Principles and theory for data mining and machine learning:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Dordrecht ; Heidelberg ; London ; New York
Springer
[2009]
|
Schriftenreihe: | Springer series in statistics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xv, 781 Seiten Illustrationen, Diagramme |
ISBN: | 9780387981345 9781461417071 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035605078 | ||
003 | DE-604 | ||
005 | 20231207 | ||
007 | t | ||
008 | 090707s2009 a||| |||| 00||| eng d | ||
015 | |a 09,N12,0623 |2 dnb | ||
016 | 7 | |a 99299957X |2 DE-101 | |
020 | |a 9780387981345 |c hbk |9 978-0-387-98134-5 | ||
020 | |a 9781461417071 |c softcover |9 978-1-4614-1707-1 | ||
035 | |a (OCoLC)440103793 | ||
035 | |a (DE-599)DNB99299957X | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-473 |a DE-355 |a DE-706 |a DE-945 |a DE-11 |a DE-703 |a DE-384 |a DE-91 |a DE-521 |a DE-M347 | ||
050 | 0 | |a Q325.75 | |
082 | 0 | |a 006.31 |2 22 | |
084 | |a QH 500 |0 (DE-625)141607: |2 rvk | ||
084 | |a ST 530 |0 (DE-625)143679: |2 rvk | ||
084 | |a DAT 450f |2 stub | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Clarke, Bertrand |d 1963- |e Verfasser |0 (DE-588)1036967913 |4 aut | |
245 | 1 | 0 | |a Principles and theory for data mining and machine learning |c Bertrand Clarke, Ernest Fokoué, Hao Helen Zhang |
264 | 1 | |a Dordrecht ; Heidelberg ; London ; New York |b Springer |c [2009] | |
264 | 4 | |c © 2009 | |
300 | |a xv, 781 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Springer series in statistics | |
650 | 4 | |a Data mining | |
650 | 4 | |a Machine learning |x Statistical methods | |
650 | 0 | 7 | |a Data Mining |0 (DE-588)4428654-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Fokoué, Ernest |e Verfasser |0 (DE-588)1036968529 |4 aut | |
700 | 1 | |a Zhang, Hao Helen |e Verfasser |0 (DE-588)1036969037 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, e-ISBN |z 978-0-387-98135-2 |
856 | 4 | 2 | |m Digitalisierung UB Bamberg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017660324&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-017660324 |
Datensatz im Suchindex
_version_ | 1804139273857794048 |
---|---|
adam_text | Contents
Preface
.....................................................
v
1
Variability, Information,
and Prediction
............................ 1
1.0.1
The Curse of Dimensionality
............................
З
1.0.2
The Two Extremes
..................................... 4
1.1
Perspectives on the Curse
...................................... 5
1.1.1
Sparsity
.............................................. 6
1.1.2
Exploding Numbers of Models
........................... 8
1.1.3
Multicollinearity and Concurvity
......................... 9
1.1.4
The Effect of Noise
.................................... 10
1.2
Coping with the Curse
........................................ 11
1.2.1
Selecting Design Points
................................. 11
1.2.2
Local Dimension
...................................... 12
1.2.3
Parsimony
............................................ 17
1.3
Two Techniques
.............................................. 18
1.3.1
The Bootstrap
......................................... 18
1.3.2
Cross-Validation
....................................... 27
1.4
Optimization and Search
...................................... 32
1.4.1
Univariate Search
...................................... 32
1.4.2
Multivariate Search
.................................... 33
1.4.3
General Searches
___.................................. 34
1.4.4
Constraint Satisfaction and Combinatorial Search
........... 35
1.5
Notes
......................................................... 38
1.5.1
Hammersley Points
.................................... 38
viu
Contents
1.5.2
Edgeworth
Expansions
for the Mean
...................... 39
1.5.3
Bootstrap Asymptotics for the Studentized Mean
............ 41
1.6
Exercises
................................................... 43
2
Local Smoothers
................................................. 53
2.1
Early Smoothers
............................................. 55
2.2
