Fluid dynamics: theory, computation, and numerical simulation
"Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implement...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY [u.a.]
Springer
2009
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | "Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice."--BOOK JACKET. |
Beschreibung: | XVII, 773 S. Ill., graph. Darst. |
ISBN: | 9780387958699 9780387958712 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035638132 | ||
003 | DE-604 | ||
005 | 20090929 | ||
007 | t | ||
008 | 090721s2009 gw ad|| |||| 00||| eng d | ||
015 | |a 09,N06,0715 |2 dnb | ||
016 | 7 | |a 992146550 |2 DE-101 | |
020 | |a 9780387958699 |9 978-0-387-95869-9 | ||
020 | |a 9780387958712 |9 978-0-387-95871-2 | ||
024 | 3 | |a 9780387958699 | |
028 | 5 | 2 | |a 12187799 |
035 | |a (OCoLC)310400999 | ||
035 | |a (DE-599)DNB992146550 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-703 |a DE-29T | ||
050 | 0 | |a QA911 | |
082 | 0 | |a 620.106 |2 22 | |
084 | |a UF 4000 |0 (DE-625)145577: |2 rvk | ||
084 | |a 530 |2 sdnb | ||
100 | 1 | |a Pozrikidis, Constantine |d 1958- |e Verfasser |0 (DE-588)13868796X |4 aut | |
245 | 1 | 0 | |a Fluid dynamics |b theory, computation, and numerical simulation |c C. Pozrikidis |
250 | |a 2. ed. | ||
264 | 1 | |a New York, NY [u.a.] |b Springer |c 2009 | |
300 | |a XVII, 773 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | 1 | |a "Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice."--BOOK JACKET. | |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Fluid dynamics | |
650 | 4 | |a Fluid dynamics |x Data processing | |
650 | 4 | |a Fluid dynamics |x Mathematical models | |
650 | 0 | 7 | |a Strömungsmechanik |0 (DE-588)4077970-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hydrodynamik |0 (DE-588)4026302-2 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Hydrodynamik |0 (DE-588)4026302-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Strömungsmechanik |0 (DE-588)4077970-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017692969&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-017692969 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804139317656813568 |
---|---|
adam_text | Titel: Fluid dynamics
Autor: Pozrikidis, Constantine
Jahr: 2009
Contents
Préface v
1 Introduction to Kinematics 1
1.1 Fluids and solids......................... 1
1.2 Fluid parcels and flow kinematics................ 2
1.3 Coordinates, velocity, and accélération............. 3
1.3.1 Cylindrical polar coordinates.............. 6
1.3.2 Spherical polar coordinates............... 9
1.3.3 Plane polar coordinates................. 13
1.4 Fluid velocity........................... 16
1.4.1 Velocity vector field, streamlines and stagnation points 18
1.5 Point particles and their trajectories.............. 19
1.5.1 Path Unes ........................ 20
1.5.2 Ordinary differential équations (ODEs)........ 20
1.5.3 Explicit Euler method.................. 21
1.5.4 Modified Euler method................. 23
1.5.5 Description in polar coordinates............ 26
1.5.6 Streaklines........................ 27
1.6 Material surfaces and elementary motions........... 28
1.6.1 Fluid parcel rotation .................. 28
1.6.2 Fluid parcel déformation................ 29
1.6.3 Fluid parcel expansion ................. 30
1.6.4 Superposition of rotation, déformation, and expansion 31
1.6.5 Rotated coordinates................... 32
1.6.6 Flow décomposition................... 34
1.7 Interpolation........................... 38
1.7.1 Interpolation in one dimension............. 38
1.7.2 Interpolation in two dimensions............ 42
1.7.3 Interpolation of the velocity in a two-dimensional flow 45
1.7.4 Streamlines by interpolation.............. 49
More on Kinematics 54
2.1 Fundamental modes of fluid parcel motion........... 54
2.1.1 Function linearization.................. 55
2.1.2 Velocity gradient tensor................. 57
2.1.3 Relative motion of point particles........... 59
2.1.4 Fundamental motions in two-dimensional flow .... 60
2.1.5 Fundamental motions in three-dimensional flow ... 62
2.1.6 Gradient in polar coordinates ............. 62
2.2 Fluid parcel expansion...................... 65
2.3 Fluid parcel rotation and vorticity............... 66
