Local uniform mesh refinement with moving grids:
Local Uniform Mesh Refinement (LUMR) is a powerful technique for solving hyperbolic partial differential equations. However, many problems contain regions where numerical dispersion is very large, such as step fronts. In these regions, mesh refinement is not very efficient. A better approach in thes...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New Haven, Connecticut
1984
|
Schriftenreihe: | Yale University <New Haven, Conn.> / Department of Computer Science: Research report
313 |
Schlagworte: | |
Zusammenfassung: | Local Uniform Mesh Refinement (LUMR) is a powerful technique for solving hyperbolic partial differential equations. However, many problems contain regions where numerical dispersion is very large, such as step fronts. In these regions, mesh refinement is not very efficient. A better approach in these regions is to locally transform the coordinate system to move with the front. This document shows how to combine these two approaches in a way which maintains the advantages of LUMR and the effectiveness of moving grids. Experiments with 2-D scalar problems are presented. (Author). |
Beschreibung: | 18 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV035581499 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 090624s1984 |||| 00||| engod | ||
035 | |a (OCoLC)227615426 | ||
035 | |a (DE-599)BVBBV035581499 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Gropp, William |d 1955- |e Verfasser |0 (DE-588)133539989 |4 aut | |
245 | 1 | 0 | |a Local uniform mesh refinement with moving grids |
264 | 1 | |a New Haven, Connecticut |c 1984 | |
300 | |a 18 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Yale University <New Haven, Conn.> / Department of Computer Science: Research report |v 313 | |
520 | 3 | |a Local Uniform Mesh Refinement (LUMR) is a powerful technique for solving hyperbolic partial differential equations. However, many problems contain regions where numerical dispersion is very large, such as step fronts. In these regions, mesh refinement is not very efficient. A better approach in these regions is to locally transform the coordinate system to move with the front. This document shows how to combine these two approaches in a way which maintains the advantages of LUMR and the effectiveness of moving grids. Experiments with 2-D scalar problems are presented. (Author). | |
650 | 4 | |a LUMR(Local Uniform Mesh Refinement) | |
650 | 7 | |a Algorithms |2 dtict | |
650 | 7 | |a Differential equations |2 dtict | |
650 | 7 | |a Errors |2 dtict | |
650 | 7 | |a Grids(coordinates) |2 dtict | |
650 | 7 | |a Mesh |2 dtict | |
650 | 7 | |a Numerical methods and procedures |2 dtict | |
650 | 7 | |a Scaling factor |2 dtict | |
650 | 7 | |a Solutions(general) |2 dtict | |
650 | 7 | |a Theoretical Mathematics |2 scgdst | |
650 | 7 | |a Truncation |2 dtict | |
650 | 7 | |a Two dimensional |2 dtict | |
810 | 2 | |a Department of Computer Science: Research report |t Yale University <New Haven, Conn.> |v 313 |w (DE-604)BV006663362 |9 313 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-017636901 |
Datensatz im Suchindex
_version_ | 1804139239786414080 |
---|---|
any_adam_object | |
author | Gropp, William 1955- |
author_GND | (DE-588)133539989 |
author_facet | Gropp, William 1955- |
author_role | aut |
author_sort | Gropp, William 1955- |
author_variant | w g wg |
building | Verbundindex |
bvnumber | BV035581499 |
ctrlnum | (OCoLC)227615426 (DE-599)BVBBV035581499 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01991nam a2200421 cb4500</leader><controlfield tag="001">BV035581499</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090624s1984 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)227615426</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035581499</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gropp, William</subfield><subfield code="d">1955-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)133539989</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Local uniform mesh refinement with moving grids</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Haven, Connecticut</subfield><subfield code="c">1984</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">18 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Yale University <New Haven, Conn.> / Department of Computer Science: Research report</subfield><subfield code="v">313</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Local Uniform Mesh Refinement (LUMR) is a powerful technique for solving hyperbolic partial differential equations. However, many problems contain regions where numerical dispersion is very large, such as step fronts. In these regions, mesh refinement is not very efficient. A better approach in these regions is to locally transform the coordinate system to move with the front. This document shows how to combine these two approaches in a way which maintains the advantages of LUMR and the effectiveness of moving grids. Experiments with 2-D scalar problems are presented. (Author).