Mitochondrial function: A Mitochondrial electron transport complexes and reactive oxygen species
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Elsevier
2009
|
Ausgabe: | 1. ed. |
Schriftenreihe: | Methods in enzymology
456 |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | LI, 537 S., [8] Bl. Ill., graph. Darst. |
ISBN: | 9780080877761 |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV035554913 | ||
003 | DE-604 | ||
005 | 20090615 | ||
007 | t | ||
008 | 090608s2009 ad|| |||| 00||| eng d | ||
020 | |a 9780080877761 |9 978-0-08-087776-1 | ||
035 | |a (OCoLC)645118973 | ||
035 | |a (DE-599)BVBBV035554913 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-19 |a DE-12 |a DE-91G |a DE-20 | ||
245 | 1 | 0 | |a Mitochondrial function |n A |p Mitochondrial electron transport complexes and reactive oxygen species |c ed. by William S. Allison ... |
250 | |a 1. ed. | ||
264 | 1 | |a Amsterdam [u.a.] |b Elsevier |c 2009 | |
300 | |a LI, 537 S., [8] Bl. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Methods in enzymology |v 456 | |
490 | 0 | |a Methods in enzymology |v ... | |
700 | 1 | |a Allison, William S. |e Sonstige |4 oth | |
773 | 0 | 8 | |w (DE-604)BV035554897 |g 1 |
830 | 0 | |a Methods in enzymology |v 456 |w (DE-604)BV000000938 |9 456 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017610755&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-017610755 |
Datensatz im Suchindex
_version_ | 1804139201333035008 |
---|---|
adam_text | Contents
Contributors
xv
Preface
xxiii
Volumes in Series
xxv
Section I. Electron Transport Complexes
1
1.
Visualizing Functional Flexibility by Three-Dimensional
Electron Microscopy: Reconstructing Complex I of the
Mitochondria! Respiratory Chain
3
Michael
Radermacher
1.
Introduction
4
2.
Random Conical Reconstruction
6
3.
Application of the Techniques to Complex I From Yarrowia Lipolytica
16
4.
Conclusion
23
Acknowledgments
23
References
23
2.
Correlated Light and Electron Microscopy/Electron
Tomography of Mitochondria In Situ
29
Guy A. Perkins,
Mei
G.
Sun, and Terrence
G.
Frey
1.
Introduction
ЗО
2.
Light Microscopy
31
3.
Electron Microscope Tomography
36
Acknowledgments
50
References
50
3.
Studies of Complex I by Fourier Transform Infrared Spectroscopy
53
Douglas Marshall and Peter R. Rich
1.
Spectroscopic Studies of Complex I
54
2.
FTIR Difference Spectroscopy and Its Application to Complex I
56
3.
Preparation of Rehydrated Layers of Complex I for
ATR-FTIR Spectroscopy
59
4.
Analysis of Rehydrated Complex I Layers by
Perfusion-lnduced ATR-FTIR Difference Spectroscopy
62
vi
Contents
5.
Analysis of Rehydrated Complex I Layers by
Electrochemically-lnduced ATR-FTIR Difference Spectroscopy
64
6.
Model Compounds and Strategies for Interpretation
64
7.
Example
IR
Difference Spectra of Complex I
69
Acknowledgment
70
References
70
4.
Electron Transfer in Respiratory Complexes Resolved
by an Ultra-Fast Freeze-Quench Approach
75
Nikolai P. Belevich, Marina
L
Verkhovskaya, and Michael I. Verkhovsky
1.
Introduction
76
2.
Ultra-Fast Freeze-Quench Setup
79
3.
Sample Preparation
82
4.
Calibration of the Freeze-Quench Setup
85
5.
Application of Freeze-Quench Approach for the Monitoring of
Complex
1
Reduction by NADH
85
References
92
5.
Use of Ruthenium Photooxidation Techniques to
Study Electron Transfer in the Cytochrome
Ьсг
Complex
95
Francis Millett and Bill Durham
1.
Introduction
96
2.
Design and Synthesis of Ruthenium-Labeled Proteins
98
3.
Measurement of Interprotein Electron Transfer
in a Ruthenium-Labeled Protein
100
4.
Measurement of Electron Transfer between
RUz-39-Cc
and Cytochrome bct
102
5.
Measurement of Electron Transfer within the
Cytochrome
Ьсг
Complex
105
Acknowledgments
107
References
107
6.
