Discrete mathematics with applications:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Belmont, Calif. [u.a.]
Thomson-Brooks/Cole
2004
|
Ausgabe: | 3. ed., internat. student ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | Includes index |
Beschreibung: | Getr. Zählung Ill. 27 cm |
ISBN: | 0534359450 0534490964 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035629500 | ||
003 | DE-604 | ||
005 | 20090814 | ||
007 | t | ||
008 | 090715s2004 a||| |||| 00||| eng d | ||
020 | |a 0534359450 |c acidfree paper |9 0-534-35945-0 | ||
020 | |a 0534490964 |c international student ed. |9 0-534-49096-4 | ||
035 | |a (OCoLC)55055561 | ||
035 | |a (DE-599)GBV386485380 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
050 | 0 | |a QA39.3 | |
082 | 0 | |a 510 |2 22 | |
084 | |a SK 890 |0 (DE-625)143267: |2 rvk | ||
084 | |a MAT 050f |2 stub | ||
100 | 1 | |a Epp, Susanna S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Discrete mathematics with applications |c Susanna S. Epp |
250 | |a 3. ed., internat. student ed. | ||
264 | 1 | |a Belmont, Calif. [u.a.] |b Thomson-Brooks/Cole |c 2004 | |
300 | |a Getr. Zählung |b Ill. |c 27 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes index | ||
650 | 0 | |a Mathematics | |
650 | 7 | |a Diskrete Mathematik |2 swd | |
650 | 4 | |a Mathématiques | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematics | |
650 | 0 | 7 | |a Diskrete Mathematik |0 (DE-588)4129143-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Diskrete Mathematik |0 (DE-588)4129143-8 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | |m DE-603 |q pdf/application |u http://www.gbv.de/dms/hebis-darmstadt/toc/181769980.pdf |x 2008-11-30 |z kostenfrei |3 Inhaltsverzeichnis | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017684484&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-017684484 |
Datensatz im Suchindex
_version_ | 1804139304731017216 |
---|---|
adam_text | IMAGE 1
DISCRETE MATHEMATICS
WITH APPLICATIONS
THIRD EDITION
SUSANNA S. EPP DEPAUL UNIVERSITY
THOIVISON * BROOKS/COLE AUSTRALIA * CANADA * MEXICO * SINGAPORE * SPAIN
UNITED KINGDOM * UNITED STATES
IMAGE 2
CONTENTS
CHAPTER 1 THE LOGIC OF COMPOUND STATEMENTS 1.1 LOGICAL FORM AND LOGICAL
EQUIVALENCE 1 STATEMENTS; COMPOUND STATEMENTS; TRUTH VALUES; EVALUATING
THE TRUTH OF MORE GEN- ERAL COMPOUND STATEMENTS; LOGICAL EQUIVALENCE;
TAUTOLOGIES AND CONTRADICTIONS;
SUMMARY OF LOGICAL EQUIVALENCES
1.2 CONDITIONAL STATEMENTS 17 LOGICAL EQUIVALENCES INVOLVING - ;
REPRESENTATION OF IF-THEN AS OR; THE NEGATION OF A CONDITIONAL
STATEMENT; THE CONTRAPOSITIVE OF A CONDITIONAL STATEMENT; THE CONVERSE
AND INVERSE OF A CONDITIONAL STATEMENT; ONLY IF AND THE BICONDITIONAL;
