Systolic array synthesis: computability and time cones
Many important algorithms in signal and image processing, speech and pattern recognition of matrix computations consist of coupled systems of recurrence equations. Systolic arrays are regular networks of tightly coupled simple processors with limited storage that provide cost effective high throughp...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New Haven, Connecticut
1986
|
Schriftenreihe: | Yale University <New Haven, Conn.> / Department of Computer Science: Research report
474 |
Schlagworte: | |
Zusammenfassung: | Many important algorithms in signal and image processing, speech and pattern recognition of matrix computations consist of coupled systems of recurrence equations. Systolic arrays are regular networks of tightly coupled simple processors with limited storage that provide cost effective high throughput implementations of many such algorithms. While there are some mathematical techniques for finding efficient schedules for uniform recurrence equations, there is no general theory for more general systems of recurrence equations. The first elements of such a theory are presented in this paper and constitute a significant step towards establishing a complete methodology that determines systolic array implementations for a very general class of coupled systems of recurrence equations; these implementations exhibit provably optimal computation time while satisfying various user-specified constraints. |
Beschreibung: | 21 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV035582669 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 090624s1986 |||| 00||| engod | ||
035 | |a (OCoLC)227678859 | ||
035 | |a (DE-599)BVBBV035582669 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Delosme, Jean-Marc |e Verfasser |4 aut | |
245 | 1 | 0 | |a Systolic array synthesis |b computability and time cones |
264 | 1 | |a New Haven, Connecticut |c 1986 | |
300 | |a 21 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Yale University <New Haven, Conn.> / Department of Computer Science: Research report |v 474 | |
520 | 3 | |a Many important algorithms in signal and image processing, speech and pattern recognition of matrix computations consist of coupled systems of recurrence equations. Systolic arrays are regular networks of tightly coupled simple processors with limited storage that provide cost effective high throughput implementations of many such algorithms. While there are some mathematical techniques for finding efficient schedules for uniform recurrence equations, there is no general theory for more general systems of recurrence equations. The first elements of such a theory are presented in this paper and constitute a significant step towards establishing a complete methodology that determines systolic array implementations for a very general class of coupled systems of recurrence equations; these implementations exhibit provably optimal computation time while satisfying various user-specified constraints. | |
650 | 4 | |a Systolic arrays | |
650 | 7 | |a Algorithms |2 dtict | |
650 | 7 | |a Arrays |2 dtict | |
650 | 7 | |a Computer Hardware |2 scgdst | |
650 | 7 | |a Computer architecture |2 dtict | |
650 | 7 | |a Conical bodies |2 dtict | |
650 | 7 | |a Equations |2 dtict | |
650 | 7 | |a High rate |2 dtict | |
650 | 7 | |a Image processing |2 dtict | |
650 | 7 | |a Mathematical analysis |2 dtict | |
650 | 7 | |a Pattern recognition |2 dtict | |
650 | 7 | |a Speech |2 dtict | |
650 | 7 | |a Theory |2 dtict | |
650 | 7 | |a Time |2 dtict | |
700 | 1 | |a Ipsen, Ilse C. F. |e Verfasser |0 (DE-588)137389973 |4 aut | |
810 | 2 | |a Department of Computer Science: Research report |t Yale University <New Haven, Conn.> |v 474 |w (DE-604)BV006663362 |9 474 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-017638054 |
Datensatz im Suchindex
_version_ | 1804139241551167488 |
---|---|
any_adam_object | |
author | Delosme, Jean-Marc Ipsen, Ilse C. F. |
author_GND | (DE-588)137389973 |
author_facet | Delosme, Jean-Marc Ipsen, Ilse C. F. |
author_role | aut aut |
author_sort | Delosme, Jean-Marc |
author_variant | j m d jmd i c f i icf icfi |
building | Verbundindex |
bvnumber | BV035582669 |
ctrlnum | (OCoLC)227678859 (DE-599)BVBBV035582669 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02381nam a2200457 cb4500</leader><controlfield tag="001">BV035582669</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090624s1986 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)227678859</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035582669</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Delosme, Jean-Marc</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Systolic array synthesis</subfield><subfield code="b">computability and time cones</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Haven, Connecticut</subfield><subfield code="c">1986</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">21 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Yale University <New Haven, Conn.> / Department of Computer Science: Research report</subfield><subfield code="v">474</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Many important algorithms in signal and image processing, speech and pattern recognition of matrix computations consist of coupled systems of recurrence equations. Systolic arrays are regular networks of tightly coupled simple processors with limited storage that provide cost effective high throughput implementations of many such algorithms. While there are some mathematical techniques for finding efficient schedules for uniform recurrence equations, there is no general theory for more general systems of recurrence equations. The first elements of such a theory are presented in this paper and constitute a significant step towards establishing a complete methodology that determines systolic array implementations for a very general class of coupled systems of recurrence equations; these implementations exhibit provably optimal computation time while satisfying various user-specified constraints.