The impact of parallel architectures on the solution of Eigenvalue problems:
The most significant impact on research in Scientific Computation, and Numerical Linear Algebra in particular, seems to have been brought about by the advent of vector and parallel computation. This paper presents a short survey of recent work on parallel implementations of Numerical Linear Algebra...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New Haven, Connecticut
1985
|
Schriftenreihe: | Yale University <New Haven, Conn.> / Department of Computer Science: Research report
444 |
Schlagworte: | |
Zusammenfassung: | The most significant impact on research in Scientific Computation, and Numerical Linear Algebra in particular, seems to have been brought about by the advent of vector and parallel computation. This paper presents a short survey of recent work on parallel implementations of Numerical Linear Algebra algorithms with emphasis on those relating to the solution of the symmetric eigenvalue problem on loosely coupled multiprocessor architectures. A simple model will be given to analyse the complexity of parallel algorithms on several representative multiprocessor systems: a linear processor array (or ring), a two-dimensional processor grid and the hypercube. The vital operations in the formulation of most eigenvalue algorithms are matrix vector multiplication, matrix transposition, and linear system solution. Their implementations on the above architectures will be described, as well as parallel implementations of the following classes of eigenvalue methods: QR, bisection, divide-and-conquer, and Lanczos algorithm. |
Beschreibung: | 13 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV035582183 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 090624s1985 |||| 00||| engod | ||
035 | |a (OCoLC)227665843 | ||
035 | |a (DE-599)BVBBV035582183 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Ipsen, Ilse C. F. |e Verfasser |0 (DE-588)137389973 |4 aut | |
245 | 1 | 0 | |a The impact of parallel architectures on the solution of Eigenvalue problems |
264 | 1 | |a New Haven, Connecticut |c 1985 | |
300 | |a 13 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Yale University <New Haven, Conn.> / Department of Computer Science: Research report |v 444 | |
520 | 3 | |a The most significant impact on research in Scientific Computation, and Numerical Linear Algebra in particular, seems to have been brought about by the advent of vector and parallel computation. This paper presents a short survey of recent work on parallel implementations of Numerical Linear Algebra algorithms with emphasis on those relating to the solution of the symmetric eigenvalue problem on loosely coupled multiprocessor architectures. A simple model will be given to analyse the complexity of parallel algorithms on several representative multiprocessor systems: a linear processor array (or ring), a two-dimensional processor grid and the hypercube. The vital operations in the formulation of most eigenvalue algorithms are matrix vector multiplication, matrix transposition, and linear system solution. Their implementations on the above architectures will be described, as well as parallel implementations of the following classes of eigenvalue methods: QR, bisection, divide-and-conquer, and Lanczos algorithm. | |
650 | 7 | |a Algorithms |2 dtict | |
650 | 7 | |a Architecture |2 dtict | |
650 | 7 | |a Arrays |2 dtict | |
650 | 7 | |a Computations |2 dtict | |
650 | 7 | |a Coupling(interaction) |2 dtict | |
650 | 7 | |a Eigenvalues |2 dtict | |
650 | 7 | |a Grids |2 dtict | |
650 | 7 | |a Impact |2 dtict | |
650 | 7 | |a Linear algebra |2 dtict | |
650 | 7 | |a Linear systems |2 dtict | |
650 | 7 | |a Models |2 dtict | |
650 | 7 | |a Multiprocessors |2 dtict | |
650 | 7 | |a Numerical analysis |2 dtict | |
650 | 7 | |a Parallel orientation |2 dtict | |
650 | 7 | |a Parallel processing |2 dtict | |
650 | 7 | |a Processing equipment |2 dtict | |
650 | 7 | |a Solutions(general) |2 dtict | |
650 | 7 | |a Surveys |2 dtict | |
650 | 7 | |a Symmetry |2 dtict | |
650 | 7 | |a Theoretical Mathematics |2 scgdst | |
650 | 7 | |a Two dimensional |2 dtict | |
650 | 7 | |a Vector analysis |2 dtict | |
650 | 4 | |a Architektur | |
700 | 1 | |a Saad, Yousef |e Verfasser |0 (DE-588)1025729978 |4 aut | |
810 | 2 | |a Department of Computer Science: Research report |t Yale University <New Haven, Conn.> |v 444 |w (DE-604)BV006663362 |9 444 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-017637576 |
Datensatz im Suchindex
_version_ | 1804139240779415552 |
---|---|
any_adam_object | |
author | Ipsen, Ilse C. F. Saad, Yousef |
author_GND | (DE-588)137389973 (DE-588)1025729978 |
author_facet | Ipsen, Ilse C. F. Saad, Yousef |
author_role | aut aut |
author_sort | Ipsen, Ilse C. F. |
author_variant | i c f i icf icfi y s ys |
building | Verbundindex |
bvnumber | BV035582183 |
ctrlnum | (OCoLC)227665843 (DE-599)BVBBV035582183 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02886nam a2200565 cb4500</leader><controlfield tag="001">BV035582183</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090624s1985 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)227665843</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035582183</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ipsen, Ilse C. F.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)137389973</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The impact of parallel architectures on the solution of Eigenvalue problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Haven, Connecticut</subfield><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">13 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Yale University <New Haven, Conn.> / Department of Computer Science: Research report</subfield><subfield code="v">444</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">The most significant impact on research in Scientific Computation, and Numerical Linear Algebra in particular, seems to have been brought about by the advent of vector and parallel computation. This paper presents a short survey of recent work on parallel implementations of Numerical Linear Algebra algorithms with emphasis on those relating to the solution of the symmetric eigenvalue problem on loosely coupled multiprocessor architectures. A simple model will be given to analyse the complexity of parallel algorithms on several representative multiprocessor systems: a linear processor array (or ring), a two-dimensional processor grid and the hypercube. The vital operations in the formulation of most eigenvalue algorithms are matrix vector multiplication, matrix transposition, and linear system solution. Their implementations on the above architectures will be described, as well as parallel implementations of the following classes of eigenvalue methods: QR, bisection, divide-and-conquer, and Lanczos algorithm.