NECESSARY AND SUFFICIENT CONDITIONS; REMARKS
1.3 VALID AND INVALID ARGUMENTS 29 MODUS PONENS AND MODUS TOLLENS;
ADDITIONAL VALID ARGUMENT FORMS: RULES OF INFERENCE; FALLACIES;
CONTRADICTIONS AND VALID ARGUMENTS; SUMMARY OF RULES OF INFERENCE
1.4 APPLICATION: DIGITAL LOGIC CIRCUITS 43 BLACK BOXES AND GATES; THE
INPUT/OUTPUT FOR A CIRCUIT; THE BOOLEAN EXPRESSION COR- RESPONDING TO A
CIRCUIT; THE CIRCUIT CORRESPONDING TO A BOOLEAN EXPRESSION; FINDING A
CIRCUIT THAT CORRESPONDS TO A GIVEN INPUT/OUTPUT TABLE; SIMPLIFYING
COMBINATIONAL
CIRCUITS; NAND AND NOR GATES
1.5 APPLICATION: NUMBER SYSTEMS AND CIRCUITS FOR ADDITION 57 BINARY
REPRESENTATION OF NUMBERS; BINARY ADDITION AND SUBTRACTION; CIRCUITS FOR
COMPUTER ADDITION; TWO S COMPLEMENTS AND THE COMPUTER REPRESENTATION OF
NEG- ATIVE INTEGERS; 8-BIT REPRESENTATION OF A NUMBER; COMPUTER ADDITION
WITH NEGATIVE
INTEGERS; HEXADECIMAL NOTATION
CHAPTER 2 THE LOGIC OF QUANTIFIED STATEMENTS 75
2.1 INTRODUCTION TO PREDICATES AND QUANTIFIED STATEMENTS I 75 THE
UNIVERSAL QUANTIFIER: V; THE EXISTENTIAL QUANTIFIER: 3; FORMAL VERSUS
INFORMAL LANGUAGE; UNIVERSAL CONDITIONAL STATEMENTS; EQUIVALENT FORMS OF
THE UNIVERSAL AND EXISTENTIAL STATEMENTS; IMPLICIT QUANTIFICATION;
TARSKI S WORLD
2.2 INTRODUCTION TO PREDICATES AND QUANTIFIED STATEMENTS II 88 NEGATIONS
OF QUANTIFIED STATEMENTS; NEGATIONS OF UNIVERSAL CONDITIONAL STATEMENTS;
THE RELATION AMONG V, 3, A, AND V; VACUOUS TRUTH OF UNIVERSAL
STATEMENTS; VARIANTS OF UNIVERSAL CONDITIONAL STATEMENTS; NECESSARY AND
SUFFICIENT CONDITIONS, ONLY IF
IMAGE 3
CONTENTS V
2.3 STATEMENTS CONTAINING MULTIPLE QUANTIFIERS 97
TRANSLATING FROM INFORMAL TO FORMAL LANGUAGE; AMBIGUOUS LANGUAGE;
NEGATIONS OF MULTIPLY-QUANTIFIED STATEMENTS; ORDER OF QUANTIFIERS;
FORMAL LOGICAL NOTATION; PROLOG
2.4 ARGUMENTS WITH QUANTIFIED STATEMENTS 111 UNIVERSAL MODUS PONENS; USE
OF UNIVERSAL MODUS PONENS IN A PROOF; UNIVERSAL MODUS TOLLENS; PROVING
VALIDITY OF ARGUMENTS WITH QUANTIFIED STATEMENTS; USING DIAGRAMS TO TEST
FOR VALIDITY; CREATING ADDITIONAL FORMS OF ARGUMENT; REMARK ON
THE CONVERSE AND INVERSE ERRORS
CHAPTER 3 EIEMENTARY NUMBER THEORY AND METHODS OF PROOF 125
3.1 DIRECT PROOF AND COUNTEREXAMPLE I: INTRODUCTION 126 DEFINITIONS;
PROVING EXISTENTIAL STATEMENTS; DISPROVING UNIVERSAL STATEMENTS BY
COUNTEREXAMPLE; PROVING UNIVERSAL STATEMENTS; DIRECTIONS FOR WRITING
PROOFS OF UNIVERSAL STATEMENTS; COMMON MISTAKES; GETTING PROOFS STARTED;
SHOWING THAT AN EXISTENTIAL STATEMENT IS FALSE; CONJECTURE, PROOF, AND
DISPROOF
3.2 DIRECT PROOF AND COUNTEREXAMPLE II: RATIONAL NUMBERS 141 MORE ON
GENERALIZING FROM THE GENERIC PARTICULAR; PROVING PROPERTIES OF RATIONAL
NUMBERS; DERIVING NEW MATHEMATICS FROM OLD
