Transport phenomena in biological systems:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boston
Pearson
[2010]
|
Ausgabe: | Second edition, international edition |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 886 Seiten Illustrationen, Diagramme |
ISBN: | 9780135131541 0135131545 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV035554701 | ||
003 | DE-604 | ||
005 | 20191128 | ||
007 | t | ||
008 | 090608s2010 xxua||| |||| 00||| eng d | ||
010 | |a 2008043589 | ||
020 | |a 9780135131541 |9 978-0-13-513154-1 | ||
020 | |a 0135131545 |9 0-13-513154-5 | ||
035 | |a (OCoLC)428439325 | ||
035 | |a (DE-599)BVBBV035554701 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-634 |a DE-384 |a DE-29T |a DE-83 | ||
050 | 0 | |a QH509 | |
082 | 0 | |a 571.6/4 | |
082 | 0 | |a 571.64 |2 22 | |
084 | |a WE 5360 |0 (DE-625)148307: |2 rvk | ||
084 | |a VE 5901 |0 (DE-625)147130:254 |2 rvk | ||
084 | |a WD 2300 |0 (DE-625)148164: |2 rvk | ||
100 | 1 | |a Truskey, George A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Transport phenomena in biological systems |c George A. Truskey, Fan Yuan, David F. Katz, Duke University, Durham, NC |
250 | |a Second edition, international edition | ||
264 | 1 | |a Boston |b Pearson |c [2010] | |
300 | |a 886 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Biological transport | |
650 | 0 | 7 | |a Biologisches System |0 (DE-588)4122930-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Transportprozess |0 (DE-588)4185932-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Biologisches System |0 (DE-588)4122930-7 |D s |
689 | 0 | 1 | |a Transportprozess |0 (DE-588)4185932-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Fan, Yuan |e Verfasser |0 (DE-588)1056167505 |4 aut | |
700 | 1 | |a Katz, David F. |e Verfasser |4 aut | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017610546&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-017610546 |
Datensatz im Suchindex
_version_ | 1804139201018462208 |
---|---|
adam_text | Titel: Transport phenomena in biological systems
Autor: Truskey, George A.
Jahr: 2010
Contents
Preface to the Second Edition 19
Preface to the First Edition 21
I Introduction 27
1.1 The Role of Transport Processes in Biological Systems 27
1.2 Definition of Transport Processes 28
1.2.1 Diffusion 28
1.2.2 Convection 31
1.2.3 Transport by Binding Interactions 34
1.3 Relative Importance of Convection and Diffusion 35
1.4 Transport Within Cells 37
1.4.1 Transport Across the Cell Membrane 37
1.4.2 Transport Within the Cell 42
1.5 Transcellular Transport 44
1.5.1 Junctions Between Cells 44
1.5.2 Epithelial Cells 45
1.5.3 Endothelial Cells 47
1.6 Physiological Transport Systems 48
1.6.1 Cardiovascular System 49
1.6.2 Respiratory System 55
1.6.3 Gastrointestinal Tract 60
1.6.4 Liver 62
1.6.5 Kidneys 64
1.6.6 Integrated Organ Function 66
1.7 Application of Transport Processes in Disease Pathology, Treatment,
and Device Development 66
1.7.1 Transport Processes and Atherosclerosis 67
1.7.2 Transport Processes and Cancer Treatment 69
1.7.3 Transport Processes, Artificial Organs, and Tissue
Engineering 71
1.8 Relative Importance of Transport and Reaction Processes 72
1.9 Questions 73
1.10 Problems 74
1.11 References 77
Part
Introduction to Physiological Fluid
Mechanics 79
Z Conservation Relations and Momentum
Balances 81
2.1 Introduction 81
2.2 Fluid Kinematics 81
2.2.1 Control Volumes 82
2.2.2 Velocity Field 82
2.2.3 Flow Rate 84
2.2.4 Acceleration 85
2.2.5 Fluid Streamlines 86