2.3.1 Curl and vorticity.................... 68
2.3.2 Two-dimensional flow.................. 70
2.3.3 Axisymmetric flow.................... 70
2.4 Fluid parcel déformation..................... 71
2.5 Numerical differentiation..................... 74
2.5.1 Numerical differentiation in one dimension...... 74
2.5.2 Numerical differentiation in two dimensions...... 76
2.5.3 Velocity gradient and related functions........ 78
2.6 Flow rate............................. 85
2.6.1 Areal flow rate and flux................. 87
2.6.2 Areal flow rate across a line .............. 88
2.6.3 Numerical intégration.................. 89
2.6.4 The Gauss divergence theorem in two dimensions . . 90
2.6.5 Flow rate in a three-dimensional flow......... 91
2.6.6 Gauss divergence theorem in three dimensions .... 92
2.6.7 Axisymmetric flow.................... 92
2.7 Mass conservation ........................ 94
2.7.1 Mass flux and mass flow rate.............. 94
2.7.2 Mass flow rate across a closed line........... 94
2.7.3 The continuity équation................. 95
2.7.4 Three-dimensional flow................. 96
2.7.5 Rigid-body translation................. 96
2.7.6 Evolution équation for the density........... 97
2.8 Properties of point particles................... 99
2.8.1 The material derivative................. 100
2.8.2 The continuity équation................. 101
2.8.3 Point particle accélération ............... 102
2.9 Incompressible fluids and stream functions........... 106
2.9.1 Mathematical conséquences of incompressibility . . . 107
2.9.2 Stream function for two-dimensional flow....... 107
2.9.3 Stream function for axisymmetric flow ........ 109
2.10 Kinematic conditions at boundaries............... 111
2.10.1 The no-penetration boundary condition........ 111
Flow Computation based on Kinematics 115
3.1 Flow classification based on kinematics............. 115
3.2 Irrotational flow and the velocity potential........... 117
3.2.1 Two-dimensional flow.................. 117
3.2.2 Incompressible fluids and the harmonie potential ... 119
3.2.3 Three-dimensional flow................. 120
3.2.4 Boundary conditions .................. 121
3.2.5 Cylindrical polar coordinates.............. 122
3.2.6 Spherical polar coordinates............... 122
3.2.7 Plane polar coordinates................. 123
3.3 Finite-difference methods .................... 124
3.3.1 Boundary conditions .................. 124
3.3.2 Finite-difference grid .................. 126
3.3.3 Finite-difference discretization............. 127
3.3.4 Compilation of a linear system............. 128
3.4 Linear solvers........................... 138
3.4.1 Gauss élimination.................... 139
3.4.2 A ménagerie of other methods............. 140
3.5 Two-dimensional point sources and point-source dipoles . . . 141
3.5.1 Function superposition and fundamental solutions . . 141
3.5.2 Two-dimensional point source............. 141
3.5.3 Two-dimensional point-source dipole ......... 144
3.5.4 Flow past a circular cylinder.............. 148
3.5.5 Sources and dipoles in the présence of boundaries . . 149
3.6 Three-dimensional point sources and point-source dipoles . . 151
3.6.1 Three-dimensional point source ............ 151
3.6.2 Three-dimensional point-source dipole......... 152
3.6.3 Streaming flow past a sphère.............. 153
3.6.4 Sources and dipoles in the présence of boundaries . . 154
3.7 Point vortices and line vortices................. 155
3.7.1 The potential of irrotational circulatory flow..... 156
3.7.2 Flow past a circular cylinder.............. 157
3.7.3 Circulation........................ 158
3.7.4 Line vortices in three-dimensional flow ........ 161
Forces and Stresses 163
4.1 Body forces and surface forces.................. 163
4.1.1 Body forces........................ 163
4.1.2 Surface forces ...................... 164
4.2 Traction and the stress tensor.................. 165
4.2.1 Traction on either side of a fluid surface........ 168
4.2.2 Traction on a boundary................. 169
4.2.3 Symmetry of the stress tensor............. 170
4.3 Traction jump across a fluid interface.............. 171
4.3.1 Force balance at a two-dimensional interface..... 172
4.3.2 Force balance at a three-dimensional interface .... 176
4.3.3 Axisymmetric interfaces................. 179
4.4 Stresses in a fluid at rest..................... 183