Transition to Classical Smoothers
............................... 59
2.2.1
Global Versus Local Approximations
..................... 60
2.2.2
LOESS
............................................... 64
2.3
Kernel Smoothers
............................................ 67
2.3.1
Statistical Function Approximation
....................... 68
2.3.2
The Concept of Kernel Methods and the Discrete Case
....... 73
2.3.3
Kernels and Stochastic Designs: Density Estimation
......... 78
2.3.4
Stochastic Designs: Asymptotics for Kernel Smoothers
...... 81
2.3.5
Convergence Theorems and Rates for Kernel Smoothers
..... 86
2.3.6
Kernel and Bandwidth Selection
.......................... 90
2.3.7
Linear Smoothers
...................................... 95
2.4
Nearest Neighbors
............................................ 96
2.5
Applications of Kernel Regression
.............................. 100
2.5.1
A Simulated Example
..................................100
2.5.2
Ethanol
Data
..........................................102
2.6
Exercises
...................................................107
3
Spline Smoothing
................................................117
3.1
Interpolating Splines
..........................................117
3.2
Natural Cubic Splines
.........................................123
3.3
Smoothing Splines for Regression
...............................126
3.3.1
Model Selection for Spline Smoothing
....................129
3.3.2
Spline Smoothing Meets Kernel Smoothing
................130
3.4
Asymptotic Bias, Variance, and
MISE
for Spline Smoothers
.........131
3.4.1
Ethanol
Data Example
-
Continued
.......................133
3.5
Splines Redux: Hubert Space Formulation
........................136
3.5.1
Reproducing Kernels
...................................138
3.5.2
Constructing an RKHS
.................................141
3.5.3
Direct Sum Construction for Splines
......................146
Contents ix
3.5.4
Explicit
Forms
........................................149
3.5.5
Nonparametrics in Data Mining and Machine Learning
......152
3.6
Simulated Comparisons
.......................................154
3.6.1
What Happens with Dependent Noise Models?
.............157
3.6.2
Higher Dimensions and the Curse of Dimensionality
........159
3.7
Notes
.......................................................163
3.7.1
Sobolev Spaces: Definition
..............................163
3.8
Exercises
...................................................164
4
New Wave Nonparametrics
........................................171
4.1
Additive Models
.............................................172
4.1.1
The Backfitting Algorithm
..............................173
4.1.2
Concurvity and Inference
...............................177
4.1.3
Nonparametric Optimality
...............................180
4.2
Generalized Additive Models
...................................181
4.3
Projection Pursuit Regression
..................................184
4.4
Neural Networks
.............................................189
4.4.1
Backpropagation and Inference
..........................192
4.4.2
Barren s Result and the Curse
............................197
4.4.3
Approximation Properties
...............................198
4.4.4
Barren s Theorem: Formal Statement
.....................200
4.5
Recursive Partitioning Regression
...............................202
4.5.1
Growing Trees
........................................204
4.5.2
Pruning and Selection
..................................207
4.5.3
Regression
............................................208
4.5.4
Bayesian Additive Regression Trees: BART
................210
4.6
MARS
.....................................................210
4.7
Sliced Inverse Regression
......................................215
4.8
ACE and
AVAS
..............................................218
4.9
Notes
.......................................................220
4.9.1
Proof of Barren s Theorem
..............................220
4.10
Exercises
...................................................224
5
Supervised Learning: Partition Methods
............................231
5.1
Multiclass Learning.