2.3 Conservation Relations and Boundary Conditions 88
2.3.1 Conservation of Mass 89
2.3.2 Momentum Balances 89
2.3.3 Forces 90
2.3.4 Boundary Conditions 92
2.4 Fluid Statics 93
2.4.1 Static Equilibrium 93
2.4.2 Surface Tension 96
2.4.3 Membrane and Cortical Tension 98
2.5 Constitutive Relations 100
2.5.1 Newton s Law of Viscosity 100
2.5.2 Non-Newtonian Rheology 102
2.5.3 Time-Dependent Viscoelastic Behavior 105
2.6 Laminar and Turbulent Flow 108
2.7 Application of Momentum Balances 111
2.7.1 Flow Induced by a Sliding Plate 112
2.7.2 Pressure-Driven Flow Through a Narrow Rectangular
Channel 114
2.7.3 Pressure-Driven Flow Through a Cylindrical
Tube 118
2.7.4 Pressure-Driven Flow of a Power Law Fluid in a Cylindrical
Tube 121
2.7.5 Flow Between Rotating Cylinders 123
2.8 Rheology and Flow of Blood 127
2.8.1 Measurement of Blood Viscosity 127
2.8.2 Rheology of Blood Flow in Large Vessels 128
2.8.3 Blood Flow in Small Tubes 131
2.8.4 Blood Flow in Capillaries 134
2.8.5 Regulation of Blood Flow 135
2.9 Questions 137
2.10 Problems 137
2.11 References 144
J Conservation Relations for Fluid Transport,
Dimensional Analysis, and Scaling 146
3.1 Introduction 146
3.2 Differential Form of the Equation of Conservation of Mass
in Three Dimensions 147
3.2.1 General Form of the Equation of Conservation of Mass 147
3.2.2 Conservation of Mass for Incompressible Fluids 149
3.3 Differential Form of the Conservation of Linear Momentum
and the Navier-Stokes Equations in Three Dimensions 151
3.3.1 General Form of the Equation of Conservation of Linear
Momentum 151
3.3.2 The Navier-Stokes Equation for an Incompressible
Newtonian Fluid 157
3.4 Fluid Motion with More Than One Dependent Variable 162
3.4.1 Two-Dimensional Flow in a Channel 162
3.4.2 Time Required to Establish a Steady Flow in a Rectangular
Channel 167
3.5 Dimensional Analysis and Dimensionless Groups 171
3.5.1 Dimensional Analysis 171
3.5.2 Dimensionless Form of the Navier-Stokes Equation 174
3.5.3 Dimensional Analysis and Dynamic Similarity 176
3.6 Low-Reynolds-Number Flow 179
3.6.1 Conservation Relations for Low-Reynolds-Number Flow 179
3.6.2 Low-Reynolds-Number Flow Around a Sphere 181
3.7 Questions 188
3.8 Problems 188
3.9 References 194
4 Approximate Methods for the Analysis
of Complex Physiological Flow 196
4.1 Introduction 196
4.2 Integral Form of the Equation of Conservation of Mass 197
4.3 Integral Form of the Equation of Conservation of Linear
Momentum 200
4.4 Bernoulli s Equation 203
4.4.1 Bernoulli s Equation Applied to Stenotic
Heart Valves 208
4.4.2 The Engineering Bernoulli Equation: The Effects of Viscous
Losses and Time-Dependent Energy Changes 210
4.5 Boundary Layer Theory 213
4.5.1 Background to Boundary Layer Theory 213
4.5.2 Derivation of the Boundary Layer Equations 214
4.5.3 Integral Momentum Equations for Boundary Layer
Flows 218
4.6 Flow Separation 221
4.7 Lubrication Theory 224
4.8 Peristaltic Pumping 232
4.9 Questions 236
4.10 Problems 236
4.11 References 240
J Fluid Flow in the Circulation and Tissues 241
5.1 Introduction 241
5.2 Oscillating Flow in a Cylindrical Tube 242
5.3 Entrance Lengths 253
5.4 Flow in Curved Vessels 254
5.5 Flow in Branching Vessels 258
5.6 Flow in Specific Arteries 260
5.6.1 Carotid Artery 261
5.6.2 Aorta 262
5.6.3 Effect of Vessel Wall Elasticity 263
5.6.4 Coronary Arteries 264
5.7 Arterial Fluid Dynamics and Atherosclerosis 266
5.7.1 Hemodynamic Variables Associated with
Atherosclerosis 267
5.7.2 Effect of Hemodynamics upon Endothelial Cell
Function 269
5.8 Heart-Valve Hemodynamics 271