4.4.1 Pressure from molecular motions............ 184
4.4.2 Jump in the pressure across an interface ....... 185
4.5 Constitutive équations...................... 186
4.5.1 Simple fluids....................... 188
4.5.2 Incompressible Newtonian fluids............ 188
4.5.3 Viscosity......................... 190
4.5.4 Idéal fluids........................ 192
4.5.5 Significance of the pressure in incompressible fluids . 193
4.5.6 Pressure in compressible fluids............. 193
4.6 Simple non-Newtonian fluids .................. 196
4.6.1 Unidirectional shear flow................ 197
4.7 Stresses in polar coordinates................... 199
4.7.1 Cylindrical polar coordinates.............. 200
4.7.2 Spherical polar coordinates............... 202
4.7.3 Plane polar coordinates................. 204
4.8 Boundary conditions for the tangential velocity........ 206
4.8.1 No-slip boundary condition............... 206
4.8.2 Slip boundary condition................. 207
4.9 Wall stresses in Newtonian fluids................ 208
4.9.1 Shear stress ....................... 208
4.9.2 Normal stress ...................... 209
4.10 Interfacial surfactant transport................. 210
4.10.1 Two-dimensional interfaces............... 210
4.10.2 Axisymmetric interfaces................. 214
4.10.3 Three-dimensional interfaces.............. 216
Hydrostatics 218
5.1 Equilibrium of pressure and body forces............ 218
5.1.1 Equilibrium of an infinitésimal parcel......... 220
5.1.2 Gases in hydrostatics.................. 222
5.1.3 Liquids in hydrostatics................. 223
5.2 Force exerted on immersed surfaces............... 225
5.2.1 A sphère floating on a flat interface.......... 226
5.3 Archimedes principle ...................... 231
5.3.1 Net force on a submerged body ............ 233
5.3.2 Moments......................... 234
5.4 Interfacial shapes......................... 235
5.4.1 Curved interfaces.................... 236
5.4.2 The Laplace-Young équation.............. 237
5.4.3 Three-dimensional interfaces.............. 238
5.5 A semi-infinite interface attached to an inclined plate..... 239
5.5.1 Numerical method.................... 241
5.6 A meniscus between two parallel plates............. 245
5.6.1 The shooting method.................. 249
5.7 A two-dimensional drop on a horizontal or inclined plane . . 253
5.7.1 Drop on a horizontal plane............... 253
5.7.2 A drop on an inclined plane .............. 261
5.8 Axisymmetric meniscus inside a tube.............. 273
5.9 Axisymmetric drop on a horizontal plane ........... 276
5.9.1 Solution space...................... 278
5.10 A sphère straddling an interface................. 286
5.10.1 Spheroidal particle.................... 296
5.11 A three-dimensional meniscus.................. 298
5.11.1 Elliptic coordinates................... 299
5.11.2 Finite-difference method ................ 300
5.11.3 Capillary force and torque............... 306
Equation of Motion and Vorticity Transport 308
6.1 Newton s second law of motion for a fluid parcel ....... 308
6.1.1 Rate of change of linear momentum.......... 309
6.1.2 Equation of parcel motion ............... 309
6.1.3 Two-dimensional flow.................. 310
6.2 Intégral moment um balance................... 313
6.2.1 Flow through a sudden enlargement.......... 316
6.2.2 Isentropic flow through a conduit ........... 318
6.3 Cauchy s équation of motion .................. 319
6.3.1 Hydrodynamic volume force.............. 320
6.3.2 Force on an infinitésimal parcel ............ 320
6.3.3 The équation of motion................. 322
6.3.4 Evolution équations................... 323
6.3.5 Cylindrical polar coordinates.............. 323
6.3.6 Spherical polar coordinates............... 325
6.3.7 Plane polar coordinates................. 325
6.3.8 Vortex force....................... 326
6.3.9 Summary of governing équation............ 326
6.3.10 Accélérâting frame of référence............. 326
6.4 Euler s and Bernoulli s équations................ 327
6.4.1 Boundary conditions .................. 328
6.4.2 Irrotational flow..................... 329
6.4.3 Steady irrotational flow................. 331
6.4.4 Steady rotational flow.................. 334
6.4.5 Flow with uniform vorticity .............. 335
6.5 The Navier-Stokes équation................... 337
