
343
6.2.8
The Effect of Long Lines on Closed-Loop Stability,
Position Control of a Linear Actuator
345
6.2.9
The Effect of Coulomb Friction Damping on the
Response and Stability of a Servovalve-Linear
Actuator Position Control System
349
6.3
Digital Control
352
6.3.1
Introduction
352
6.3.2
The Process of Sampling
353
6.3.3
The
z
Transform
356
6.3.4
Closed-Loop Analysis with Zero-Order-Hold
Sampling
356
6.3.5
Closed-Loop Stability
360
6.4
Improving the Closed-Loop Response
362
6.4.1
Servo valve Spool Underlap for Actuator Position
Control, a Linearized Transfer Function Approach
362
6.4.2
Phase Compensation, Gain and Phase Margins
365
6.4.3
Dynamic Pressure Feedback
371
6.4.4
State Feedback
374
6.5
Feedback Controller Implementation
384
6.5.1
Analog-to-Digital Implementation
384
6.5.2
Generalized Digital Filters
385
6.5.3
State Estimation, Observers, and Reduced-Order
Observers
390
6.5.4
Linear Quadratic (LQ) Optimal State Control
394
6.6
On-Off Switching of Directional Valves
399
6.6.1
PWM Control
400
6.6.2
Valves Sized in a Binary Flow Sequence
405
6.7
An Introduction to Fuzzy Logic and Neural Network Control
407
6.8
Servovalve Dither for Improving Position Accuracy
414
6.9
References and Further Reading
416
7
Some Case Studies
................................421
7.1
Introduction
421
7.2
Performance of an Axial Piston Pump Tilted Slipper
with Grooves
421
7.2.1
Introduction
421
7.2.2
Flow and Pressure Distribution, Mathematical Analysis
422
7.2.3
Simplification for the Nontilted Case, No-Rotation
Condition
426
7.2.4
Experimental Method
427
Contents
7.2.5
Some Results with Slipper Tilt Included and for
No Rotation
433
7.2.6
The Effect of Tilt and Rotation, Measurement,
and CFD Simulation
434
7.3
Modeling a Forge Valve and Its Application to Press
Cylinder Control
438
7.3.1
Introduction
438
7.3.2
Developing the Component Equations
440
7.3.3
Developing the System Equations
443
7.3.4
System Dynamics for Closed-Loop Control
446
7.3.5
The Use of PWM Control of a Pair of Fast-Acting
Solenoid Valves
448
7.4
The Modeling and Control of a Vehicle Active Suspension
448
7.4.1
Introduction
448
7.4.2
Determining the Open-Loop Fluid Power Model
451
7.4.3
Actuator Dynamic Stiffness
455
7.4.4
The Introduction of Feedback, the One-Degree-of-
Freedom
(1
DOF)
Test to Identify Actuator Viscous
Damping Bv and Leakage Resistance
/?, 455
7.4.5
The Introduction of Feedback, the Two-Degree-of-
Freedom
(2
DOF)
Test to Identify Tire Viscous
Damping B, and Validate Tire Stiffness kt
457
7.4.6
A State-Space Model for the Active Suspension
460
7.4.7
Closed-Loop Control Design by Computer Simulation
461
7.4.8
Experimental Validation of the Preferred LQC System
468
7.5
The Performance of a Car Hydraulic Power-Steering System
470
7.5.1
Introduction
470
7.5.2
Experimental Setup and Operation
471
7.5.3
Steady-State Characteristics of the Steering Valve
472
7.5.4
Dynamic Behavior of the Power-Steering Unit
475
7.5.5
Results
477
7.6
Onboard Electronics
(OBE)
for Measurement and
Intelligent Monitoring
478
7.7
References and Further Reading
484
Index
489
This exciting new reference text is concerned with fluid power control. It is an
ideal reference for the practicing engineer and a textbook for advanced courses
in fluid power control. In applications in which large forces and/or torques are
required, often with a fast response time, oil-hydraulic control systems are
essential. They excel in environmentally difficult applications because the drive
part can be designed with no electrical components, and they almost always
have a more competitive power-weight ratio than electrically actuated systems.
Fluid power systems have the capability to control several parameters, such as
pressure, speed, and position, to a high degree of accuracy at high power levels.
In practice, there are many exciting challenges facing the fluid power engineer,
who now must have a broad skill set.
John
Watton
entered industry in
1960
working on the design of heat exchangers.