5.8.1 Artificial Heart Valves 271
5.8.2 Turbulent Flow Around Heart Valves 273
5.9 Fluid Dynamic Effects of Reconstructive Surgery for Congenital
Heart Defects 276
5.10 Questions 278
5.11 Problems 278
5.12 References 281
r 3 ft II Fundamentals and Applications of Mass
Transport in Biological Systems 285
D Mass Transport in Biological Systems 287
6.1 Introduction 287
6.2 Solute Fluxes in Mixtures 287
6.2.1 The Dilute-Solution Assumption 290
6.3 Conservation Relations 291
6.3.1 Equation of Conservation of Mass for a Mixture 291
6.3.2 Boundary Conditions 292
6.4 Constitutive Relations 293
6.4.1 Fick s Law of Diffusion for Dilute Solutions 294
6.4.2 Diffusion in Concentrated Solutions 295
6.5 Diffusion as a Random Walk 296
6.6 Estimation of Diffusion Coefficients in Solution 301
6.6.1 Transport Properties of Proteins 302
6.6.2 The Stokes-Einstein Equation 303
6.6.3 Estimation of Frictional Drag Coefficients 306
6.6.4 The Effects of Actual Surface Shape and Hydration 309
6.6.5 Correlations 313
6.7 Steady-State Diffusion in One Dimension 314
6.7.1 Diffusion in Rectangular Coordinates 314
6.7.2 Radial Diffusion in Cylindrical Coordinates 322
6.7.3 Radial Diffusion in Spherical Coordinates 325
6.8 Unsteady Diffusion in One Dimension 326
6.8.1 One-Dimensional Diffusion in a Semi-Infinite Medium 327
6.8.2 One-Dimensional Unsteady Diffusion in a Finite
Medium 336
6.8.3 Model of Diffusion of a Solute into a Sphere from
a Well-Stirred Bath 344
6.8.4 Quasi-Steady Transport Across Membranes 349
6.9 Diffusion-Limited Reactions 353
6.9.1 Diffusion-Limited Binding and Dissociation in Solution 353
6.9.2 Diffusion-Limited Binding Between a Cell Surface Protein
and a Solute 355
6.9.3 Diffusion-Limited Binding on a Cell Surface 358
6.10 A Thermodynamic Derivation of the Stokes-Einstein Equation 360
6.11 Questions 362
6.12 Problems 363
6.13 References 370
/ Diffusion with Convection or Electrical
Potentials 372
7.1 Introduction 372
7.2 Fick s Law of Diffusion and Solute Flux 373
7.3 Conservation of Mass for Dilute Solutions 373
7.3.1 Transport in Multicomponent Mixtures 378
7.4 Dimensional Analysis 381
7.5 Electrolyte Transport 383
7.5.1 Nernst-Planck Equation 384
7.5.2 Electrolyte Transport Across Membranes 389
7.6 Diffusion and Convection 396
7.6.1 Release from the Walls of a Channel: A Short-Contact-Time
Solution 396
7.6.2 Momentum and Concentration Boundary Layers 402
7.7 Macroscopic Form of Conservation Relations for Dilute
Solutions 404
7.8 Mass Transfer Coefficients 406
7.9 Mass Transfer Across Membranes: Application to Hemodialysis 409
7.9.1 Cocurrent Exchange 412
7.9.2 Countercurrent Exchange 413
7.10 Questions 420
7.11 Problems 420
7.12 References 424
O Transport in Porous Media 425
8.1 Introduction 425
8.2 Porosity, Tortuosity, and Available Volume Fraction 427
8.3 Fluid Flow in Porous Media 436
8.3.1 Darcy sLaw 436
8.3.2 Brinkman Equation 443
8.3.3 Squeeze Flow 446
8.4 Solute Transport in Porous Media 449
8.4.1 General Considerations 449
8.4.2 Effective Diffusion Coefficient in Hydrogels 451
8.4.3 Effective Diffusion Coefficient in a Liquid-Filled Pore 452
8.4.4 Effective Diffusion Coefficient in Biological Tissues 456
8.5 Fluid Transport in Poroelastic Materials 457
8.6 Problems 461
8.7 References 463
Transvascular Transport 465
9.1 Introduction 465
9.2 Pathways for Transendothelial Transport 466
9.2.1 Continuous Capillaries 467
9.2.2 Fenestrated Capillaries 468
9.2.3 Discontinuous Capillaries 468
9.3 Rates of Transvascular Transport 469
9.3.1 Osmotic Pressure 469