6.5.1 Pressure and viscous forces............... 338
6.5.2 A radially expanding or contracting bubble...... 339
6.5.3 Boundary conditions .................. 340
6.5.4 Polar coordinates.................... 341
6.6 Vorticity transport........................ 343
6.6.1 Two-dimensional flow.................. 343
6.6.2 Axisymmetric flow.................... 346
6.6.3 Three-dimensional flow................. 347
6.7 Dynamic similitude and the Reynolds number......... 350
6.7.1 Dimensional analysis .................. 352
6.8 Structure of a flow as a function of the Reynolds number . . 355
6.8.1 Stokes flow........................ 356
6.8.2 Flow at high Reynolds numbers............ 356
6.8.3 Laminar and turbulent flow............... 357
6.9 Dimensionless numbers in fluid dynamics ........... 357
Channel, Tube, and Film Flow 360
7.1 Steady flow in a two-dimensional channel ........... 360
7.1.1 Two-layer flow...................... 363
7.1.2 Multi-layer flow..................... 365
7.1.3 Power-law fluids..................... 370
7.2 Steady film flow down an inclined plane............ 373
7.2.1 Multi-film flow...................... 374
7.2.2 Power-law fluids..................... 375
7.3 Steady flow through a circular tube............... 377
7.3.1 Multi-layer tube flow.................. 380
7.3.2 Flow due to a translating sector............ 380
7.4 Steady flow through an annular tube.............. 383
7.4.1 Multi-layer annular flow................. 387
7.5 Steady flow in channels and tubes ............... 387
7.5.1 Elliptical tube...................... 388
7.5.2 Rectangular tube.................... 390
7.5.3 Triangular tube..................... 393
7.5.4 Semi-infinite rectangular channel............ 393
7.6 Steady swirling flow....................... 395
7.6.1 Annular flow....................... 396
7.6.2 Multi-layer flow..................... 399
7.7 Transient channel flow...................... 400
7.7.1 Couette flow....................... 400
7.7.2 Impulsive motion of a plate in a semi-infinite fluid . . 403
7.7.3 Pressure- and gravity-driven flow ........... 406
7.8 Oscillatory channel flow..................... 409
7.8.1 Oscillatory Couette flow ................ 409
7.8.2 Rayleigh s oscillating plate............... 411
7.8.3 Pulsating pressure-driven flow............. 413
7.9 Transient and oscillatory flow in a circular tube........ 415
7.9.1 Transient Poiseuille flow ................ 415
7.9.2 Pulsating pressure-driven flow............. 420
7.9.3 Transient circular Couette flow............. 422
7.9.4 More on Bessel functions................ 422
Finite-Difference Methods 424
8.1 Choice of governing équations.................. 424
8.2 Unidirectional flow; velocity/pressure formulation....... 425
8.2.1 Governing équations................... 426
8.2.2 Explicit finite-difference method............ 426
8.2.3 Implicit finite-difference method............ 429
8.2.4 Steady state....................... 435
8.2.5 Two-layer flow...................... 436
8.3 Unidirectional flow; velocity/vorticity formulation....... 443
8.3.1 Boundary conditions for the vorticity......... 444
8.3.2 Alternative set of équations............... 445
8.3.3 Comparison with the velocity/pressure formulation . 446
8.4 Unidirectional flow; stream function/vorticity formulation . . 447
8.4.1 Boundary conditions for the vorticity......... 448
8.4.2 A semi-implicit method................. 449
8.5 Two-dimensional flow;
stream function/vorticity formulation ............. 451
8.5.1 Flow in a cavity..................... 451
8.5.2 Finite-difference grid .................. 452
8.5.3 Unsteady flow...................... 453
8.5.4 Steady flow........................ 454
8.5.5 Summary......................... 460
8.6 Velocity/pressure formulation.................. 463
8.6.1 Alternative System of governing équations ...... 464
8.6.2 Pressure boundary conditions ............. 465
8.6.3 Compatibility condition for the pressure ....... 465
8.7 Operator splitting and solenoidal projection.......... 466
8.7.1 Convection-diffusion step................ 467
8.7.2 Projection step...................... 469
8.7.3 Boundary conditions for the intermediate velocity . . 471
8.7.4 Flow in a cavity..................... 471
8.7.5 Computation of the pressure.............. 484