He then studied Mechanical Engineering at Cardiff University, obtaining his BSc
degree followed by his PhD degree. In
1969,
he returned to industry as a Senior
Systems Engineer working on the electrohydraulic control of guided pipe-laying
machines. Following a period at Huddersfield University, he returned to Cardiff
University in
1979
and was appointed Professor of Fluid Power in
1996,
receiving
his DSc degree in the same year. He was awarded the Institution of Mechanical
Engineers Bramah Medal in
1999
and a special award from the Japan Fluid
Power Society in
2005,
both for outstanding research contributions to fluid
power.
Professor
Watton
has been continually active as a researcher and consultant
with industry in the past
40
years. He has worked on components and systems
design, manufacturing plant monitoring, and the design of new mobile
machines, and he has acted as an Expert Witness on a variety of fluid power
issues. He is a Chartered Engineer, a Fellow of the Institution of Mechanical
Engineers, and was elected a Fellow of the Royal Academy of Engineering in
2007.
|
any_adam_object | 1 |
author | Watton, John |
author_facet | Watton, John |
author_role | aut |
author_sort | Watton, John |
author_variant | j w jw |
building | Verbundindex |
bvnumber | BV035674564 |
callnumber-first | T - Technology |
callnumber-label | TJ843 |
callnumber-raw | TJ843 |
callnumber-search | TJ843 |
callnumber-sort | TJ 3843 |
callnumber-subject | TJ - Mechanical Engineering and Machinery |
classification_rvk | ZQ 5460 |
ctrlnum | (OCoLC)298112192 (DE-599)GBV58934028X |
dewey-full | 629.8/042 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.8/042 |
dewey-search | 629.8/042 |
dewey-sort | 3629.8 242 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01766nam a2200433zc 4500</leader><controlfield tag="001">BV035674564</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100311 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090812s2009 xxkad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2008054781</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521762502</subfield><subfield code="c">hardback</subfield><subfield code="9">978-0-521-76250-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)298112192</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV58934028X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ843</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.8/042</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZQ 5460</subfield><subfield code="0">(DE-625)158143:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Watton, John</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fundamentals of fluid power control</subfield><subfield code="c">John Watton</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 494 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid power technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydraulic control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydraulic motors</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fluidtechnik</subfield><subfield code="0">(DE-588)4154793-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hydraulische Regelung</subfield><subfield code="0">(DE-588)4160864-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fluidtechnik</subfield><subfield code="0">(DE-588)4154793-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hydraulische Regelung</subfield><subfield code="0">(DE-588)4160864-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017728788&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017728788&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017728788</subfield></datafield></record></collection> |
id | DE-604.BV035674564 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:43:02Z |
institution | BVB |
isbn | 9780521762502 |
language | English |
lccn | 2008054781 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017728788 |
oclc_num | 298112192 |
open_access_boolean | |
owner | DE-703 DE-634 |
owner_facet | DE-703 DE-634 |
physical | XIII, 494 S. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Cambridge Univ. Press |
record_format | marc |
spelling | Watton, John Verfasser aut Fundamentals of fluid power control John Watton Cambridge [u.a.] Cambridge Univ. Press 2009 XIII, 494 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Fluid power technology Hydraulic control Hydraulic motors Fluidtechnik (DE-588)4154793-7 gnd rswk-swf Hydraulische Regelung (DE-588)4160864-1 gnd rswk-swf Fluidtechnik (DE-588)4154793-7 s Hydraulische Regelung (DE-588)4160864-1 s DE-604 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017728788&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017728788&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Watton, John Fundamentals of fluid power control Fluid power technology Hydraulic control Hydraulic motors Fluidtechnik (DE-588)4154793-7 gnd Hydraulische Regelung (DE-588)4160864-1 gnd |
subject_GND | (DE-588)4154793-7 (DE-588)4160864-1 |
title | Fundamentals of fluid power control |
title_auth | Fundamentals of fluid power control |
title_exact_search | Fundamentals of fluid power control |
title_full | Fundamentals of fluid power control John Watton |
title_fullStr | Fundamentals of fluid power control John Watton |
title_full_unstemmed | Fundamentals of fluid power control John Watton |
title_short | Fundamentals of fluid power control |
title_sort | fundamentals of fluid power control |
topic | Fluid power technology Hydraulic control Hydraulic motors Fluidtechnik (DE-588)4154793-7 gnd Hydraulische Regelung (DE-588)4160864-1 gnd |
topic_facet | Fluid power technology Hydraulic control Hydraulic motors Fluidtechnik Hydraulische Regelung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017728788&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017728788&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT wattonjohn fundamentalsoffluidpowercontrol |