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algorithms</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Architecture</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Arrays</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computations</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Coupling(interaction)</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Eigenvalues</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Grids</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Impact</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Linear algebra</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Linear systems</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Models</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Multiprocessors</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Numerical analysis</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Parallel orientation</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Parallel processing</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Processing equipment</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Solutions(general)</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Surveys</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Symmetry</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Theoretical Mathematics</subfield><subfield code="2">scgdst</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Two dimensional</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Vector analysis</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Architektur</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saad, Yousef</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1025729978</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Computer Science: Research report</subfield><subfield code="t">Yale University <New Haven, Conn.></subfield><subfield code="v">444</subfield><subfield code="w">(DE-604)BV006663362</subfield><subfield code="9">444</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017637576</subfield></datafield></record></collection> |
id | DE-604.BV035582183 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T21:40:57Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017637576 |
oclc_num | 227665843 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 13 S. |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
record_format | marc |
series2 | Yale University <New Haven, Conn.> / Department of Computer Science: Research report |
spelling | Ipsen, Ilse C. F. Verfasser (DE-588)137389973 aut The impact of parallel architectures on the solution of Eigenvalue problems New Haven, Connecticut 1985 13 S. txt rdacontent n rdamedia nc rdacarrier Yale University <New Haven, Conn.> / Department of Computer Science: Research report 444 The most significant impact on research in Scientific Computation, and Numerical Linear Algebra in particular, seems to have been brought about by the advent of vector and parallel computation. This paper presents a short survey of recent work on parallel implementations of Numerical Linear Algebra algorithms with emphasis on those relating to the solution of the symmetric eigenvalue problem on loosely coupled multiprocessor architectures. A simple model will be given to analyse the complexity of parallel algorithms on several representative multiprocessor systems: a linear processor array (or ring), a two-dimensional processor grid and the hypercube. The vital operations in the formulation of most eigenvalue algorithms are matrix vector multiplication, matrix transposition, and linear system solution. Their implementations on the above architectures will be described, as well as parallel implementations of the following classes of eigenvalue methods: QR, bisection, divide-and-conquer, and Lanczos algorithm. Algorithms dtict Architecture dtict Arrays dtict Computations dtict Coupling(interaction) dtict Eigenvalues dtict Grids dtict Impact dtict Linear algebra dtict Linear systems dtict Models dtict Multiprocessors dtict Numerical analysis dtict Parallel orientation dtict Parallel processing dtict Processing equipment dtict Solutions(general) dtict Surveys dtict Symmetry dtict Theoretical Mathematics scgdst Two dimensional dtict Vector analysis dtict Architektur Saad, Yousef Verfasser (DE-588)1025729978 aut Department of Computer Science: Research report Yale University <New Haven, Conn.> 444 (DE-604)BV006663362 444 |
spellingShingle | Ipsen, Ilse C. F. Saad, Yousef The impact of parallel architectures on the solution of Eigenvalue problems Algorithms dtict Architecture dtict Arrays dtict Computations dtict Coupling(interaction) dtict Eigenvalues dtict Grids dtict Impact dtict Linear algebra dtict Linear systems dtict Models dtict Multiprocessors dtict Numerical analysis dtict Parallel orientation dtict Parallel processing dtict Processing equipment dtict Solutions(general) dtict Surveys dtict Symmetry dtict Theoretical Mathematics scgdst Two dimensional dtict Vector analysis dtict Architektur |
title | The impact of parallel architectures on the solution of Eigenvalue problems |
title_auth | The impact of parallel architectures on the solution of Eigenvalue problems |
title_exact_search | The impact of parallel architectures on the solution of Eigenvalue problems |
title_full | The impact of parallel architectures on the solution of Eigenvalue problems |
title_fullStr | The impact of parallel architectures on the solution of Eigenvalue problems |
title_full_unstemmed | The impact of parallel architectures on the solution of Eigenvalue problems |
title_short | The impact of parallel architectures on the solution of Eigenvalue problems |
title_sort | the impact of parallel architectures on the solution of eigenvalue problems |
topic | Algorithms dtict Architecture dtict Arrays dtict Computations dtict Coupling(interaction) dtict Eigenvalues dtict Grids dtict Impact dtict Linear algebra dtict Linear systems dtict Models dtict Multiprocessors dtict Numerical analysis dtict Parallel orientation dtict Parallel processing dtict Processing equipment dtict Solutions(general) dtict Surveys dtict Symmetry dtict Theoretical Mathematics scgdst Two dimensional dtict Vector analysis dtict Architektur |
topic_facet | Algorithms Architecture Arrays Computations Coupling(interaction) Eigenvalues Grids Impact Linear algebra Linear systems Models Multiprocessors Numerical analysis Parallel orientation Parallel processing Processing equipment Solutions(general) Surveys Symmetry Theoretical Mathematics Two dimensional Vector analysis Architektur |
volume_link | (DE-604)BV006663362 |
work_keys_str_mv | AT ipsenilsecf theimpactofparallelarchitecturesonthesolutionofeigenvalueproblems AT saadyousef theimpactofparallelarchitecturesonthesolutionofeigenvalueproblems |