Incremental topological flipping works for regular triangulations:
Abstract: "A set of n weighted points in general position in R[superscript d] defines a unique regular triangulation. This paper proves that if the points are added one by one then flipping in a topological order will succeed in constructing this triangulation. If, in addition, the points are a...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Urbana, Ill.
University of Illinois at Urbana-Champaign, Dept. of Computer Science
1992
|
Schlagworte: | |
Zusammenfassung: | Abstract: "A set of n weighted points in general position in R[superscript d] defines a unique regular triangulation. This paper proves that if the points are added one by one then flipping in a topological order will succeed in constructing this triangulation. If, in addition, the points are added in a random sequence and the history of the flips is used for locating the next point, then the algorithm takes expected time at most [formula]. The second term is of the same order of magnitude as the maximum number of possible simplices." |
Beschreibung: | 16 leaves ill. 28 cm |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035637362 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 090721s1992 a||| |||| 00||| eng d | ||
035 | |a (OCoLC)26198964 | ||
035 | |a (DE-599)BVBBV035637362 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
082 | 0 | |a 510.78 | |
088 | |a UIUCDCS-R-92-1726 | ||
088 | |a UILU-ENG-92-1706 | ||
100 | 1 | |a Edelsbrunner, Herbert |d 1958- |e Verfasser |0 (DE-588)111356377 |4 aut | |
245 | 1 | 0 | |a Incremental topological flipping works for regular triangulations |c by H. Edelsbrunner, N.R. Shah |
246 | 1 | 3 | |a UIUCDCS R 92-1726 |
264 | 1 | |a Urbana, Ill. |b University of Illinois at Urbana-Champaign, Dept. of Computer Science |c 1992 | |
300 | |a 16 leaves |b ill. |c 28 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | |a Abstract: "A set of n weighted points in general position in R[superscript d] defines a unique regular triangulation. This paper proves that if the points are added one by one then flipping in a topological order will succeed in constructing this triangulation. If, in addition, the points are added in a random sequence and the history of the flips is used for locating the next point, then the algorithm takes expected time at most [formula]. The second term is of the same order of magnitude as the maximum number of possible simplices." | ||
650 | 4 | |a Computational geometry | |
650 | 4 | |a Computational geometry | |
700 | 1 | |a Shah, Nimish R. |e Sonstige |4 oth | |
999 | |a oai:aleph.bib-bvb.de:BVB01-017692207 |
Datensatz im Suchindex
_version_ | 1804139316471922688 |
---|---|
any_adam_object | |
author | Edelsbrunner, Herbert 1958- |
author_GND | (DE-588)111356377 |
author_facet | Edelsbrunner, Herbert 1958- |
author_role | aut |
author_sort | Edelsbrunner, Herbert 1958- |
author_variant | h e he |
building | Verbundindex |
bvnumber | BV035637362 |
ctrlnum | (OCoLC)26198964 (DE-599)BVBBV035637362 |
dewey-full | 510.78 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510.78 |
dewey-search | 510.78 |
dewey-sort | 3510.78 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01602nam a2200337 c 4500</leader><controlfield tag="001">BV035637362</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090721s1992 a||| |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)26198964</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035637362</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510.78</subfield></datafield><datafield tag="088" ind1=" " ind2=" "><subfield code="a">UIUCDCS-R-92-1726</subfield></datafield><datafield tag="088" ind1=" " ind2=" "><subfield code="a">UILU-ENG-92-1706</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Edelsbrunner, Herbert</subfield><subfield code="d">1958-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)111356377</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Incremental topological flipping works for regular triangulations</subfield><subfield code="c">by H. Edelsbrunner, N.R. Shah</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">UIUCDCS R 92-1726</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Urbana, Ill.</subfield><subfield code="b">University of Illinois at Urbana-Champaign, Dept. of Computer Science</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">16 leaves</subfield><subfield code="b">ill.</subfield><subfield code="c">28 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract: "A set of n weighted points in general position in R[superscript d] defines a unique regular triangulation. This paper proves that if the points are added one by one then flipping in a topological order will succeed in constructing this triangulation. If, in addition, the points are added in a random sequence and the history of the flips is used for locating the next point, then the algorithm takes expected time at most [formula]. The second term is of the same order of magnitude as the maximum number of possible simplices."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational geometry</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shah, Nimish R.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017692207</subfield></datafield></record></collection> |
id | DE-604.BV035637362 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:42:09Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017692207 |
oclc_num | 26198964 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 16 leaves ill. 28 cm |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | University of Illinois at Urbana-Champaign, Dept. of Computer Science |
record_format | marc |
spelling | Edelsbrunner, Herbert 1958- Verfasser (DE-588)111356377 aut Incremental topological flipping works for regular triangulations by H. Edelsbrunner, N.R. Shah UIUCDCS R 92-1726 Urbana, Ill. University of Illinois at Urbana-Champaign, Dept. of Computer Science 1992 16 leaves ill. 28 cm txt rdacontent n rdamedia nc rdacarrier Abstract: "A set of n weighted points in general position in R[superscript d] defines a unique regular triangulation. This paper proves that if the points are added one by one then flipping in a topological order will succeed in constructing this triangulation. If, in addition, the points are added in a random sequence and the history of the flips is used for locating the next point, then the algorithm takes expected time at most [formula]. The second term is of the same order of magnitude as the maximum number of possible simplices." Computational geometry Shah, Nimish R. Sonstige oth |
spellingShingle | Edelsbrunner, Herbert 1958- Incremental topological flipping works for regular triangulations Computational geometry |
title | Incremental topological flipping works for regular triangulations |
title_alt | UIUCDCS R 92-1726 |
title_auth | Incremental topological flipping works for regular triangulations |
title_exact_search | Incremental topological flipping works for regular triangulations |
title_full | Incremental topological flipping works for regular triangulations by H. Edelsbrunner, N.R. Shah |
title_fullStr | Incremental topological flipping works for regular triangulations by H. Edelsbrunner, N.R. Shah |
title_full_unstemmed | Incremental topological flipping works for regular triangulations by H. Edelsbrunner, N.R. Shah |
title_short | Incremental topological flipping works for regular triangulations |
title_sort | incremental topological flipping works for regular triangulations |
topic | Computational geometry |
topic_facet | Computational geometry |
work_keys_str_mv | AT edelsbrunnerherbert incrementaltopologicalflippingworksforregulartriangulations AT shahnimishr incrementaltopologicalflippingworksforregulartriangulations AT edelsbrunnerherbert uiucdcsr921726 AT shahnimishr uiucdcsr921726 |