8.8 Staggered grids.......................... 485
9 Low Reynolds Number Flow 494
9.1 Flow in narrow channels..................... 494
9.1.1 Governing équations................... 495
9.1.2 Scaling.......................... 495
9.1.3 Equations of lubrication flow.............. 497
9.1.4 Lubrication in a slider bearing............. 497
9.1.5 Flow in a wavy channel................. 500
9.1.6 Dynamic lifting..................... 503
9.2 Film flow on a horizontal or inclined wall ........... 505
9.2.1 Thin-filmflow...................... 506
9.2.2 Numerical methods................... 509
9.3 Multi-film flow on a horizontal or inclined wall........ 511
9.3.1 Evolution équations................... 514
9.3.2 Numerical methods................... 516
9.4 Two-layer channel flow...................... 523
9.5 Flow due to the motion of a sphère............... 534
9.5.1 Formulation in terms of the stream function..... 535
9.5.2 Traction, force, and the Archimedes-Stokes law .... 539
9.6 Point forces and point sources in Stokes flow ......... 541
9.6.1 The Oseen tensor and the point force......... 542
9.6.2 Flow représentation in terms of singularities..... 544
9.6.3 A sphère moving inside a circular tube........ 544
9.6.4 Boundary intégral représentation............ 547
9.7 Two-dimensional Stokes flow .................. 549
9.7.1 Flow due to the motion of a cylinder ......... 549
9.7.2 Rotation of a circular cylinder............. 552
9.7.3 Simple shear flow past a circular cylinder....... 552
9.7.4 The Oseen tensor and the point force......... 553
9.8 Local solutions.......................... 554
9.8.1 Séparation of variables................. 555
9.8.2 Flow near a corner.................... 557
10 High Reynolds Number Flow 562
10.1 Changes in the structure of a flow
with increasing Reynolds number................ 562
10.2 Prandtl boundary layer analysis................. 566
10.2.1 Boundary-layer équations................ 568
10.2.2 Surface curvilinear coordinates............. 569
10.2.3 Parabolization...................... 570
10.2.4 Flow séparation..................... 570
10.3 Blasius boundary layer on a semi-infinite plate........ 571
10.3.1 Self-similarity and the Blasius équation........ 571
10.3.2 Numerical solution ................... 574
10.3.3 Wall shear stress and drag force............ 576
10.3.4 Vorticity transport ................... 577
10.4 Displacement and momentum thickness............ 579
10.4.1 Von Kàrmàn s approximate method.......... 581
10.5 Boundary layers in accelerating and decelerating flow..... 583
10.5.1 Self-similarity ...................... 585
10.5.2 Numerical solution ................... 586
10.6 Momentum intégral method................... 587
10.6.1 The von Kàrniàn-Pohlhausen method......... 589
10.6.2 Pohlhausen polynomials................. 590
10.6.3 Numerical solution ................... 592
10.6.4 Boundary layer around a curved body......... 595
10.7 Instability of shear flows..................... 599
10.7.1 Stability analysis of shear flow............. 600
10.7.2 Normal-mode analysis.................. 601
10.7.3 Finite-difference solution................ 604
10.8 Turbulent flow .......................... 610
10.8.1 Transition to turbulence ................ 611
10.8.2 Lagrangian turbulence ................. 613
10.8.3 Features of turbulent motion.............. 613
10.8.4 Décomposition into mean and fluctuating components 615
10.8.5 Inviscid scales...................... 617
10.8.6 Viscous scales...................... 618
10.8.7 Relation between inviscid and viscous scales..... 618
10.8.8 Fourier analysis..................... 619
10.9 Analysis and modeling of turbulent flow............ 623
10.9.1 Reynolds stresses .................... 623
10.9.2 Prandtl s mixing length model............. 625
10.9.3 Logarithmic law for wall-bounded shear flow..... 627
10.9.4 Corrélations....................... 628
11 Vortex Motion 631
11.1 Vorticity and circulation in two-dimensional flow....... 631
11.2 Point vortices........................... 633
11.2.1 Dirac s delta function in a plane............ 634
11.2.2 Evolution of the point vortex strength......... 636
11.2.3 Velocity of a point vortex................ 636
11.2.4 Motion of a collection of point vortices........ 636
11.2.5 Effect of boundaries................... 637