9.3.2 Rate of Fluid Flow and Starling s Law of Filtration 473
9.3.3 Rate of Solute Transport and the Kedem-Katchalsky
Equation 474
9.4 Phenomenological Constants in the Analysis of Transvascular
Transport 476
9.5 A Limitation of Starling s Law 479
9.5.1 Fluid Filtration in the Steady State 479
9.5.2 A New View of Starling s Law 481
9.6 Problems 482
9.7 References 485
r 3 ft III The Effect of Mass Transport Upon
Biochemical Interactions 487
IU Mass Transport and Biochemical
Interactions 489
10.1 Introduction 489
10.2 Chemical Kinetics and Reaction Mechanisms 489
10.2.1 Reaction Rates 489
10.2.2 Reaction Mechanisms 492
10.2.3 First-Order Reactions 493
10.2.4 Second-Order Irreversible Reactions 494
10.2.5 Reversible Reactions 500
10.3 Sequential Reactions and the Quasi-Steady-State
Assumption 501
10.4 Enzyme Kinetics 505
10.4.1 Derivation of Michaelis-Menten Kinetics 507
10.4.2 Application of the Quasi-Steady-State Assumption to
Enzyme Kinetics 511
10.4.3 Determination of Km and Rmax 512
10.5 Regulation of Enzyme Activity 513
10.5.1 Competitive Inhibition 513
10.5.2 Uncompetitive and Noncompetitive Inhibition 514
10.5.3 Substrate Inhibition 517
10.6 Effect of Diffusion and Convection on Chemical
Reactions 517
10.6.1 Reaction and Diffusion in Solution 519
10.6.2 Interphase Mass Transfer and Reaction 521
10.6.3 Intraphase Chemical Reactions 523
10.6.4 Interphase and Intraphase Diffusion and Reaction 528
10.6.5 Observable Quantities and the Effectiveness Factor 530
10.6.6 Transport Effects on Enzymatic Reactions 533
10.7 Questions 540
10.8 Problems 542
10.9 References 546
I I Cell-Surface Ligand-Receptor Kinetics
and Molecular Transport Within Cells 548
11.1 Introduction 548
11.2 Receptor-Ligand Binding Kinetics 549
11.3 Determination of Rate Constants for Receptor-Ligand
Binding 553
11.4 Deviations from Simple Bimolecular Kinetics 556
11.4.1 Ligand Depletion 557
11.4.2 Two or More Receptor Populations 559
11.4.3 Interconverting Receptor Subpopulations 562
11.5 Receptor-Mediated Endocytosis 564
11.5.1 A Kinetic Model for LDL Receptor-Mediated
Endocytosis 568
11.5.2 Receptor Interaction with Coated Pits 572
11.6 Receptor Regulation During Receptor-Mediated
Endocytosis 575
11.7 Signal Transduction 580
11.7.1 Qualitative Aspects of Signal Transduction 580
11.7.2 Quantitative Aspects of Signal Transduction 586
11.8 Regulation of Gene Expression 595
11.8.1 Simplified Model for Gene Induction
and Expression 598
11.9 Questions 602
11.10 Problems 602
11.11 References 606
12 Cell Adhesion 608
12.1 Introduction 608
12.2 Effect of Force on Bond Association and Dissociation 609
12.2.1 The Influence of Energy Barriers on Molecular
Interactions 609
12.2.2 Bond Disruption in the Presence of an Applied Force 611
12.2.3 Bond Formation in the Presence of an Applied Force 612
12.2.4 The Effect of Loading Rates on Bond Forces 612
12.3 Cell-Matrix Adhesion 614
12.3.1 Cell Attachment 616
12.3.2 Cell Detachment 619
12.4 Biophysics of Leukocyte Rolling and Adhesion 628
12.4.1 Overview 628
12.4.2 Modeling Leukocyte-Endothelial Cell Interactions 629
12.4.3 Effect of Cell Deformation on Leukocyte Adhesion
to Endothelium 635
12.5 Stochastic Effects on Chemical Interactions 636
12.5.1 Kinetic Analysis of Stochastic Chemical Reactions 637
12.5.2 Monte Carlo Analysis of Stochastic Chemical Reactions 641
12.6 Questions 644
12.7 Problems 644
12.8 References 645
r elf! IV Transport in Organs 649
13 Transport of Gases Between Blood
and Tissues 651
13.1 Introduction 651
13.2 Oxygen-Hemoglobin Equilibria 652
