TiO 2 nanotube arrays: synthesis, properties, and applications
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer
2009
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXVII, 358 S. Ill., graph. Darst. |
ISBN: | 9781441900678 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035656553 | ||
003 | DE-604 | ||
005 | 20091208 | ||
007 | t | ||
008 | 090731s2009 gw ad|| |||| 00||| eng d | ||
015 | |a 09,N12,0775 |2 dnb | ||
016 | 7 | |a 992999871 |2 DE-101 | |
020 | |a 9781441900678 |c GB. |9 978-1-4419-0067-8 | ||
024 | 3 | |a 9781441900678 | |
028 | 5 | 2 | |a 12207923 |
035 | |a (OCoLC)390940043 | ||
035 | |a (DE-599)DNB992999871 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-703 |a DE-29T |a DE-11 | ||
082 | 0 | |a 620.5 |2 22 | |
084 | |a UQ 8300 |0 (DE-625)146594: |2 rvk | ||
084 | |a 620 |2 sdnb | ||
100 | 1 | |a Grimes, Craig A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a TiO 2 nanotube arrays |b synthesis, properties, and applications |c Craig A. Grimes ; Gopal K. Mor |
264 | 1 | |a New York, NY |b Springer |c 2009 | |
300 | |a XXVII, 358 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Nanotubes | |
650 | 0 | 7 | |a Titandioxid |0 (DE-588)4185549-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nanoröhre |0 (DE-588)4844582-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Titandioxid |0 (DE-588)4185549-8 |D s |
689 | 0 | 1 | |a Nanoröhre |0 (DE-588)4844582-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Mor, Gopal K. |e Verfasser |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017711038&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-017711038 |
Datensatz im Suchindex
_version_ | 1804139344728948736 |
---|---|
adam_text | Contents
Introduction
................................................................ xiü
Fabrication of TiO2 Nanotube Arrays by Electrochemical
Anodization: Four Synthesis Generations
................................. 1
1.1
Introduction
............................................................... 1
1.1.1
The Electrochemical Anodization Process
........................ 2
1.2
Nanotube Array Synthesis Using Aqueous Electrolytes:
The First Generation
...................................................... 3
1.2.1
HF-Based Electrolytes
............................................. 3
1.2.2
Tapered Conical Shape Nanotubes
................................ 5
1.2.3
Wall Thickness Variation
......................................... 6
1.2.4
UsingHNOa/HF
................................................... 7
1.2.5
Using
H2SO4/HF
.................................................. 8
1.2.6
Using HzC^Ov/HF
................................................ 8
1.2.7
Using CH3COOH/NH4F,
HzSCVNřliF
........................... 9
1.2.8
Using HjPO^F, H3PO4/NH4F
.................................. 10
1.3
Nanotube Array Synthesis Using Buffered Electrolytes:
The Second Generation
.................................................. 12
1.3.1
Step-by-Step Procedure: Solution Preparation,
Mixing and
pH
Adjustment
...................................... 15
1.3.2
Solution Set Preparation
.......................................... 15
1.3.3
Anodization with Constant Current Density
..................... 16
1.4
Synthesis of Nanotube Arrays Using Polar Organic Electrolytes:
The Third Generation
.................................................... 18
1.4.1
Using Formamide and Dimethyl formamide electrolyte
......... 18
1.4.2
Dimethyl Sulfoxide Electrolytes
................................. 22
1.4.3
Ethylene
Glycol
Electrolytes
..................................... 26
1.4.4
Diethylene
Glycol
Electrolytes
................................... 34
1.4.5
Using Glycerol and NH4F
........................................ 37
1.4.6
Methanol,
Water, and HF
........................................ 38
1.5
Nanotube Array Synthesis Using Non-Fluoride Based Electrolytes:
The Fourth Generation
.................................................. 38
Contents
1.5.1 UsingHCl ........................................................ 40
1.5.2 H2O2
Aqueous Electrolytes ......................................
