An introduction to Gödel's theorems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2009
|
Ausgabe: | 4. printing with corr. |
Schriftenreihe: | Cambridge introductions to philosophy
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIV, 361 S. |
ISBN: | 9780521674539 9780521857840 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035575192 | ||
003 | DE-604 | ||
005 | 20130529 | ||
007 | t | ||
008 | 090622s2009 |||| 00||| eng d | ||
020 | |a 9780521674539 |9 978-0-521-67453-9 | ||
020 | |a 9780521857840 |9 978-0-521-85784-0 | ||
035 | |a (OCoLC)705372950 | ||
035 | |a (DE-599)BVBBV035575192 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-634 |a DE-20 |a DE-355 | ||
084 | |a CC 2600 |0 (DE-625)17610: |2 rvk | ||
084 | |a CI 2305 |0 (DE-625)18393:11798 |2 rvk | ||
084 | |a SK 130 |0 (DE-625)143216: |2 rvk | ||
100 | 1 | |a Smith, Peter |d 1944- |e Verfasser |0 (DE-588)173658121 |4 aut | |
245 | 1 | 0 | |a An introduction to Gödel's theorems |c Peter Smith |
250 | |a 4. printing with corr. | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2009 | |
300 | |a XIV, 361 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Cambridge introductions to philosophy | |
650 | 0 | 7 | |a Gödelscher Unvollständigkeitssatz |0 (DE-588)4021417-5 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Gödelscher Unvollständigkeitssatz |0 (DE-588)4021417-5 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017630699&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-017630699 |
Datensatz im Suchindex
_version_ | 1804139230512807936 |
---|---|
adam_text | Contents
Preface
xiii
1
What
Gödel s
Theorems say
1
Basic arithmetic
·
Incompleteness
·
More incompleteness
■
Some implica¬
tions?
·
The uiiprovability of consistency
·
More implications?
■
What s
next?
2
Decidability and enumerability
8
Functions
·
Effective decidability, effective eomputability
·
Enumerable
sets
-
Effective onumerability
·
Effectively enumerating pairs of numbers
3
Axiomatized formal theories
17
Formalizat
ion as an ideal
·
Formalized languages
·
Axiomatized formal
theories
■
More definitions
·
The effective eimmerability of theorems
·
ľsegaf
ion-complete theories are deeidable
4
Capturing numerical properties
28
Three remarks on notation
·
A remark about extensionality
·
The language
L
-A quick remark about truth
■
Expressing numerical properties and
relations
-
Capturing numerical properties and relations
·
Expressing vs.
capturing: keeping the distinction clear
5
The truths of arithmetic
37
Sufficiently expressive languages
·
More about effectively enumerable sets
•
The truths of arithmetic are not effectively enumerable
■
Incompleteness
6
Sufficiently strong arithmetics
43
The idea of a sufficiently strong theory
·
An undecidability theorem
·
Another incompleteness theorem
7
Interlude: Taking stock
47
Comparing incompleteness arguments
·
A road-map
8
Two formalized arithmetics
51
BA. Baby Arithmetic
·
BA is negation complete
-
Q. Robinson Arithmetic
■
Q
is not complete
·
Why
Q
is interesting
Vil
Contents
9
What Q can
prove
58
Systems
of logic
·
Capturing less-than-or-equal-to in
Q
·
Adding
<
to
Q
·
Q
is order-adequate
·
Defining the
Δο, Σι
and
Πι
wffs
·
Some easy results
■
Q
is Ei-complete
·
Intriguing corollaries
·
Proving
Q
is order-adequate
10
First-order Peano Arithmetic
71
Induction and the Induction Schema
·
Induction and relations
·
Arguing
using induction
·
Being more generous with induction
■
Summary overview
of PA
·
Hoping for completeness?
·
Where we ve got to
■
Is PA consistent?
11
Primitive recursive functions
83
Introducing the primitive recursive functions
■
Defining the p.r. functions
more carefully
·
An aside about extensionality
■
The p.r. functions are
computable
■
Not all computable numerical functions are p.r.
·
Defining
p.r. properties and relations
■
Building more p.r. functions and relations
·
Further examples
12
Capturing p.r. functions
99
Capturing a function
·
Two more ways of capturing a function
·
The idea
of p.r. adequacy
13
Q
is p.r. adequate
106
More definitions
·
Q
can capture all
Σ ι
functions
■
La can express all p.r.
functions: starting the proof
·
The idea of a /j-function
·
L. can express
all p.r. functions: finishing the proof
·
The p.r. functions are
Σι
·
The
adequacy theorem
■
Ganonically capturing
14
Interlude: A very little about
Principia
118
Principias logicism
·
Godeľs
impact
·
Another road-map
15
The arithmetization of syntax
124
Godei
numbering
■
Coding sequences
·
Term. Atom, Wff. Sent and Prf
are p.r.