Mass Spectrometric Characterization of the Thirteen
Subunits of Bovine Respiratory Complexes that are
Encoded in Mitochondrial
DNA
111
John E. Walker, Joe Carroll, Matthew
С
Altman,
and Ian M. Fearnley
1.
Introduction
112
2.
Analysis of Mitochondrial Membranes for mt-Proteins
115
3.
Analysis of Respiratory Complexes for mt-Proteins
117
4.
Mass Spectrometric Analysis of mt-Proteins
120
Contents
vii
5.
Conclusions and Perspectives
125
References
128
7.
Tracing Human Mitochondrial Complex I Assembly by
Use of GFP-Tagged Subunits
133
Cindy E. J.
Dieteren,
Werner J. H.
Koopman,
and Leo G. J. Nijtmans
1.
Introduction
134
2.
Selection of Complex I
Subunit
for GFP Labeling
136
3.
Creation of inducible Cell Line Expressing AcGFPl-tagged NDUFS3
137
4.
Tracing
AcGFPl-Labeled NDUFS3
on BN-PAGE
143
Acknowledgment
149
References
149
8.
Two-Dimensional Native Electrophoresis for
Fluorescent and Functional Assays of Mitochondrial Complexes
153
Zibiernisha Wumaier, Esther Niibel, Ilka
Wittig,
and Hermann
Schägger
1.
Introduction
154
2.
Materials and Methods
155
3.
Analysis of Mitochondrial
Supercomplexes
161
References
167
9.
Reliable Assay for Measuring Complex I Activity in Human
Blood Lymphocytes and Skin
Fibroblasts
169
L.
Elly.
A. de
Wit and
Wim
Sluiter
1.
Introduction
170
2.
Complex I Activity Measurement
171
3.
Characteristics of the Complex I Assay
175
References
179
10.
Purification of the Cytochrome
с
Reductase/Cytochrome
с
Oxidase
Super Complex of Yeast Mitochondria
183
Hans-Peter
Braun,
Stephanie Sunderhaus, Egbert J. Boekema,
and Roman
Kouřil
1.
Introduction
184
2.
Isolation of the 111
+
IV Supercomplex
184
3.
Characterization of the III
+
IV Supercomplex by EM
187
4.
Perspectives
187
Acknowledgments
189
References
189
viii Contents
11.
Supercomplex
Organization of the Yeast Respiratory
Chain Complexes and the ADP/ATP Carrier Proteins
191
Rosemary A. Stuart
1.
Introduction
192
2.
Choice of the Detergent—Digitonin
198
3.
Mitochondrial Solubilization and BN-PAGE/SDS-PAGE Analysis
199
4.
Expression and Affinity Purification of a His-Tagged Aac2
Protein (H|SAac2)
203
Acknowledgments
206
References
206
12.
Controlled Expression of Iron-Sulfur Cluster Assembly
Components for Respiratory Chain Complexes
in Mammalian Cells
209
Oliver Stehling, Alex D. Sheftel, and Roland
Lill
1.
Introduction
210
2.
Depletion of Fe/S Cluster Assembly Components by
RNA
Interference
212
3.
Analysis of Respiratory Complex Assembly
218
4.
Analysis of Respiratory Complex Function
222
5.
Concluding Remarks
228
Acknowledgments
228
References
228
13.
Localization and Function of the 2Fe-2S Outer
Mitochondrial Membrane Protein mitoNEET
233
Sandra E. Wiley, Matthew J. Rardin, and Jack E. Dixon
1.
Introduction
234
2.
Purification of Highly Enriched Mitochondria from Rat Liver
235
3.
Expression of
Recombinant
mitoNEET
240
4.
In Vitro Analysis of Purified mitoNEET
243
References
245
14.
Nucleotide-Dependent Iron-Sulfur Cluster Biogenesis
of Endogenous and Imported Apoproteins in Isolated
Intact Mitochondria
247
Boominathan Amutha, Donna M. Gordon,
Andrew
Daneis,
and Debkumar Pain
1.
Introduction
248
2.
Stock Solutions and Storage
250
Contents ix
3. Isolation and
Purification
of Mitochondria
251
4.
Depletion of Endogenous Nucleotides in Isolated Mitochondria
252
5.