......................................___233
x
Contents
5.2
Discriminant
Analysis
.........................................235
5.2.1
Distance-Based Discriminant Analysis
....................236
5.2.2
Bayes
Rules
...........................................241
5.2.3
Probability-Based Discriminant Analysis
..................245
5.3
Tree-Based Classifiers
........................................249
5.3.1
Splitting Rules
........................................249
5.3.2
Logic Trees
...........................................253
5.3.3
Random Forests
.......................................254
5.4
Support Vector Machines
......................................262
5.4.1
Margins and Distances
..................................262
5.4.2
Binary Classification and Risk
...........................265
5.4.3
Prediction Bounds for Function Classes
...................268
5.4.4
Constructing SVM Classifiers
............................271
5.4.5
SVM Classification for Nonlinearly Separable Populations
... 279
5.4.6
SVMs in the General Nonlinear Case
.....................282
5.4.7
Some Kernels Used in SVM Classification
.................288
5.4.8
Kernel Choice, SVMs and Model Selection
................289
5.4.9
Support Vector Regression
..............................290
5.4.10
Multiclass Support Vector Machines
......................293
5.5
Neural Networks
.............................................294
5.6
Notes
.......................................................296
5.6.1
Hoeffding s Inequality
..................................296
5.6.2
VC Dimension
........................................297
5.7
Exercises
...................................................300
6
Alternative Nonparametrics
.......................................307
6.1
Ensemble Methods
...........................................308
6.1.1
Bayes
Model Averaging
.................................310
6.1.2
Bagging
..............................................312
6.1.3
Stacking
..............................................316
6.1.4
Boosting
.............................................318
6.1.5
Other Averaging Methods
...............................326
6.1.6
Oracle Inequalities
.....................................328
6.2
Bayes
Nonparametrics
........................................334
Contents xi
6.2.1 Dirichlet
Process
Priors.................................334
6.2.2 Polya
Tree
Priors......................................336
6.2.3
Gaussian Process
Priors.................................338
6.3
The Relevance Vector Machine
.................................344
6.3.1 RVM Regression: Formal
Description
.....................345
6.3.2 RVM
Classification
....................................349
6.4
Hidden Markov
Models -
Sequential Classification
................352
6.5
Notes
.......................................................354
6.5.1
Proof of Yang s Oracle Inequality
........................354
6.5.2
Proof of Lecue s Oracle Inequality
........................357
6.6
Exercises
...................................................359
7
Computational Comparisons
......................................365
7.1
Computational Results: Classification
...........................366
7.1.1
Comparison on Fisher s Iris Data
.........................366
7.1.2
Comparison on Ripley s Data
............................369
7.2
Computational Results: Regression
..............................376
7.2.1
Vapnik s sine Function
.................................377
7.2.2
Friedman s Function
...................................389
7.2.3
Conclusions
...........................................392
7.3
Systematic Simulation Study
...................................397
7.4
No Free Lunch
...............................................400
7.5
Exercises
...................................................402
8
Unsupervised Learning: Clustering
................................405
8.1
Centroid-Based Clustering
.....................................408
8.1.1
iř-Means
Clustering
....................................409
8.1.2
Variants
..............................................412
8.2
Hierarchical Clustering
........................................413
8.2.1
Agglomerative Hierarchical Clustering
....................414
8.2.2
Divisive Hierarchical Clustering
..........................422
8.2.3
Theory for Hierarchical Clustering
........................426
8.3 Parütional
Clustering
.........................................430
8.3.1
Model-Based Clustering
................................432
8.3.2
Graph-Theoretic Clustering
..............................447
Contents
8.3.3
Spectral
Clustering
.....................................452
8.4
Bayesian Clustering
..........................................458
8.4.1
Probabilistic Clustering
.................................458
8.4.2
Hypothesis Testing
.....................................461
8.5
Computed Examples
..........................................463
8.5.1
Ripley s Data
.........................................465
8.5.2
Ms Data
..............................................475
8.6
Cluster Validation
............................................480
8.7
Notes
.......................................................484
8.7.1
Derivatives of Functions of a Matrix:
......................484
8.7.2
Kruskal s Algorithm: Proof
..............................484
8.7.3
Prim s Algorithm: Proof
................................485
8.8
Exercises
...................................................485
Learning in High Dimensions
......................................493
9.1
Principal Components
.........................................495
9.1.1
Main Theorem
........................................496
9.1.2
Key Properties
........................................498
9.1.3
Extensions
............................................500
9.2
Factor Analysis
..............................................502
9.2.1
Finding
Λ
and
ψ·
.......................................504
9.2.2
Finding
К
............................................506
9.2.3
Estimating Factor Scores
................................507
9.3
Projection Pursuit