13.3 Oxygen-Hemoglobin Binding Kinetics 657
13.4 Dynamics of Oxygenation of Blood in Lung Capillaries 658
13.5 Oxygen Delivery to Tissues 663
13.5.1 The Krogh Cylinder Model of Oxygen Transport
in Tissues 664
13.5.2 Analysis of Assumptions Used in the Krogh Model 668
13.6 Nitric Oxide Production and Transport in Tissues 672
13.6.1 NO Formation and Reaction 673
13.6.2 NO Formation, Diffusion, and Reaction in Tissues 674
13.7 Questions 679
13.8 Problems 679
13.9 References 681
14 Transport in the Kidneys 683
14.1 Introduction 683
14.2 Mechanisms of Transmembrane Transport 684
14.2.1 Direct Diffusion 684
14.2.2 Facilitated Transport 688
14.2.3 Active Transport 692
14.3 Renal Physiology 693
14.3.1 Renal Blood Flow 693
14.3.2 Urine Formation 695
14.4 Quantitative Analysis of Glomerular Filtration 702
14.4.1 Hydraulic Conductivity of Glomerular Capillaries 702
14.4.2 Solute Transport Across Glomerular Capillaries 704
14.5 Quantitative Analysis of Tubular Reabsorption 710
14.5.1 Mass Balance Equations 710
14.5.2 Fluxes of Passive Diffusion and Convection 713
14.5.3 Goldman-Hodgkin-Katz Equation for Ion Channels 714
14.5.4 Mathematical Modeling of Carrier-Mediated Transport 715
14.5.5 A Mathematical Model of Na+/K+ATPase 726
14.6 A Whole-Organ Approach to Renal Modeling 727
14.6.1 Filtration 728
14.6.2 Reabsorption 728
14.6.3 Secretion 729
14.7 Problems 730
14.8 References 732
IJ Drug Transport in Solid Tumors 733
15.1 Introduction 733
15.1.1 Drug Delivery in Cancer Treatment 733
15.1.2 Routes of Drug Administration 735
15.1.3 Drug Transport Within Solid Tumors 736
15.2 Quantitative Analysis of Transvascular Transport 741
15.3 Quantitative Analysis of Interstitial Fluid Transport 741
15.3.1 Governing Equations 741
15.3.2 Unidirectional Flow of Fluid at Steady State 742
15.3.3 Unsteady State Fluid Transport 744
15.4 Interstitial Hypertension in Solid Tumors 748
15.4.1 Effects of Interstitial Hypertension on Drug and Gene
Delivery 749
15.4.2 Etiology of Interstitial Hypertension 750
15.4.3 Strategies for Reducing Interstitial Fluid Pressure 751
15.5 Quantitative Analysis of Interstitial Transport of Solutes 753
15.5.1 Governing Equations 753
15.5.2 Unidirectional Transport in a Solid Tumor 754
15.5.3 Unidirectional Transport in the Krogh Cylinder 755
15.6 Problems 759
15.7 References 760
16 Transport in Organs and Organisms 762
16.1 Introduction 762
16.2 General Considerations in Pharmacokinetic Analysis 763
16.3 Simple Compartment Models in Pharmacokinetic Analysis 764
16.3.1 One-Compartment Model 765
16.3.2 Two-Compartment Model 766
16.4 Physiologically Based Pharmacokinetic Models 770
16.4.1 Transport in Individual Organs 770
16.4.2 Physiologically Based Pharmacokinetic Analysis
of Methotrexate 772
16.5 Allometric Scaling Law and Its Application to Transport
Properties 776
16.5.1 Scaling Laws 776
16.5.2 Applications of the Allometric Scaling Law
in Pharmacokinetic Analysis 780
16.6 Problems 784
16.7 References 787
Pa ft V Energy and Bioheat Transfer 789
17 Energy Transport in Biological Systems 791
17.1 Introduction 791
17.2 First Law of Thermodynamics and Metabolism 792
17.2.1 Conservation Relations 792
17.2.2 Differential Forms of the Conservation of Energy 796
17.2.3 Constitutive Relation and Boundary Conditions 798
17.2.4 Dimensionless Form of the Conservation Relations 803
17.3 Steady and Unsteady Heat Conduction 804
17.3.1 Insulation and Heat Conduction Through Layers of Different
Thermal Conductivity 804
17.3.2 Steady State Conduction and Metabolic Energy