Nucleotide-Dependent [Fe-S] Cluster Biogenesis
of Endogenous Aconitase in Purified Mitochondria
253
6.
[Fe-S] Cluster Biogenesis of Imported Apoferredoxin
258
7.
Concluding Remarks and Perspectives
263
Acknowledgments
265
References
266
15.
Isolation of Saccharomyces Cerevisiae Mitochondria
for
Mössbauer,
Ерг,
and Electronic Absorption
Spectroscopic Analyses
267
Paul
A. Lindahl,
Jessica Garber Morales, Ren
Miao,
and Gregory Holmes-Hampton
1.
Introduction
268
2.
Large-Scale Growth of S. Cerevisiae
270
3.
Anaerobic Isolation
272
4.
Isolation Procedure
273
5.
Characterization of Mitochondria
275
6.
Determining The Absolute [Fe] and [Protein] in Mitochondria
275
7.
Packing Samples into Spectroscopy Holders
277
8.
Advances with This Approach
281
9.
Summary
283
Acknowledgments
283
References
284
16.
The Use of Fluorescence Correlation Spectroscopy to Probe
Mitochondrial Mobility and lntramatrix Protein Diffusion
287
Peter H. G. M.
Willems,
Herman, G. Swarts, Mark
A. Hink,
and Werner J. H.
Koopman
1.
Introduction
288
2.
Principle of Fluorescence Correlation Spectroscopy
289
3.
Performing FCS Experiments with mitoEYFP in Human Skin
Fibroblasts
292
References
299
17.
Type II NADH: Quinone Oxidoreductases of
Płasmodiutn
Falciparum
and Mycobarterium Tuberculosis: Kinetic and
High-Throughput Assays
303
Nicholas Fisher, Ashley J.
Warman,
Stephen A. Ward,
and Giancarlo A. Biagini
1.
Introduction
304
2.
Kinetic Assays
308
χ
Contents
3. Endpoint
Assay for
HTS
315
4.
Summary and Conclusions
318
Acknowledgments
318
References
319
18.
Analysis of Respiratory Chain Complex Assembly with
Radiolabeled
Nuclear- and Mitochondrial-Encoded Subunits
321
Matthew
McKenzie,
Michael Lazarou, and Michael T. Ryan
1.
Introducton
322
2.
Analysis of mtDNA-Encoded
Subunit
Assembly
324
3.
Isolation of Crude Mitochondria From Cultured Cells
326
4.
Mitochondria! Import and Assembly of Nuclear
DNA-Encoded Subunits
326
5.
Separation of Proteins with SDS-PAGE
331
6.
Separation of Protein Complexes with Blue-Native PAGE
331
7.
Separation of Individual Subunits From Their Complexes
with BN-PAGE and SDS-PAGE in the Second Dimension
333
8.
Processing and Analysis of Gels After Electrophoresis
334
Acknowledgments
337
References
338
Section II. Reactive Oxygen Species
341
19.
Measuring
Redox
Changes to Mitochondrial Protein
Thiols With
Redox
Difference Gel Electrophoresis (Redox-Dige)
343
Thomas R.
Hurd,
Andrew M. James, Kathryn S. Lilley,
and Michael P. Murphy
1.
Introduction
344
2.
Overview of Redox-Dige
345
3.
Experimental Design
347
4.
Protein Labeling and Sample Preparation
348
5.
2-D Gel Electrophoresis of Fluorescently Labeled Samples
351
6.
Imaging of Fluorescently Labeled Protein on Gels
351
7.
Analysis of Multiple Gels to Determine Statistically
Significance of
Redox
Changes on Individual Proteins
353
8.
Spot Excision From 2-D Gels
354
9.
Protein Spot Identification by Mass Spectrometry
355
10.
Limitations to Redox-Dige and Future Possible Adaptations
356
11.
Comparison of Redox-Dige With Other
Redox
Proteomic Techniques
357
12.
Concluding Remarks
358
References
358
Contents xi
20.
Effects of Hepatitis
С
Core Protein on Mitochondrial
Electron Transport and Production of Reactive Oxygen Species
363
Roosevelt V. Campbell, Yuanzheng Yang, Ting Wang, Aparna Rachamallu,
Yanchun Li, Stanley J. Watowich, and Steven A. Weinman
1.
Introduction
364
2.
Materials and Model Systems
365
3.
HCV Core Protein Effects on Mitochondria In Vitro
369
4.