3.3 DIRECT PROOF AND COUNTEREXAMPLE III: DIVISIBILITY 148 PROVING
PROPERTIES OF DIVISIBILITY; COUNTEREXAMPLES AND DIVISIBILITY; THE UNIQUE
FACTORIZATION THEOREM
3.4 DIRECT PROOF AND COUNTEREXAMPLE IV: DIVISION INTO CASES AND THE
QUOTIENT-REMAINDER THEOREM 156 DISCUSSION OF THE QUOTIENT-REMAINDER
THEOREM AND EXAMPLES; DIV AND MOD; ALTER- NATIVE REPRESENTATIONS OF
INTEGERS AND APPLICATIONS TO NUMBER THEORY
3.5 DIRECT PROOF AND COUNTEREXAMPLE V: FLOOR AND CEILING 164 DEFINITION
AND BASIC PROPERTIES; THE FLOOR OF N/2
3.6 INDIRECT ARGUMENT: CONTRADICTION AND CONTRAPOSITION 171 PROOF BY
CONTRADICTION; ARGUMENT BY CONTRAPOSITION; RELATION BETWEEN PROOF BY
CONTRADICTION AND PROOF BY CONTRAPOSITION; PROOF AS A PROBLEM-SOLVING
TOOL
3.7 TWO CLASSICAL THEOREMS 179 THE IRRATIONALITY OF V2; THE INFINITUDE
OF THE SET OF PRIME NUMBERS; WHEN TO USE INDIRECT PROOF; OPEN QUESTIONS
IN NUMBER THEORY
IMAGE 4
VI CONTENTS
3.8 APPLICATION: ALGORITHMS 186
AN ALGORITHMIC LANGUAGE; A NOTATION FOR ALGORITHMS; TRACE TABLES; THE
DIVISION ALGORITHM; THE EUCLIDEAN ALGORITHM
CHAPTER 4 SEQUENCES AND MATHEMATICAL INDUCTION 199
4.1 SEQUENCES 199
EXPLICIT FORMULAS FOR SEQUENCES; SUMMATION NOTATION; PRODUCT NOTATION;
FACTORIAL NOTATION; PROPERTIES OF SUMMATIONS AND PRODUCTS; CHANGE OF
VARIABLE; SEQUENCES IN COMPUTER PROGRAMMING; APPLICATION: ALGORITHM TO
CONVERT FROM BASE 10 TO BASE 2 USING REPEATED DIVISION BY 2
4.2 MATHEMATICAL INDUCTION I 215
PRINCIPLE OF MATHEMATICAL INDUCTION; SUM OF THE FIRST N INTEGERS; SUM OF
A GEOMETRIC SEQUENCE
4.3 MATHEMATICAL INDUCTION II 227
COMPARISON OF MATHEMATICAL INDUCTION AND INDUCTIVE REASONING; PROVING
DIVISIBILITY PROPERTIES; PROVING INEQUALITIES
4.4 STRONG MATHEMATICAL INDUCTION AND THE WELL-ORDERING PRINCIPLE 235
THE PRINCIPLE OF STRONG MATHEMATICAL INDUCTION; BINARY REPRESENTATION OF
INTEGERS; THE WELL-ORDERING PRINCIPLE FOR THE INTEGERS
4.5 APPLICATION: CORRECTNESS OF ALGORITHMS 244 ASSERTIONS; LOOP
INVARIANTS; CORRECTNESS OF THE DIVISION ALGORITHM; CORRECTNESS OF THE
EUCLIDEAN ALGORITHM
CHAPTER 5 SET THEORY 255
5.1 BASIC DEFINITIONS OF SET THEORY 255 SUBSETS; SET EQUALITY;
OPERATIONS ON SETS; VENN DIAGRAMS; THE EMPTY SET; PARTITIONS OF SETS;
POWER SETS; CARTESIAN PRODUCTS; AN ALGORITHM TO CHECK WHETHER ONE SET IS
A SUBSET OF ANOTHER (OPTIONAL)
5.2 PROPERTIES OF SETS 269
SET IDENTITIES; PROVING SET IDENTITIES; PROVING THAT A SET IS THE EMPTY
SET
5.3 DISPROOFS, ALGEBRAIC PROOFS, AND BOOLEAN ALGEBRAS 282 DISPROVING AN
ALLEGED SET PROPERTY; PROBLEM-SOLVING STRATEGY; THE NUMBER OF SUB- SETS
OF A SET; ALGEBRAIC PROOFS OF SET IDENTITIES; BOOLEAN ALGEBRAS
IMAGE 5
CONTENTS VII
5.4 RUSSELL S PARADOX AND THE HALTING PROBLEM 293
DESCRIPTION OF RUSSELL S PARADOX; THE HALTING PROBLEM