............................................508
9.4
Independent Components Analysis
..............................511
9.4.1
Main Definitions
.......................................511
9.4.2
Key Results
...........................................513
9.4.3
Computational Approach
................................515
9.5
Nonlinear PCs and
ICA
.......................................516
9.5.1
Nonlinear PCs
.........................................517
9.5.2
Nonlinear
ICA
........................................518
9.6
Geometric Summarization
.....................................518
9.6.1
Measuring Distances to an Algebraic Shape
................519
9.6.2
Principal Curves and Surfaces
............................ 520
Contents xiii
9.7
Supervised
Dimension
Reduction: Partial Least Squares
............523
9.7.1
Simple PLS
..........................................523
9.7.2
PLS Procedures
.......................................524
9.7.3
Properties of PLS
......................................526
9.8
Supervised Dimension Reduction: Sufficient Dimensions
in Regression
................................................527
9.9
Visualization I: Basic Plots
....................................531
9.9.1
Elementary Visualization
................................534
9.9.2
Projections
............................................541
9.9.3
Time Dependence
......................................543
9.10
Visualization II: Transformations
...............................546
9.10.1
Chernoff Faces
........................................546
9.10.2
Multidimensional Scaling
...............................547
9.10.3
Self-Organizing Maps
..................................553
9.11
Exercises
...................................................560
10
Variable Selection
................................................569
10.1
Concepts from Linear Regression
...............................570
10.1.1
Subset Selection
.......................................572
10.1.2
Variable Ranking
......................................575
10.1.3
Overview
.............................................577
10.2
Traditional Criteria
...........................................578
10.2.1
Akaiké
Information Criterion (AIC)
.......................580
10.2.2
Bayesian Information Criterion
(BIC)
.....................583
10.2.3
Choices of Information Criteria
..........................585
10.2.4
Cross Validation
.......................................587
10.3
Shrinkage Methods
...........................................599
10.3.1
Shrinkage Methods for Linear Models
.....................601
10.3.2
Grouping in Variable Selection
...........................615
10.3.3
Least Angle Regression
.................................617
10.3.4
Shrinkage Methods for Model Classes
.....................620
10.3.5
Cautionary Notes
......................................631
10.4
Bayes
Variable Selection
......................................632
10.4.1
Prior Specification
.....................................635
10.4.2
Posterior Calculation and Exploration
.....................643
xjv
Contents
10.4.3
Evaluating Evidence
....................................647
10.4.4
Connections Between Bayesian and
Frequentisi
Methods
.....650
10.5
Computational Comparisons
...................................653
10.5.1
The
η
>
ρ
Case
........................................653
10.5.2
When
ρ
>
η
...........................................665
10.6
Notes
.......................................................667
10.6.1
Code for Generating Data in Section
10.5..................667
10.7
Exercises
...................................................671
11
Multiple Testing
.................................................679
11.1
Analyzing the Hypothesis Testing Problem
.......................681
11.1.1
A Paradigmatic Setting
.................................681
11.1.2
Counts for Multiple Tests
...............................684
11.1.3
Measures of Error in Multiple Testing
.....................685
11.1.4
Aspects of Error Control
................................687
11.2
Controlling the Familywise Error Rate
...........................690
11.2.1
One-Step Adjustments
..................................690
11.2.2
Stepwise p-Value Adjustments
...........................693
11.3
PCER and PFER
.............................................695
11.3.1
Null Domination
.......................................696
11.3.2
Two Procedures
.......................................697
11.3.3
Controlling the Type I Error Rate
.........................702
11.3.4
Adjusted p-Values for PFER/PCER
.......................706
11.4
Controlling the False Discovery Rate
............................707
11.4.1
FDR and other Measures of Error
.........................709
11.4.2
The Benjamini-Hochberg Procedure
......................710
11.4.3
A BH Theorem for a Dependent Setting
...................711
11.4.4
Variations on BH
......................................713
11.5
Controlling the Positive False Discovery Rate
.....................719
11.5.1
Bayesian Interpretations
................................719
11.5.2
Aspects of Implementation
..............................723
11.6
Bayesian Multiple Testing
.....................................727
11.6.1
Fully
Bayes:
Hierarchical
...............................728
11.6.2
Fully
Bayes:
Decision theory
............................731
Contents xv
11.7 Notes.......................................................736
11.7.1
Proof of the Benjamini-Hochberg Theorem
................736
11.7.2
Proof of the
Benjamini-
Yekutieli Theorem
.................739
References
...........................................................743
Index
...............................................................773
|
any_adam_object | 1 |
author | Clarke, Bertrand 1963- Fokoué, Ernest Zhang, Hao Helen |
author_GND | (DE-588)1036967913 (DE-588)1036968529 (DE-588)1036969037 |
author_facet | Clarke, Bertrand 1963- Fokoué, Ernest Zhang, Hao Helen |
author_role | aut aut aut |
author_sort | Clarke, Bertrand 1963- |
author_variant | b c bc e f ef h h z hh hhz |