·
Some cute notation
·
The idea of diagonalization
■
What s next?
■
The concatenation function
·
Proving that Term is p.r.
■
Proving that
Atom and Wff are p.r.
■
Proving Prf is p.r.
16
PA is incomplete
138
Reminders
·
G
is true if and only if it is improvable
·
PA is incomplete: the
semantic argument
·
G is of
Goldbach
type
·
Starting the syntactic argu¬
ment for incompleteness
·
^--incompleteness, ¡¿-inconsistency
■
Finishing
the syntactic argument
■
Godei
sentences and what they say
17 Gödel s
First Theorem
147
VIII
Contents
Generalizing the semantic argument
■
Incompletability
·
Generalizing the
syntactic argument
·
The First Theorem
18
Interlude: About the First Theorem
153
What we ve proved
·
The reach of
Gödelian
incompleteness
·
Some ways
to argue that Gr is true
■
What doesn t follow from incompleteness
·
What
does follow from incompleteness?
19
Strengthening the First Theorem
162
Broadening the scope of the incompleteness theorems
■
True Basic Arith¬
metic can t be axiomatized
·
Rossers improvement
·
l-consistency and
Σ
j
-soundness
20
The Diagonalization Lemma
169
Provability predicates
■
An easy theorem about provability predicates
·
G
and
Prov
·
Proving that
G
is equivalent to
-■Prov^G 1)
·
Deriving the
Diagonalization Lemma
21
Using the Diagonalization Lemma
175
The First Theorem again
·
An aside:
Godei
sentences
again
·
The
Gödel-
Rosser Theorem again
·
Capturing provability?
■
Tarskľs
Theorem
·
The
Master Argument
·
The length of proofs
22
Second-order arithmetics
187
Second-order arithmetical languages
■
The Induction Axiom
·
Neat arith¬
metics
■
Introducing PA2
■
Categoricity
■
Incompleteness and categoricity
■
Another arithmetic
·
Speed-up again
23
Interlude: Incompleteness and Isaacson s conjecture
200
Taking stock
■
Goodstein s Theorem
·
Isaacson s conjecture
·
Ever upwards
•
Ancestral arithmetic
24 Gödel s
Second Theorem for PA
213
Defining Con
·
The Formalized First Theorem in PA
■
The Second Theorem
for PA
·
On ¿¿¡-incompleteness and ¿¿-consistency again
■
How should we
interpret the Second Theorem?
·
How interesting is the Second Theorem
for PA?
■
Proving the consistency of PA
25
The derivability conditions
223
More notation
·
The
Hilbert-Bernays-Löb
derivability conditions
■
G, Con.
and
Godei
sentences
·
Incompletability and consistency extensions
·
The
equivalence of fixed points for -iProv
·
Theories that prove their own
inconsistency
·
Lob s Theorem
IX
Contents________________________________________________
26
Deriving the derivability conditions
233
Nice* theories
·
The second derivability condition
·
The third derivability
condition
·
Useful corollaries
■
The Second Theorem for weaker arithmetics
•
Jeroslow s Lemma and the Second Theorem
27
Reflections
241
The Second Theorem: the story so far
■
There are provable consistency
sentences
·
What does that show?
·
The reflection schema: some definitions
•
Reflection and PA
·
Reflection, more generally
■
The best and most
general version
·
Another route to accepting
a Godei
sentence?
28
Interlude: About the Second Theorem
253
Real vs ideal mathematics
·
A quick aside:
Gödel s
caution
·
Relating
the real and the ideal
·
Proving real-soundness?
·
The impact of
Godei
■
Minds and computers
·
The rest of this book: another road-map
29
μ
-Recursive
functions
266
Minimization and
μ
-recursive
functions
·
Another definition of
μ
-recursive-
ness
■
The
Ackermann-Péter
function
·
Ackermann-Péter
is ^-recursive but
not p.r.
·
Introducing Church s Thesis
·
Why can t we diagonalize out?
·
Using Church s Thesis
30
Undecidability and incompleteness
278
Q
is recursively adequate
·
Nice theories can only capture /¿-recursive func¬
tions
·
Some more definitions
·
Q
and PA are undecidable
·
The
Entschei¬
dungsproblem ■
Incompleteness theorems again
■
Negation-complete the¬
ories are recursively decidable
■
Recursively adequate theories are not
recursively decidable
·
True Basic Arithmetic is not r.e.