40
1.5.3 HCI/H2O2
Aqueous Electrolytes
................................. 42
1.6
Fabrication of Transparent TiO2 Nanotubes Arrays
.................... 44
1.7
Mechanistic Model of Nanotube Array Formation by
Potentiostatic Anodization
.............................................. 48
References
.................................................................... 59
Material Properties of TiO2 Nanotube Arrays: Structural, Elemental,
Mechanical, Optical, and Electrical
....................................... 67
2.1
Introduction
.............................................................. 67
2.2
Structural and Elemental Characterization
.............................. 67
2.2.1
Anodic Formation of Crystalline Metal Oxide Nanotubes
...... 73
2.2.2
Improved Crystallization via Solvothermal Treatment
.......... 76
2.2.3
Partially Crystalline Anatase Phase Nanotubes
by Anodization
................................................... 78
2.3
Characterization of Doped
Titania
Nanotubes
.......................... 79
2.3.1
Carbon Incorporation Within the Nanotubes
.................... 79
2.3.2
Nitrogen Incorporation Within the Nanotubes
................... 80
2.3.3
Boron-Doped Nanotubes
......................................... 82
2.3.4
Organic Bath
...................................................... 82
2.3.5
CdS-Coated Nanotubes
........................................... 83
2.4
Optical Properties of
Titania
Nanotubes Arrays
........................ 83
2.4.1
Finite Difference Time Domain Simulation
of Light Propagation in Nanotube Arrays
........................ 83
2.4.2
Measured Optical Properties
..................................... 88
2.4.3
Ellipsometric Measurements
..................................... 92
2.4.4
Raman Spectra Measurements
................................... 96
2.5
Electrical Property Measurements
...................................... 97
2.5.1
Photocurrent Transient Measurements
........................... 97
2.5.2
Capacitance Measurements
....................................... 98
2.6
Mechanical Properties
................................................. 105
References
.................................................................. 106
TiO2 Nanotube Arrays: Application to Hydrogen Sensing
............ 115
3.1
Introduction
............................................................ 115
3.2
High Temperature Sensors using TiO2 Nanotube Arrays
............. 117
3.3
Self-Cleaning Room-Temperature Hydrogen Sensors
................ 121
3.4
Room-Temperature Hydrogen Sensors of Enhanced Sensitivity
..... 126
3.4.1
TiO2 Nanotube Arrays on
Ti
Foil
............................... 126
3.4.2
Transparent Hydrogen Sensors
.................................. 131
3.5
Extreme Hydrogen Gas Sensitivities at Room Temperature
......... 132
3.6
Transcutaneous Hydrogen Monitoring using TiO2
Nanotube Arrays
....................................................... 136
3.6.1
Cross Interference and Calibration
.............................. 137
Contents ¡x
3.6.2 Transcutaneous
Hydrogen and Lactose Intolerance ............
141
References
.................................................................. 142
4 TiO2 Nanotube
Arrays:
Application
to Photoelectrochemical
Water Splitting ............................................................ 149
4.1
Introduction
............................................................ 149
4.2 Photoelectrolysis
Cell
................................................. 150
4.2.1 Water Splitting
Efficiency
....................................... 153
4.2.2 Quantum
Efficiency Calculation ................................
157
4.3 Photoelectrolysis
Using Unmodified
TiO2 Nanotubes ................ 158
4.3.1 Short Nanotubes ................................................. 159
4.3.2 Medium
Length
Nanotubes ..................................... 161
4.3.3
Long
Nanotubes ................................................. 164
4.3.4
Roughness Factor................................................