building | Verbundindex |
bvnumber | BV035605078 |
callnumber-first | Q - Science |
callnumber-label | Q325 |
callnumber-raw | Q325.75 |
callnumber-search | Q325.75 |
callnumber-sort | Q 3325.75 |
callnumber-subject | Q - General Science |
classification_rvk | QH 500 ST 530 |
classification_tum | DAT 450f |
ctrlnum | (OCoLC)440103793 (DE-599)DNB99299957X |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02147nam a2200529 c 4500</leader><controlfield tag="001">BV035605078</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231207 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090707s2009 a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">09,N12,0623</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">99299957X</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387981345</subfield><subfield code="c">hbk</subfield><subfield code="9">978-0-387-98134-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461417071</subfield><subfield code="c">softcover</subfield><subfield code="9">978-1-4614-1707-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)440103793</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB99299957X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-473</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-945</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-M347</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q325.75</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.31</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 500</subfield><subfield code="0">(DE-625)141607:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 450f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Clarke, Bertrand</subfield><subfield code="d">1963-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1036967913</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Principles and theory for data mining and machine learning</subfield><subfield code="c">Bertrand Clarke, Ernest Fokoué, Hao Helen Zhang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht ; Heidelberg ; London ; New York</subfield><subfield code="b">Springer</subfield><subfield code="c">[2009]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xv, 781 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer series in statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield><subfield code="x">Statistical methods</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fokoué, Ernest</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1036968529</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Hao Helen</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1036969037</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, e-ISBN</subfield><subfield code="z">978-0-387-98135-2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bamberg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017660324&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017660324</subfield></datafield></record></collection> |
id | DE-604.BV035605078 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:41:28Z |
institution | BVB |
isbn | 9780387981345 9781461417071 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017660324 |
oclc_num | 440103793 |
open_access_boolean | |
owner | DE-473 DE-BY-UBG DE-355 DE-BY-UBR DE-706 DE-945 DE-11 DE-703 DE-384 DE-91 DE-BY-TUM DE-521 DE-M347 |
owner_facet | DE-473 DE-BY-UBG DE-355 DE-BY-UBR DE-706 DE-945 DE-11 DE-703 DE-384 DE-91 DE-BY-TUM DE-521 DE-M347 |
physical | xv, 781 Seiten Illustrationen, Diagramme |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Springer |
record_format | marc |
series2 | Springer series in statistics |
spelling | Clarke, Bertrand 1963- Verfasser (DE-588)1036967913 aut Principles and theory for data mining and machine learning Bertrand Clarke, Ernest Fokoué, Hao Helen Zhang Dordrecht ; Heidelberg ; London ; New York Springer [2009] © 2009 xv, 781 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Springer series in statistics Data mining Machine learning Statistical methods Data Mining (DE-588)4428654-5 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Data Mining (DE-588)4428654-5 s DE-604 Maschinelles Lernen (DE-588)4193754-5 s Fokoué, Ernest Verfasser (DE-588)1036968529 aut Zhang, Hao Helen Verfasser (DE-588)1036969037 aut Erscheint auch als Online-Ausgabe, e-ISBN 978-0-387-98135-2 Digitalisierung UB Bamberg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017660324&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Clarke, Bertrand 1963- Fokoué, Ernest Zhang, Hao Helen Principles and theory for data mining and machine learning Data mining Machine learning Statistical methods Data Mining (DE-588)4428654-5 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4428654-5 (DE-588)4193754-5 |
title | Principles and theory for data mining and machine learning |
title_auth | Principles and theory for data mining and machine learning |
title_exact_search | Principles and theory for data mining and machine learning |
title_full | Principles and theory for data mining and machine learning Bertrand Clarke, Ernest Fokoué, Hao Helen Zhang |
title_fullStr | Principles and theory for data mining and machine learning Bertrand Clarke, Ernest Fokoué, Hao Helen Zhang |
title_full_unstemmed | Principles and theory for data mining and machine learning Bertrand Clarke, Ernest Fokoué, Hao Helen Zhang |
title_short | Principles and theory for data mining and machine learning |
title_sort | principles and theory for data mining and machine learning |
topic | Data mining Machine learning Statistical methods Data Mining (DE-588)4428654-5 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Data mining Machine learning Statistical methods Data Mining Maschinelles Lernen |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017660324&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT clarkebertrand principlesandtheoryfordataminingandmachinelearning AT fokoueernest principlesandtheoryfordataminingandmachinelearning AT zhanghaohelen principlesandtheoryfordataminingandmachinelearning |