Production 807
17.3.3 Unsteady Heat Conduction 809
17.3.4 Unsteady Heat Conduction with a Phase Change 810
17.4 Convective Heat Transfer 814
17A.I Correlations for Forced Convection 814
17.4.2 Natural Convection 815
17.5 Energy Transfer Due to Evaporation 819
17.6 Metabolism and Regulation of Body Temperature 826
17.6.1 Basal Metabolic Rate and Efficiency 826
17.6.2 Regulation of Body Temperature 829
17.6.3 Macroscopic Balance for Energy Transfer in Biological
Systems 830
17.7 The Bioheat-Transfer Equation 834
17.8 Cryopreservation 835
17.9 Questions 837
17.10 Problems 837
17.11 References 838
Mathematical Background 840
A. 1 Review of Calculus and Solution of Ordinary Differential
Equations 840
A.2 Solution of Partial Differential Equations by the Method
of Separation of Variables 848
A.3 Basics of Vectors and Tensors 854
A.4 Physical Constants and Units 861
A.5 References 862
Index 863
|
any_adam_object | 1 |
author | Truskey, George A. Fan, Yuan Katz, David F. |
author_GND | (DE-588)1056167505 |
author_facet | Truskey, George A. Fan, Yuan Katz, David F. |
author_role | aut aut aut |
author_sort | Truskey, George A. |
author_variant | g a t ga gat y f yf d f k df dfk |
building | Verbundindex |
bvnumber | BV035554701 |
callnumber-first | Q - Science |
callnumber-label | QH509 |
callnumber-raw | QH509 |
callnumber-search | QH509 |
callnumber-sort | QH 3509 |
callnumber-subject | QH - Natural History and Biology |
classification_rvk | WE 5360 VE 5901 WD 2300 |
ctrlnum | (OCoLC)428439325 (DE-599)BVBBV035554701 |
dewey-full | 571.6/4 571.64 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 571 - Physiology & related subjects |
dewey-raw | 571.6/4 571.64 |
dewey-search | 571.6/4 571.64 |
dewey-sort | 3571.6 14 |
dewey-tens | 570 - Biology |
discipline | Chemie / Pharmazie Biologie |
edition | Second edition, international edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01831nam a2200481zc 4500</leader><controlfield tag="001">BV035554701</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191128 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090608s2010 xxua||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2008043589</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780135131541</subfield><subfield code="9">978-0-13-513154-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0135131545</subfield><subfield code="9">0-13-513154-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)428439325</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035554701</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH509</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">571.6/4</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">571.64</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WE 5360</subfield><subfield code="0">(DE-625)148307:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 5901</subfield><subfield code="0">(DE-625)147130:254</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WD 2300</subfield><subfield code="0">(DE-625)148164:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Truskey, George A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transport phenomena in biological systems</subfield><subfield code="c">George A. Truskey, Fan Yuan, David F. Katz, Duke University, Durham, NC</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition, international edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston</subfield><subfield code="b">Pearson</subfield><subfield