CHAPTER 6 COUNTING AND PROBABILITY 297
6.1 INTRODUCTION 298
DEFINITION OF SAMPLE SPACE AND EVENT; PROBABILITY IN THE EQUALLY LIKELY
CASE; COUNT- ING THE ELEMENTS OF LISTS, SUBLISTS, AND ONE-DIMENSIONAL
ARRAYS
6.2 POSSIBILITY TREES AND THE MULTIPLICATION RULE 306 POSSIBILITY TREES;
THE MULTIPLICATION RULE; WHEN THE MULTIPLICATION RULE IS DIFFICULT OR
IMPOSSIBLE TO APPLY; PERMUTATIONS; PERMUTATIONS OF SELECTED ELEMENTS
6.3 COUNTING ELEMENTS OF DISJOINT SETS: THE ADDITION RULE 321 THE
ADDITION RULE; THE DIFFERENCE RULE; THE INCLUSION/EXCLUSION RULE
6.4 COUNTING SUBSETS OF A SET: COMBINATIONS 334 R-COMBINATIONS; ORDERED
AND UNORDERED SELECTIONS; RELATION BETWEEN PERMUTATIONS AND
COMBINATIONS; PERMUTATION OF A SET WITH REPEATED ELEMENTS; SOME ADVICE
ABOUT COUNTING
6.5 R-COMBINATIONS WITH REPETITION ALLOWED 349 MULTISETS AND HOW TO
COUNT THEM; WHICH FORMULA TO USE?
6.6 THE ALGEBRA OF COMBINATIONS 356 COMBINATORIAL FORMULAS; PASCAL S
TRIANGLE; ALGEBRAIC AND COMBINATORIAL PROOFS OF PASCAL S FORMULA
6.7 THE BINOMIAL THEOREM 362 STATEMENT OF THE THEOREM; ALGEBRAIC AND
COMBINATORIAL PROOFS; APPLICATIONS
6.8 PROBABILITY AXIOMS AND EXPECTED VALUE 370 PROBABILITY AXIOMS;
DERIVING ADDITIONAL PROBABILITY FORMULAS; EXPECTED VALUE
6.9 CONDITIONAL PROBABILITY, BAYES FORMULA, AND INDEPENDENT EVENTS 375
CONDITIONAL PROBABILITY; BAYES THEOREM; INDEPENDENT EVENTS
CHAPTER 7 FUNCTIONS 389
7.1 FUNCTIONS DEFINED ON GENERAL SETS 389 DEFINITION OF FUNCTION; ARROW
DIAGRAMS; FUNCTION MACHINES; EXAMPLES OF FUNCTIONS; BOOLEAN FUNCTIONS;
CHECKING WHETHER A FUNCTION IS WELL DEFINED
IMAGE 6
VIII CONTENTS
7.2 ONE-TO-ONE AND ONTO, INVERSE FUNCTIONS 402
ONE-TO-ONE FUNCTIONS; ONE-TO-ONE FUNCTIONS ON INFINITE SETS;
APPLICATION: HASH FUNCTIONS; ONTO FUNCTIONS; ONTO FUNCTIONS ON INFINITE
SETS; PROPERTIES OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS; ONE-TO-ONE
CORRESPONDENCES; INVERSE FUNCTIONS
7.3 APPLICATION: THE PIGEONHOLE PRINCIPLE 420 STATEMENT AND DISCUSSION
OF THE PRINCIPLE; APPLICATIONS; DECIMAL EXPANSIONS OF FRACTIONS;
GENERALIZED PIGEONHOLE PRINCIPLE; PROOF OF THE PIGEONHOLE PRINCIPLE
7.4 COMPOSITION OF FUNCTIONS 431 DEFINITION AND EXAMPLES; COMPOSITION OF
ONE-TO-ONE FUNCTIONS; COMPOSITION OF ONTO FUNCTIONS
7.5 CARDINALITY WITH APPLICATIONS TO COMPUTABILITY 443 DEFINITION OF
CARDINAL EQUIVALENCE; COUNTABLE SETS; THE SEARCH FOR LARGER INFINITIES:
THE CANTOR DIAGONALIZATION PROCESS; APPLICATION: CARDINALITY AND
COMPUTABILITY
CHAPTER 8 RECURSION 457
8.1 RECURSIVELY DEFINED SEQUENCES 457 DEFINITION OF RECURRENCE RELATION;
EXAMPLES OF RECURSIVELY DEFINED SEQUENCES; THE NUMBER OF PARTITIONS OF A
SET INTO R SUBSETS
8.2 SOLVING RECURRENCE RELATIONS BY ITERATION 475 THE METHOD OF