31
Turing machines
288
The basic conception
■
Turing computation defined more carefully
·
Some
simple examples
·
Turing machines and their states
32
Turing machines and recursiveness
299
/¡-Recursiveness entails Turing computability
·
μ
-Recursiveness
entails
Turing computability: the details
·
Turing computability entails
μ
-recurs-
iveiiess
■
Generalizing
33
Halting problems
306
Two simple results about Turing programs
·
The halting problem
·
The
Entscheidungsproblem
again
·
The halting problem and incompleteness
■
Another incompleteness argument
·
Kleene s Normal Form Theorem
·
Kleenex Theorem entails
Godeľs
First Theorem
Contents
34
The Church-Turing Thesis
316
From Euclid to Hubert
· 1936
and all that
·
What the Church-Turing
Thesis is not
·
The status of the Thesis
35
Proving the Thesis?
325
The project
·
Vagueness and the idea of computability
■
Formal proofs
and informal demonstrations
·
Squeezing arguments
·
The first premiss
for a squeezing argument
·
The other premisses, thanks to Kolmogorov
and Uspenskii
■
The squeezing argument defended
·
To summarize
36
Looking back
343
Further reading
345
Bibliography
347
Index
357
xi
|
any_adam_object | 1 |
author | Smith, Peter 1944- |
author_GND | (DE-588)173658121 |
author_facet | Smith, Peter 1944- |
author_role | aut |
author_sort | Smith, Peter 1944- |
author_variant | p s ps |
building | Verbundindex |
bvnumber | BV035575192 |
classification_rvk | CC 2600 CI 2305 SK 130 |
ctrlnum | (OCoLC)705372950 (DE-599)BVBBV035575192 |
discipline | Mathematik Philosophie |
edition | 4. printing with corr. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01535nam a2200385 c 4500</leader><controlfield tag="001">BV035575192</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130529 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090622s2009 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521674539</subfield><subfield code="9">978-0-521-67453-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521857840</subfield><subfield code="9">978-0-521-85784-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)705372950</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035575192</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CC 2600</subfield><subfield code="0">(DE-625)17610:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CI 2305</subfield><subfield code="0">(DE-625)18393:11798</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 130</subfield><subfield code="0">(DE-625)143216:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Smith, Peter</subfield><subfield code="d">1944-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)173658121</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to Gödel's theorems</subfield><subfield code="c">Peter Smith</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">4. printing with corr.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 361 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge introductions to philosophy</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gödelscher Unvollständigkeitssatz</subfield><subfield code="0">(DE-588)4021417-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gödelscher Unvollständigkeitssatz</subfield><subfield code="0">(DE-588)4021417-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017630699&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017630699</subfield></datafield></record></collection> |
genre | (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV035575192 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T21:40:47Z |
institution | BVB |
isbn | 9780521674539 9780521857840 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017630699 |
oclc_num | 705372950 |
open_access_boolean | |
owner | DE-634 DE-20 DE-355 DE-BY-UBR |
owner_facet | DE-634 DE-20 DE-355 DE-BY-UBR |
physical | XIV, 361 S. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Cambridge Univ. Press |
record_format | marc |
series2 | Cambridge introductions to philosophy |
spelling | Smith, Peter 1944- Verfasser (DE-588)173658121 aut An introduction to Gödel's theorems Peter Smith 4. printing with corr. Cambridge [u.a.] Cambridge Univ. Press 2009 XIV, 361 S. txt rdacontent n rdamedia nc rdacarrier Cambridge introductions to philosophy Gödelscher Unvollständigkeitssatz (DE-588)4021417-5 gnd rswk-swf (DE-588)4151278-9 Einführung gnd-content Gödelscher Unvollständigkeitssatz (DE-588)4021417-5 s DE-604 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017630699&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Smith, Peter 1944- An introduction to Gödel's theorems Gödelscher Unvollständigkeitssatz (DE-588)4021417-5 gnd |
subject_GND | (DE-588)4021417-5 (DE-588)4151278-9 |
title | An introduction to Gödel's theorems |
title_auth | An introduction to Gödel's theorems |
title_exact_search | An introduction to Gödel's theorems |
title_full | An introduction to Gödel's theorems Peter Smith |
title_fullStr | An introduction to Gödel's theorems Peter Smith |
title_full_unstemmed | An introduction to Gödel's theorems Peter Smith |
title_short | An introduction to Gödel's theorems |
title_sort | an introduction to godel s theorems |
topic | Gödelscher Unvollständigkeitssatz (DE-588)4021417-5 gnd |
topic_facet | Gödelscher Unvollständigkeitssatz Einführung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017630699&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT smithpeter anintroductiontogodelstheorems |