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systolic arrays</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algorithms</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Arrays</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer Hardware</subfield><subfield code="2">scgdst</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer architecture</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Conical bodies</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Equations</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">High rate</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Image processing</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical analysis</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pattern recognition</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Speech</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Theory</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Time</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ipsen, Ilse C. F.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)137389973</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Computer Science: Research report</subfield><subfield code="t">Yale University <New Haven, Conn.></subfield><subfield code="v">474</subfield><subfield code="w">(DE-604)BV006663362</subfield><subfield code="9">474</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017638054</subfield></datafield></record></collection> |
id | DE-604.BV035582669 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T21:40:57Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017638054 |
oclc_num | 227678859 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 21 S. |
publishDate | 1986 |
publishDateSearch | 1986 |
publishDateSort | 1986 |
record_format | marc |
series2 | Yale University <New Haven, Conn.> / Department of Computer Science: Research report |
spelling | Delosme, Jean-Marc Verfasser aut Systolic array synthesis computability and time cones New Haven, Connecticut 1986 21 S. txt rdacontent n rdamedia nc rdacarrier Yale University <New Haven, Conn.> / Department of Computer Science: Research report 474 Many important algorithms in signal and image processing, speech and pattern recognition of matrix computations consist of coupled systems of recurrence equations. Systolic arrays are regular networks of tightly coupled simple processors with limited storage that provide cost effective high throughput implementations of many such algorithms. While there are some mathematical techniques for finding efficient schedules for uniform recurrence equations, there is no general theory for more general systems of recurrence equations. The first elements of such a theory are presented in this paper and constitute a significant step towards establishing a complete methodology that determines systolic array implementations for a very general class of coupled systems of recurrence equations; these implementations exhibit provably optimal computation time while satisfying various user-specified constraints. Systolic arrays Algorithms dtict Arrays dtict Computer Hardware scgdst Computer architecture dtict Conical bodies dtict Equations dtict High rate dtict Image processing dtict Mathematical analysis dtict Pattern recognition dtict Speech dtict Theory dtict Time dtict Ipsen, Ilse C. F. Verfasser (DE-588)137389973 aut Department of Computer Science: Research report Yale University <New Haven, Conn.> 474 (DE-604)BV006663362 474 |
spellingShingle | Delosme, Jean-Marc Ipsen, Ilse C. F. Systolic array synthesis computability and time cones Systolic arrays Algorithms dtict Arrays dtict Computer Hardware scgdst Computer architecture dtict Conical bodies dtict Equations dtict High rate dtict Image processing dtict Mathematical analysis dtict Pattern recognition dtict Speech dtict Theory dtict Time dtict |
title | Systolic array synthesis computability and time cones |
title_auth | Systolic array synthesis computability and time cones |
title_exact_search | Systolic array synthesis computability and time cones |
title_full | Systolic array synthesis computability and time cones |
title_fullStr | Systolic array synthesis computability and time cones |
title_full_unstemmed | Systolic array synthesis computability and time cones |
title_short | Systolic array synthesis |
title_sort | systolic array synthesis computability and time cones |
title_sub | computability and time cones |
topic | Systolic arrays Algorithms dtict Arrays dtict Computer Hardware scgdst Computer architecture dtict Conical bodies dtict Equations dtict High rate dtict Image processing dtict Mathematical analysis dtict Pattern recognition dtict Speech dtict Theory dtict Time dtict |
topic_facet | Systolic arrays Algorithms Arrays Computer Hardware Computer architecture Conical bodies Equations High rate Image processing Mathematical analysis Pattern recognition Speech Theory Time |
volume_link | (DE-604)BV006663362 |
work_keys_str_mv | AT delosmejeanmarc systolicarraysynthesiscomputabilityandtimecones AT ipsenilsecf systolicarraysynthesiscomputabilityandtimecones |