Incremental topological flipping works for regular triangulations:

Abstract: "A set of n weighted points in general position in R[superscript d] defines a unique regular triangulation. This paper proves that if the points are added one by one then flipping in a topological order will succeed in constructing this triangulation. If, in addition, the points are a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Edelsbrunner, Herbert 1958- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Urbana, Ill. University of Illinois at Urbana-Champaign, Dept. of Computer Science 1992
Schlagworte:
Zusammenfassung:Abstract: "A set of n weighted points in general position in R[superscript d] defines a unique regular triangulation. This paper proves that if the points are added one by one then flipping in a topological order will succeed in constructing this triangulation. If, in addition, the points are added in a random sequence and the history of the flips is used for locating the next point, then the algorithm takes expected time at most [formula]. The second term is of the same order of magnitude as the maximum number of possible simplices."
Beschreibung:16 leaves ill. 28 cm

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!