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LUMR(Local Uniform Mesh Refinement)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algorithms</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Errors</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Grids(coordinates)</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mesh</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Numerical methods and procedures</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Scaling factor</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Solutions(general)</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Theoretical Mathematics</subfield><subfield code="2">scgdst</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Truncation</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Two dimensional</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Department of Computer Science: Research report</subfield><subfield code="t">Yale University <New Haven, Conn.></subfield><subfield code="v">313</subfield><subfield code="w">(DE-604)BV006663362</subfield><subfield code="9">313</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017636901</subfield></datafield></record></collection> |
id | DE-604.BV035581499 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T21:40:56Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017636901 |
oclc_num | 227615426 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 18 S. |
publishDate | 1984 |
publishDateSearch | 1984 |
publishDateSort | 1984 |
record_format | marc |
series2 | Yale University <New Haven, Conn.> / Department of Computer Science: Research report |
spelling | Gropp, William 1955- Verfasser (DE-588)133539989 aut Local uniform mesh refinement with moving grids New Haven, Connecticut 1984 18 S. txt rdacontent n rdamedia nc rdacarrier Yale University <New Haven, Conn.> / Department of Computer Science: Research report 313 Local Uniform Mesh Refinement (LUMR) is a powerful technique for solving hyperbolic partial differential equations. However, many problems contain regions where numerical dispersion is very large, such as step fronts. In these regions, mesh refinement is not very efficient. A better approach in these regions is to locally transform the coordinate system to move with the front. This document shows how to combine these two approaches in a way which maintains the advantages of LUMR and the effectiveness of moving grids. Experiments with 2-D scalar problems are presented. (Author). LUMR(Local Uniform Mesh Refinement) Algorithms dtict Differential equations dtict Errors dtict Grids(coordinates) dtict Mesh dtict Numerical methods and procedures dtict Scaling factor dtict Solutions(general) dtict Theoretical Mathematics scgdst Truncation dtict Two dimensional dtict Department of Computer Science: Research report Yale University <New Haven, Conn.> 313 (DE-604)BV006663362 313 |
spellingShingle | Gropp, William 1955- Local uniform mesh refinement with moving grids LUMR(Local Uniform Mesh Refinement) Algorithms dtict Differential equations dtict Errors dtict Grids(coordinates) dtict Mesh dtict Numerical methods and procedures dtict Scaling factor dtict Solutions(general) dtict Theoretical Mathematics scgdst Truncation dtict Two dimensional dtict |
title | Local uniform mesh refinement with moving grids |
title_auth | Local uniform mesh refinement with moving grids |
title_exact_search | Local uniform mesh refinement with moving grids |
title_full | Local uniform mesh refinement with moving grids |
title_fullStr | Local uniform mesh refinement with moving grids |
title_full_unstemmed | Local uniform mesh refinement with moving grids |
title_short | Local uniform mesh refinement with moving grids |
title_sort | local uniform mesh refinement with moving grids |
topic | LUMR(Local Uniform Mesh Refinement) Algorithms dtict Differential equations dtict Errors dtict Grids(coordinates) dtict Mesh dtict Numerical methods and procedures dtict Scaling factor dtict Solutions(general) dtict Theoretical Mathematics scgdst Truncation dtict Two dimensional dtict |
topic_facet | LUMR(Local Uniform Mesh Refinement) Algorithms Differential equations Errors Grids(coordinates) Mesh Numerical methods and procedures Scaling factor Solutions(general) Theoretical Mathematics Truncation Two dimensional |
volume_link | (DE-604)BV006663362 |
work_keys_str_mv | AT groppwilliam localuniformmeshrefinementwithmovinggrids |