Mitochondrial Effects of Viral Proteins in Cellular Systems
373
5.
Conclusion
378
Acknowledgments
378
References
379
21.
Paraquat-Induced Production of Reactive Oxygen
Species in Brain Mitochondria
381
Derek A. Drechsel and Manisha
Patel
1.
Introduction
382
2.
Methods
383
3.
Discussion
388
Acknowledgments
391
References
391
22.
The Uptake and Interactions of the
Redox
Cycler Paraquat
with Mitochondria
395
Helena
M. Cochemé
and Michael P. Murphy
1.
Introduction
396
2.
Detection of the PCT^ Radical
399
3.
Detection of PQ
401
4.
Assays for
PQ-Associated Superoxide
(OS ) Production
404
5.
Uptake of PQ into Mitochondria
409
6.
PQ
Toxicity
Screens in Yeast Deletion Libraries
413
7.
Conclusions
414
Acknowledgments
415
References
415
23.
Quantification of
Superoxide
Production by Mouse
Brain and Skeletal Muscle Mitochondria
419
Dominika Malínská,
Alexei P. Kudin,
Grażyna
Debska-Vielhaber,
Stefan Vielhaber, and Wolfram S. Kunz
1.
Evaluation of Quantitative Methods for Detecting
ROS
Production
420
x¡¡
Contents
2.
The Application of Quantitative Methods for Measurement
of
ROS
Production to Identify the Contribution of Individual
Sites to the
Superoxide
Production of Isolated Brain and
Skeletal Muscle Mitochondria
428
Acknowledgments
436
References
436
24.
Quantification, Localization, and Tissue Specificities of
Mouse Mitochondrial Reactive Oxygen Species Production
439
Aaron M. Gusdon, Jing Chen, Tatyana V. Votyakova,
and Clayton E. Mathews
1.
Introduction
440
2.
Materials and Procedures for Isolation of Mouse Mitochondria
442
3.
Materials and Procedures for Quantification of Reactive
Oxygen Species
(ROS)
Production by Mouse Mitochondria
446
4.
Reagents and Procedures for Evaluating
ROS
Production
by Beta Cells
450
5.
Concluding Remarks
453
Acknowledgments
453
References
454
25.
Analysis of Electron Transfer and
Superoxide
Generation
in the Cytochrome
Ьсг
Complex
459
Linda Yu, Shaoqing Yang, Ying Yin, Xiaowei
Cen,
Fei
Zhou,
Di Xia,
and Chang-An Yu
1.
Introduction
460
2.
Materials
461
3.
Purification of the Cytochrome
Ьсг
Complex from Bovine Heart
Submitochondrial Particles
462
4.
Electron Transfer Activity in the Purified bct Complex
465
5.
Proton
Translocation
in the Purified
Ьсг
Complex
466
6. Superoxide
Generation by the Purified
Ьсг
Complex
467
7.
Comparison of OJ~ Production by the bct Complexes
with Varying Electron Transfer Activities
468
Acknowledgments
470
References
471
Contents xiii
26.
Measurement of
Superoxide
Formation by
Mitochondrial Complex I of Yarrowia Lipolytica
475
Stefan
Dröse,
Alexander Galkin, and
Ulrich
Brandt
1.
Introduction
476
2.
Materials, Sample Preparation, and Purification
of Complex I from Yarrowia Lipolytica
477
3.
Detection of
Superoxide
(ОЈ~)
by Acetylated Cytochrome
с
479
4.
Detection of Hydrogen Peroxide by the Ampiex Red/HRP Assay
484
5.
Conclusions
487
References
488
27.
An Improved Method for Introducing Point Mutations into
the Mitochondrial Cytochrome
b
Gene to Facilitate
Studying the Role of Cytochrome
b
in the Formation of
Reactive Oxygen Species
491
Martina G. Ding, Christine A. Butler, Scott
A. Saracco,
Thomas D. Fox,
François Godard,
Jean-Paul di
Rago,
and Bernard
L.
Trumpower
1.
Introduction: The Rote of Cytochrome
b
in
Superoxide
Anion
Formation
492
2.
Construction of Plasmid pSCSI Containing an
ARGS™
Cassette Flanked by the Cytochrome
b
Gene
5 -
and
З
-UTR
Sequences
494
3.