ITERATION; USING FORMULAS TO SIMPLIFY SOLUTIONS OBTAINED BY ITERATION;
CHECKING THE CORRECTNESS OF A FORMULA BY MATHEMATICAL INDUCTION;
DISCOVERING THAT AN EXPLICIT FORMULA IS INCORRECT
8.3 SECOND-ORDER LINEAR HOMOGENOUS RECURRENCE RELATIONS WITH CONSTANT
COEFFICIENTS 487 DERIVATION OF TECHNIQUE FOR SOLVING THESE RELATIONS;
THE DISTINCT-ROOTS CASE; THE SINGLE-ROOT CASE
8.4 GENERAL RECURSIVE DEFINITIONS 499 RECURSIVELY DEFINED SETS; PROVING
PROPERTIES ABOUT RECURSIVELY DEFINED SETS; RE- CURSIVE DEFINITIONS OF
SUM, PRODUCT, UNION, AND INTERSECTION; RECURSIVE FUNCTIONS
CHAPTER 9 THE EFFICIENCY OF ALGORITHMS 510
9.1 REAL-VALUED FUNCTIONS OF A REAL VARIABLE AND THEIR GRAPHS 510 GRAPH
OF A FUNCTION; POWER FUNCTIONS; THE FLOOR FUNCTION; GRAPHING FUNCTIONS
DE- FINED ON SETS OF INTEGERS; GRAPH OF A MULTIPLE OF A FUNCTION;
INCREASING AND DECREASING FUNCTIONS
IMAGE 7
CONTENTS IX
9.2 O, 2, AND S NOTATIONS 518
DEFINITION AND GENERAL PROPERTIES OF O-, 2-, AND B-NOTATIONS; ORDERS OF
POWER FUNCTIONS; ORDERS OF POLYNOMIAL FUNCTIONS; ORDERS OF FUNCTIONS OF
INTEGER VARIABLES; EXTENSION TO FUNCTIONS COMPOSED OF RATIONAL POWER
FUNCTIONS
9.3 APPLICATION: EFFICIENCY OF ALGORITHMS I 531 TIME EFFICIENCY OF AN
ALGORITHM; COMPUTING ORDERS OF SIMPLE ALGORITHMS; THE SEQUENTIAL SEARCH
ALGORITHM; THE INSERTION SORT ALGORITHM
9.4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS: GRAPHS AND ORDERS 543
GRAPHS OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS; APPLICATION: NUMBER OF
BITS NEEDED TO REPRESENT AN INTEGER IN BINARY NOTATION; APPLICATION:
USING LOGARITHMS TO SOLVE RECURRENCE RELATIONS; EXPONENTIAL AND
LOGARITHMIC ORDERS
9.5 APPLICATION: EFFICIENCY OF ALGORITHMS II 557
DIVIDE-AND-CONQUER ALGORITHMS; THE EFFICIENCY OF THE BINARY SEARCH
ALGORITHM; MERGE SORT; TRACTABLE AND INTRACTABLE PROBLEMS; A FINAL
REMARK ON ALGORITHM EFFI- CIENCY
CHAPTER 10 RELATIONS 571
10.1 RELATIONS ON SETS 571
DEFINITION OF BINARY RELATION; ARROW DIAGRAM OF A RELATION; RELATIONS
AND FUNC- TIONS; THE INVERSE OF A RELATION; DIRECTED GRAPH OF A
RELATION; N-ARY RELATIONS AND RELATIONAL DATABASES
10.2 REFLEXIVITY, SYMMETRY, AND TRANSITIVITY 584
REFLEXIVE, SYMMETRIC, AND TRANSITIVE PROPERTIES; THE TRANSITIVE CLOSURE
OF A RELATION; PROPERTIES OF RELATIONS ON INFINITE SETS
10.3 EQUIVALENCE RELATIONS 594
THE RELATION INDUCED BY A PARTITION; DEFINITION OF AN EQUIVALENCE
RELATION; EQUIVA- LENCE CLASSES OF AN EQUIVALENCE RELATION
10.4 MODULAR ARITHMETIC WITH APPLICATIONS TO CRYPTOGRAPHY 611
PROPERTIES OF CONGRUENCE MODULO N MODULAR ARITHMETIC; FINDING AN
INVERSE MODULO N EUCLID S LEMMA; FERMAT S LITTLE THEOREM AND THE
CHINESE REMAINDER THEOREM; WHY DOES THE RSA CIPHER WORK?