code="c">[2010]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">886 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biological transport</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biologisches System</subfield><subfield code="0">(DE-588)4122930-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Transportprozess</subfield><subfield code="0">(DE-588)4185932-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Biologisches System</subfield><subfield code="0">(DE-588)4122930-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Transportprozess</subfield><subfield code="0">(DE-588)4185932-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Yuan</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1056167505</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Katz, David F.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017610546&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017610546</subfield></datafield></record></collection> |
id | DE-604.BV035554701 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:40:19Z |
institution | BVB |
isbn | 9780135131541 0135131545 |
language | English |
lccn | 2008043589 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017610546 |
oclc_num | 428439325 |
open_access_boolean | |
owner | DE-634 DE-384 DE-29T DE-83 |
owner_facet | DE-634 DE-384 DE-29T DE-83 |
physical | 886 Seiten Illustrationen, Diagramme |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Pearson |
record_format | marc |
spelling | Truskey, George A. Verfasser aut Transport phenomena in biological systems George A. Truskey, Fan Yuan, David F. Katz, Duke University, Durham, NC Second edition, international edition Boston Pearson [2010] 886 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Biological transport Biologisches System (DE-588)4122930-7 gnd rswk-swf Transportprozess (DE-588)4185932-7 gnd rswk-swf Biologisches System (DE-588)4122930-7 s Transportprozess (DE-588)4185932-7 s DE-604 Fan, Yuan Verfasser (DE-588)1056167505 aut Katz, David F. Verfasser aut HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017610546&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Truskey, George A. Fan, Yuan Katz, David F. Transport phenomena in biological systems Biological transport Biologisches System (DE-588)4122930-7 gnd Transportprozess (DE-588)4185932-7 gnd |
subject_GND | (DE-588)4122930-7 (DE-588)4185932-7 |
title | Transport phenomena in biological systems |
title_auth | Transport phenomena in biological systems |
title_exact_search | Transport phenomena in biological systems |
title_full | Transport phenomena in biological systems George A. Truskey, Fan Yuan, David F. Katz, Duke University, Durham, NC |
title_fullStr | Transport phenomena in biological systems George A. Truskey, Fan Yuan, David F. Katz, Duke University, Durham, NC |
title_full_unstemmed | Transport phenomena in biological systems George A. Truskey, Fan Yuan, David F. Katz, Duke University, Durham, NC |
title_short | Transport phenomena in biological systems |
title_sort | transport phenomena in biological systems |
topic | Biological transport Biologisches System (DE-588)4122930-7 gnd Transportprozess (DE-588)4185932-7 gnd |
topic_facet | Biological transport Biologisches System Transportprozess |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017610546&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT truskeygeorgea transportphenomenainbiologicalsystems AT fanyuan transportphenomenainbiologicalsystems AT katzdavidf transportphenomenainbiologicalsystems |