166
4.3.5
Effect of Electrolyte
Additives .................................. 168
4.4
Photoelectrolysis Using
Anionie
and Cationic Doped
TiO2 Nanotubes
........................................................ 170
4.4.1
N-Doped TiO2 Nanotubes
....................................... 170
4.4.2
Carbon Doped TiO2 Nanotubes
................................. 174
4.4.3
Sulfur-Doped TiO2 Nanotubes
.................................. 175
4.4.4
Boron-Doped TiO2 Nanotubes
.................................. 176
4.4.5
Silicon-Doped TiO2 Nanotubes
................................. 177
4.5
Photoelectrolysis Using Surface-Sensitized TiO2 Nanotubes
........ 178
4.5.1
CdS Sensitized TiO2 Nanotubes
................................ 178
4.5.2
CdSe Sensitized TiO2 Nanotubes
............................... 180
4.5.3
CdTe Sensitized TiO2 Nanotube Arrays
[137] .................. 180
4.5.4
WO3 Coated TiO2 Nanotubes
................................... 183
4.5.5
Pt Sensitized TiO2 Nanotubes
................................... 184
4.6
Other Approaches
..................................................... 185
4.6.1
Polyoxophosphotungstate Encapsulated in
TiO2 Nanotubes
.................................................. 185
4.6.2
Light Sensitized Enzymatic System
with TiO2 Nanotubes
............................................ 186
4.7
Self-Biased Photoelectrochemical Diodes Using Cu-Ti-O Ternary
Oxide Nanotubes
...................................................... 188
4.7.1
Fabrication of
p
-Туре
Copper Rich Cu-Ti-O Nanotubes
....... 189
4.7.2
Photoelectrochemical Properties
................................ 192
4.7.3
Self-Biased Heterojunction Photoelectrochemical Diodes
..... 193
4.8
Visible light responsive Ti-Fe-0 ternary oxide nanotubes
........... 195
4.8.1
Benefits of nanostructuring hematite
............................ 195
4.8.2
Self-Aligned Nanoporous Iron (III) Oxide
...................... 196
4.8.3
Photoelectrochemical Properties of Self-Aligned
Nanoporous Iron (III) Oxide
.................................... 198
4.8.4
Fabrication and Structural Characterization of
Ti-Fe-O Nanotubes
..............................................
198
t
Contents
4.8.5
Photoelectrochemical
Properties of Ti-Fe-O Nanotubes
.......203
4.9
Compositionally Graded Ternary Oxide Nanotube Arrays
........... 205
References
..................................................................
206
S
Dye-Sensitized and Bulk-Heterojunctions Solar Cells:
TiO2 Nanotube Arrays as a Base Material
.............................. 217
5.1
Introduction
............................................................
21?
5.2
Dye Sensitized Solar Cells: Operating Principles
..................... 218
5.2.1
Key DSC Processes
.............................................. 219
5.2.2
Factors Influencing Conversion Efficiencies
....................220
5.2.3
Nanocrystalline DSCs
........................................... 223
5.3
Solar Cell Parameters
.................................................. 225
5.4
J-V Characterization Under Standard Conditions
.................... 226
5.4.1
Calibrating the Solar Simulator for DSC
and Polymeric Solar Cells
....................................... 226
5.4.2
Experimental Setup
..............................................227
5.5
Benefits of Vertically Oriented Uniformly Aligned TiO2
Nanotube Arrays in DSCs
............................................. 228
5.5.1
Finite Difference Time Domain Application to DSCs
..........229
5.6
Liquid Junction DSCs
................................................. 234
5.6.1
Transparent TiO2 Nanotube Arrays on FTO
Coated Glass: Front Side Illumination
.......................... 239
5.6.2
TiO2 Nanotube Arrays on
Ti
Foil: Back Side Illumination
.....245
5.6.3
Charge Collection Properties
.................................... 252
5.6.4
Electron Transport and Recombination Properties
..............253
5.7
Polymer Based Bulk Heterojunction Solar Cells
..................... 258
5.7.1
TiO2 Nanotubes on FTO Glass: Polymeric Bulk
Heterojunction Solar Cells
......................................262
5.7.2
Solar Cell Fabrication and Performance
........................266
5.7.3
ТіОг
-Polymer
Based Solar Cells: Back Side Illumination
Geometry
........................................................270
References
.................................................................. 274
6
Use of TiO2 Nanotube Arrays for Biological Applications
............ 285
6.1
Introduction
............................................................ 285
6.2
Biosensors
............................................................. 286
6.2.1
H2O2 Detection: Nanotubes Co-immobilized
with
HRP
and Thionine
......................................... 286
6.2.2
Co-Immobilized with Cytochrome
с
............................ 288
6.2.3
Detection of
Н2Ог
and Glucose
................................. 288
6.3
Enhanced Blood Clotting
.............................................. 290
6.4
Cell Adhesion and Osteoblast Growth
................................ 292
6.5
Drug Elution from TiO2 Nanotubes
................................... 296
6.6 Hydrophobie
Nanotubes: SAMs on Surface on Hydrophilic
Nanotubes
................................... 301
Contents xi
6.7
Biological Fluids Filtration and Drug Delivery Using T1O2
Nanotubular Membrane
............................................... 302
6.8
Application of Photocatalytic TiO2 Nanotube Properties
............. 308
References
.................................................................. 309