11.2.6 A periodic array of point vortices........... 639
11.2.7 A point vortex between two parallel walls....... 641
11.2.8 A point vortex in a semi-infinite strip......... 641
11.3 Two-dimensional flow with distributed vorticity........ 645
11.3.1 Vortex patches with uniform vorticity......... 646
XVI
11.3.2 Contour dynamics.................... 049
11.3.3 Gauss intégration quadrature.............. 0- l
11.3.4 Représentation with circulai-arcs ........... 6o2
11.4 Vorticity and circulation in three-dimensional flow...... 057
11.4.1 Préservation of circulation............... 058
11.4.2 Flow induced by vorticity................ 060
11.5 Axisymmetric flow induced by vorticity ............ 061
11.5.1 Biot-Savart intégral for axisymmetric flow ...... 663
11.5.2 Line vortex ring..................... 006
11.5.3 Vortex rings with a finite eore............. 068
11.5.4 Motion of a collection of vortex rings......... 672
11.5.5 Vortex patch in axisymmetric flow........... 073
11.6 Three-dimensional vortex motion................ 675
11.6.1 Vortex particles..................... 076
11.6.2 Line vortices
and the local induction approximation (LIA)..... 676
12 Aerodynamics 680
12.1 General features of flow past an aircraft............ 680
12.2 Airfoils and the Kutta-Joukowski condition.......... 682
12.2.1 The Kutta-Joukowski theorem............. 686
12.2.2 The Kutta-Joukowski condition............ 687
12.3 Vortex panels........................... 687
12.3.1 From point vortices to vortex panels.......... 688
12.3.2 Vortex panels with uniform strength.......... 689
12.3.3 Vortex panel with linear strength density....... 691
12.4 Vortex panel method....................... 694
12.4.1 Velocity in terms of the panel strength........ 698
12.4.2 Point collocation..................... 699
12.4.3 Circulation and pressure coefficient .......... 700
12.4.4 Lift............................ 700
12.4.5 Vortex panel code.................... 702
12.5 Vortex sheet représentation................... 709
12.5.1 Thin airfoil theory.................... 709
12.6 Point-source-dipole panels.................... 717
12.6.1 Source-dipole panel method .............. 718
12.6.2 Source-dipole représentation.............. 720
12.6.3 Solution of the interior problem............ 721
12.7 Point-source panels and Green s third identity......... 723
12.7.1 Source panels with constant density.......... 723
12.7.2 Green s third identity.................. 725
A FDLIB Software Library 728
B Références 738
C Matlab Primer 741
Cl Invoking Matlab ........................ 741
C.2 Matlab programming...................... 742
C.3 Matlab Grammar and syntax.................. 743
C.4 Précision.............................. 744
C.5 Matlab commands ....................... 744
C.6 Matlab examples......................... 747
C.7 Matlab functions........................ 750
C.8 User-defined functions...................... 751
C.9 Matlab graphies......................... 755
Index 763
|
any_adam_object | 1 |
author | Pozrikidis, Constantine 1958- |
author_GND | (DE-588)13868796X |
author_facet | Pozrikidis, Constantine 1958- |
author_role | aut |
author_sort | Pozrikidis, Constantine 1958- |
author_variant | c p cp |
building | Verbundindex |
bvnumber | BV035638132 |
callnumber-first | Q - Science |
callnumber-label | QA911 |
callnumber-raw | QA911 |
callnumber-search | QA911 |
callnumber-sort | QA 3911 |
callnumber-subject | QA - Mathematics |
classification_rvk | UF 4000 |
ctrlnum | (OCoLC)310400999 (DE-599)DNB992146550 |
dewey-full | 620.106 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.106 |
dewey-search | 620.106 |
dewey-sort | 3620.106 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02736nam a2200577 c 4500</leader><controlfield tag="001">BV035638132</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090929 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090721s2009 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">09,N06,0715</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">992146550</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387958699</subfield><subfield code="9">978-0-387-95869-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387958712</subfield><subfield