10.5 PARTIAL ORDER RELATIONS 632
ANTISYMMETRY; PARTIAL ORDER RELATIONS; LEXICOGRAPHIC ORDER; HASSE
DIAGRAMS; PAR- TIALLY AND TOTALLY ORDERED SETS; TOPOLOGICAL SORTING; AN
APPLICATION; PERT AND CPM
IMAGE 8
X CONTENTS
CHAPTER 11 GRAPHS AND TREES 649
11.1 GRAPHS: AN INTRODUCTION 649 BASIC TERMINOLOGY AND EXAMPLES; SPECIAL
GRAPHS; THE CONCEPT OF DEGREE
11.2 PATHS AND CIRCUITS 665
DEFINITIONS; EULER CIRCUITS; HAMILTONIAN CIRCUITS
11.3 MATRIX REPRESENTATIONS OF GRAPHS 683
MATRICES; MATRICES AND DIRECTED GRAPHS; MATRICES AND (UNDIRECTED)
GRAPHS; MATRICES AND CONNECTED COMPONENTS; MATRIX MULTIPLICATION;
COUNTING WALKS OF LENGTH N
11.4 ISOMORPHISMS OF GRAPHS 697
DEFINITION OF GRAPH ISOMORPHISM AND EXAMPLES; ISOMORPHIC INVARIANTS;
GRAPH ISO- MORPHISM FOR SIMPLE GRAPHS
11.5 TREES 705
DEFINITION AND EXAMPLES OF TREES; CHARACTERIZING TREES; ROOTED TREES;
BINARY TREES
11.6 SPANNING TREES 723
DEFINITION OF A SPANNING TREE; MINIMUM SPANNING TREES; KRUSKAL S
ALGORITHM; PRIM S ALGORITHM
CHAPTER 12 REGULAR EXPRESSIONS AND FINITE-STATE AUTOMATA 734
12.1 FORMAL LANGUAGES AND REGULAR EXPRESSIONS 735 DEFINITIONS AND
EXAMPLES OF FORMAL LANGUAGES AND REGULAR EXPRESSIONS; PRACTICAL USES OF
REGULAR EXPRESSIONS
12.2 FINITE-STATE AUTOMATA 745
DEFINITION OF A FINITE-STATE AUTOMATON; THE LANGUAGE ACCEPTED BY AN
AUTOMA- TON; THE EVENTUAL-STATE FUNCTION; DESIGNING A FINITE-STATE
AUTOMATON; SIMULATING A FINITE-STATE AUTOMATON USING SOFTWARE;
FINITE-STATE AUTOMATA AND REGULAR EXPRES- SIONS; REGULAR LANGUAGES
12.3 SIMPLIFYING FINITE-STATE AUTOMATA 763
*-EQUI VALENCE OF STATES; ^-EQUIVALENCE OF STATES; FINDING THE
*-EQUIVALENCE CLASSES; THE QUOTIENT AUTOMATON; CONSTRUCTING THE QUOTIENT
AUTOMATON; EQUIVALENT AU- TOMATA
APPENDIX A PROPERTIES OF THE REAL NUMBERS A-L
APPENDIX B SOLUTIONS AND HINTS TO SELECTED EXERCISES A-4
INDEX 1-1
|
any_adam_object | 1 |
author | Epp, Susanna S. |
author_facet | Epp, Susanna S. |
author_role | aut |
author_sort | Epp, Susanna S. |
author_variant | s s e ss sse |
building | Verbundindex |
bvnumber | BV035629500 |
callnumber-first | Q - Science |
callnumber-label | QA39 |
callnumber-raw | QA39.3 |
callnumber-search | QA39.3 |
callnumber-sort | QA 239.3 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 890 |
classification_tum | MAT 050f |
ctrlnum | (OCoLC)55055561 (DE-599)GBV386485380 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 3. ed., internat. student ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01702nam a2200457 c 4500</leader><controlfield tag="001">BV035629500</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090814 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090715s2004 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0534359450</subfield><subfield code="c">acidfree paper</subfield><subfield code="9">0-534-35945-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0534490964</subfield><subfield code="c">international student ed.</subfield><subfield code="9">0-534-49096-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)55055561</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV386485380</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA39.3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 050f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Epp, Susanna S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Discrete mathematics with applications</subfield><subfield code="c">Susanna S. Epp</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed., internat. student ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Belmont, Calif. [u.a.]