7
Conclusions and New Directions
......................................... 315
7.1
Conclusions
............................................................ 315
7.2
Some Future Directions
............................................... 320
7.2.1
Intercalation and Supercapacitors
............................... 320
7.2.2
CO2 Reduction Using Visible Light
............................ 329
References
.................................................................. 340
Index
........................................................................... 347
|
any_adam_object | 1 |
author | Grimes, Craig A. Mor, Gopal K. |
author_facet | Grimes, Craig A. Mor, Gopal K. |
author_role | aut aut |
author_sort | Grimes, Craig A. |
author_variant | c a g ca cag g k m gk gkm |
building | Verbundindex |
bvnumber | BV035656553 |
classification_rvk | UQ 8300 |
ctrlnum | (OCoLC)390940043 (DE-599)DNB992999871 |
dewey-full | 620.5 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.5 |
dewey-search | 620.5 |
dewey-sort | 3620.5 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Maschinenbau / Maschinenwesen Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01603nam a2200445 c 4500</leader><controlfield tag="001">BV035656553</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20091208 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090731s2009 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">09,N12,0775</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">992999871</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441900678</subfield><subfield code="c">GB.</subfield><subfield code="9">978-1-4419-0067-8</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781441900678</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12207923</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)390940043</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB992999871</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.5</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 8300</subfield><subfield code="0">(DE-625)146594:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">620</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grimes, Craig A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">TiO 2 nanotube arrays</subfield><subfield code="b">synthesis, properties, and applications</subfield><subfield code="c">Craig A. Grimes ; Gopal K. Mor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVII, 358 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanotubes</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Titandioxid</subfield><subfield code="0">(DE-588)4185549-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanoröhre</subfield><subfield code="0">(DE-588)4844582-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Titandioxid</subfield><subfield code="0">(DE-588)4185549-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nanoröhre</subfield><subfield code="0">(DE-588)4844582-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mor, Gopal K.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017711038&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017711038</subfield></datafield></record></collection> |
id | DE-604.BV035656553 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:42:36Z |
institution | BVB |
isbn | 9781441900678 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017711038 |
oclc_num | 390940043 |
open_access_boolean | |
owner | DE-703 DE-29T DE-11 |
owner_facet | DE-703 DE-29T DE-11 |
physical | XXVII, 358 S. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Springer |
record_format | marc |
spelling | Grimes, Craig A. Verfasser aut TiO 2 nanotube arrays synthesis, properties, and applications Craig A. Grimes ; Gopal K. Mor New York, NY Springer 2009 XXVII, 358 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Nanotubes Titandioxid (DE-588)4185549-8 gnd rswk-swf Nanoröhre (DE-588)4844582-4 gnd rswk-swf Titandioxid (DE-588)4185549-8 s Nanoröhre (DE-588)4844582-4 s DE-604 Mor, Gopal K. Verfasser aut Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017711038&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Grimes, Craig A. Mor, Gopal K. TiO 2 nanotube arrays synthesis, properties, and applications Nanotubes Titandioxid (DE-588)4185549-8 gnd Nanoröhre (DE-588)4844582-4 gnd |
subject_GND | (DE-588)4185549-8 (DE-588)4844582-4 |
title | TiO 2 nanotube arrays synthesis, properties, and applications |
title_auth | TiO 2 nanotube arrays synthesis, properties, and applications |
title_exact_search | TiO 2 nanotube arrays synthesis, properties, and applications |
title_full | TiO 2 nanotube arrays synthesis, properties, and applications Craig A. Grimes ; Gopal K. Mor |
title_fullStr | TiO 2 nanotube arrays synthesis, properties, and applications Craig A. Grimes ; Gopal K. Mor |
title_full_unstemmed | TiO 2 nanotube arrays synthesis, properties, and applications Craig A. Grimes ; Gopal K. Mor |
title_short | TiO 2 nanotube arrays |
title_sort | tio 2 nanotube arrays synthesis properties and applications |
title_sub | synthesis, properties, and applications |
topic | Nanotubes Titandioxid (DE-588)4185549-8 gnd Nanoröhre (DE-588)4844582-4 gnd |
topic_facet | Nanotubes Titandioxid Nanoröhre |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017711038&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT grimescraiga tio2nanotubearrayssynthesispropertiesandapplications AT morgopalk tio2nanotubearrayssynthesispropertiesandapplications |