Construction of the Yeast Recipient Strain for Cytochrome
b
Mutations, YTE31, In which the Cytochrome
b
Gene is
Replaced by Mitochondrially Encoded AR68
495
4.
Construction of the Template Vector, Plasmid pMD2,
Containing an Intronless Cytochrome
b
Gene and C0X2
497
5.
Introduction of Mutations in the Cytochrome
b
Gene and
Amplifying and Sequencing the Mutated Cytochrome
b
Genes
498
6.
Creation of Yeast Cytochrome
b
Mutant Strains by Biolistic
Transformation of Yeast Strain DFS16O p° with Plasmids
Containing Mutated Versions of the Cytochrome
b
Gene
498
7.
Cytoduction between Recipient Strain YTE31 and MR6,
A Derivative of W303-1B
502
8.
Creating Recipient Strains FG20 and FG21, Derivatives
of W303-1B that Contain the YTE31 Mitochondria
503
References
505
xiv Contents
28.
Use of Ruthenium Photo reduction Techniques to
Study Electron Transfer in Cytochrome
Oxidase
507
Lois
Geren,
Bill Durham, and Francis Millett
1.
Introduction
508
2.
Preparation of Ruthenium-Labeled Cytochrome
с
Derivatives
509
3.
Measurement of Intraprotein Electron Transfer in Horse Ru-39-Cc
511
4.
Measurement of Electron Transfer from Rud^-Cc
to Cytochrome
с
Oxidase
513
5.
Measurement of Electron Transfer and Oxygen Reduction
in Cytochrome
с
Oxidase
with Electrostatically Bound
Ruthenium Complexes
515
Acknowledgments
519
References
519
Author Index
521
Subject Index
529
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV035554913 |
ctrlnum | (OCoLC)645118973 (DE-599)BVBBV035554913 |
edition | 1. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01312nam a2200325 cc4500</leader><controlfield tag="001">BV035554913</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090615 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090608s2009 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080877761</subfield><subfield code="9">978-0-08-087776-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)645118973</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035554913</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mitochondrial function</subfield><subfield code="n">A</subfield><subfield code="p">Mitochondrial electron transport complexes and reactive oxygen species</subfield><subfield code="c">ed. by William S. Allison ...</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">LI, 537 S., [8] Bl.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Methods in enzymology</subfield><subfield code="v">456</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Methods in enzymology</subfield><subfield code="v">...</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Allison, William S.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV035554897</subfield><subfield code="g">1</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Methods in enzymology</subfield><subfield code="v">456</subfield><subfield code="w">(DE-604)BV000000938</subfield><subfield code="9">456</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017610755&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017610755</subfield></datafield></record></collection> |
id | DE-604.BV035554913 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:40:19Z |
institution | BVB |
isbn | 9780080877761 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017610755 |
oclc_num | 645118973 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-12 DE-91G DE-BY-TUM DE-20 |
owner_facet | DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-12 DE-91G DE-BY-TUM DE-20 |
physical | LI, 537 S., [8] Bl. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Elsevier |
record_format | marc |
series | Methods in enzymology |
series2 | Methods in enzymology |
spelling | Mitochondrial function A Mitochondrial electron transport complexes and reactive oxygen species ed. by William S. Allison ... 1. ed. Amsterdam [u.a.] Elsevier 2009 LI, 537 S., [8] Bl. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Methods in enzymology 456 Methods in enzymology ... Allison, William S. Sonstige oth (DE-604)BV035554897 1 Methods in enzymology 456 (DE-604)BV000000938 456 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017610755&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Mitochondrial function Methods in enzymology |
title | Mitochondrial function |
title_auth | Mitochondrial function |
title_exact_search | Mitochondrial function |
title_full | Mitochondrial function A Mitochondrial electron transport complexes and reactive oxygen species ed. by William S. Allison ... |
title_fullStr | Mitochondrial function A Mitochondrial electron transport complexes and reactive oxygen species ed. by William S. Allison ... |
title_full_unstemmed | Mitochondrial function A Mitochondrial electron transport complexes and reactive oxygen species ed. by William S. Allison ... |
title_short | Mitochondrial function |
title_sort | mitochondrial function mitochondrial electron transport complexes and reactive oxygen species |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017610755&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV035554897 (DE-604)BV000000938 |
work_keys_str_mv | AT allisonwilliams mitochondrialfunctiona |