code="9">978-0-387-95871-2</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780387958699</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12187799</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)310400999</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB992146550</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA911</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.106</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 4000</subfield><subfield code="0">(DE-625)145577:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pozrikidis, Constantine</subfield><subfield code="d">1958-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)13868796X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fluid dynamics</subfield><subfield code="b">theory, computation, and numerical simulation</subfield><subfield code="c">C. Pozrikidis</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 773 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">"Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice."--BOOK JACKET.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid dynamics</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid dynamics</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hydrodynamik</subfield><subfield code="0">(DE-588)4026302-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hydrodynamik</subfield><subfield code="0">(DE-588)4026302-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017692969&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017692969</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV035638132 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:42:10Z |
institution | BVB |
isbn | 9780387958699 9780387958712 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017692969 |
oclc_num | 310400999 |
open_access_boolean | |
owner | DE-703 DE-29T |
owner_facet | DE-703 DE-29T |
physical | XVII, 773 S. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Springer |
record_format | marc |
spelling | Pozrikidis, Constantine 1958- Verfasser (DE-588)13868796X aut Fluid dynamics theory, computation, and numerical simulation C. Pozrikidis 2. ed. New York, NY [u.a.] Springer 2009 XVII, 773 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier "Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice."--BOOK JACKET. Datenverarbeitung Mathematisches Modell Fluid dynamics Fluid dynamics Data processing Fluid dynamics Mathematical models Strömungsmechanik (DE-588)4077970-1 gnd rswk-swf Hydrodynamik (DE-588)4026302-2 gnd rswk-swf 1\p (DE-588)4123623-3 Lehrbuch gnd-content Hydrodynamik (DE-588)4026302-2 s DE-604 Strömungsmechanik (DE-588)4077970-1 s 2\p DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017692969&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Pozrikidis, Constantine 1958- Fluid dynamics theory, computation, and numerical simulation Datenverarbeitung Mathematisches Modell Fluid dynamics Fluid dynamics Data processing Fluid dynamics Mathematical models Strömungsmechanik (DE-588)4077970-1 gnd Hydrodynamik (DE-588)4026302-2 gnd |
subject_GND | (DE-588)4077970-1 (DE-588)4026302-2 (DE-588)4123623-3 |
title | Fluid dynamics theory, computation, and numerical simulation |
title_auth | Fluid dynamics theory, computation, and numerical simulation |
title_exact_search | Fluid dynamics theory, computation, and numerical simulation |
title_full | Fluid dynamics theory, computation, and numerical simulation C. Pozrikidis |
title_fullStr | Fluid dynamics theory, computation, and numerical simulation C. Pozrikidis |
title_full_unstemmed | Fluid dynamics theory, computation, and numerical simulation C. Pozrikidis |
title_short | Fluid dynamics |
title_sort | fluid dynamics theory computation and numerical simulation |
title_sub | theory, computation, and numerical simulation |
topic | Datenverarbeitung Mathematisches Modell Fluid dynamics Fluid dynamics Data processing Fluid dynamics Mathematical models Strömungsmechanik (DE-588)4077970-1 gnd Hydrodynamik (DE-588)4026302-2 gnd |
topic_facet | Datenverarbeitung Mathematisches Modell Fluid dynamics Fluid dynamics Data processing Fluid dynamics Mathematical models Strömungsmechanik Hydrodynamik Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017692969&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT pozrikidisconstantine fluiddynamicstheorycomputationandnumericalsimulation |