</subfield><subfield code="b">Thomson-Brooks/Cole</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">Getr. Zählung</subfield><subfield code="b">Ill.</subfield><subfield code="c">27 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Diskrete Mathematik</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diskrete Mathematik</subfield><subfield code="0">(DE-588)4129143-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Diskrete Mathematik</subfield><subfield code="0">(DE-588)4129143-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="m">DE-603</subfield><subfield code="q">pdf/application</subfield><subfield code="u">http://www.gbv.de/dms/hebis-darmstadt/toc/181769980.pdf</subfield><subfield code="x">2008-11-30</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017684484&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017684484</subfield></datafield></record></collection> |
id | DE-604.BV035629500 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:41:58Z |
institution | BVB |
isbn | 0534359450 0534490964 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017684484 |
oclc_num | 55055561 |
open_access_boolean | 1 |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | Getr. Zählung Ill. 27 cm |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Thomson-Brooks/Cole |
record_format | marc |
spelling | Epp, Susanna S. Verfasser aut Discrete mathematics with applications Susanna S. Epp 3. ed., internat. student ed. Belmont, Calif. [u.a.] Thomson-Brooks/Cole 2004 Getr. Zählung Ill. 27 cm txt rdacontent n rdamedia nc rdacarrier Includes index Mathematics Diskrete Mathematik swd Mathématiques Mathematik Diskrete Mathematik (DE-588)4129143-8 gnd rswk-swf Diskrete Mathematik (DE-588)4129143-8 s DE-604 DE-603 pdf/application http://www.gbv.de/dms/hebis-darmstadt/toc/181769980.pdf 2008-11-30 kostenfrei Inhaltsverzeichnis GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017684484&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Epp, Susanna S. Discrete mathematics with applications Mathematics Diskrete Mathematik swd Mathématiques Mathematik Diskrete Mathematik (DE-588)4129143-8 gnd |
subject_GND | (DE-588)4129143-8 |
title | Discrete mathematics with applications |
title_auth | Discrete mathematics with applications |
title_exact_search | Discrete mathematics with applications |
title_full | Discrete mathematics with applications Susanna S. Epp |
title_fullStr | Discrete mathematics with applications Susanna S. Epp |
title_full_unstemmed | Discrete mathematics with applications Susanna S. Epp |
title_short | Discrete mathematics with applications |
title_sort | discrete mathematics with applications |
topic | Mathematics Diskrete Mathematik swd Mathématiques Mathematik Diskrete Mathematik (DE-588)4129143-8 gnd |
topic_facet | Mathematics Diskrete Mathematik Mathématiques Mathematik |
url | http://www.gbv.de/dms/hebis-darmstadt/toc/181769980.pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017684484&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT eppsusannas discretemathematicswithapplications |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis