Symplectic geometric algorithms for Hamiltonian systems:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hangzhou [u.a.]
Zhejiang Publ. United Group [u.a.]
2010
|
Ausgabe: | 1. Aufl. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXIII, 676 S. Ill., graph. Drast. 235 mm x 155 mm |
ISBN: | 9787534135958 9783642017766 9783642017773 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035518763 | ||
003 | DE-604 | ||
005 | 20101028 | ||
007 | t | ||
008 | 090526s2010 gw ad|| |||| 00||| eng d | ||
015 | |a 09,N20,1216 |2 dnb | ||
016 | 7 | |a 993961665 |2 DE-101 | |
020 | |a 9787534135958 |9 978-7-5341-3595-8 | ||
020 | |a 9783642017766 |c GB. : ca. EUR 211.86 (freier Pr.), ca. sfr 329.00 (freier Pr.) |9 978-3-642-01776-6 | ||
020 | |a 9783642017773 |9 978-3-642-01777-3 | ||
024 | 3 | |a 9783642017766 | |
028 | 5 | 2 | |a 12205646 |
035 | |a (OCoLC)432409304 | ||
035 | |a (DE-599)DNB993961665 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-20 |a DE-11 |a DE-19 | ||
082 | 0 | |a 516.36 |2 22 | |
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Feng, Kang |d 1920-1993 |e Verfasser |0 (DE-588)142632791 |4 aut | |
245 | 1 | 0 | |a Symplectic geometric algorithms for Hamiltonian systems |c Kang Feng ; Mengzhao Qin |
250 | |a 1. Aufl. | ||
264 | 1 | |a Hangzhou [u.a.] |b Zhejiang Publ. United Group [u.a.] |c 2010 | |
300 | |a XXIII, 676 S. |b Ill., graph. Drast. |c 235 mm x 155 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Hamilton-Jacobi equations | |
650 | 4 | |a Symplectic geometry | |
650 | 0 | 7 | |a Symplektische Geometrie |0 (DE-588)4194232-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hamiltonsches System |0 (DE-588)4139943-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hamiltonsches System |0 (DE-588)4139943-2 |D s |
689 | 0 | 1 | |a Symplektische Geometrie |0 (DE-588)4194232-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Qin, Mengzhao |e Verfasser |0 (DE-588)110328531 |4 aut | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017574902&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-017574902 |
Datensatz im Suchindex
_version_ | 1804139146121314304 |
---|---|
adam_text | CONTENTS INTRODUCTION 1 BIBLIOGRAPHY 35 1. PRELIMINARIES OF
DIFFERENTIABLE MANIFOLDS 39 1.1 DIFFERENTIABLE MANIFOLDS 40 1.1.1
DIFFERENTIABLE MANIFOLDS AND DIFFERENTIABLE MAPPING.... 40 1.1.2 TANGENT
SPACE AND DIFFERENTIALS 43 1.1.3 SUBMANIFOLDS 46 1.1.4 SUBMERSION AND
TRANSVERSAL 51 1.2 TANGENT BUNDLE 56 1.2.1 TANGENT BUNDLE AND
ORIENTATION 56 1.2.2 VECTOR FIELD AND HOW 62 1.3 EXTERIOR PRODUCT 64
1.3.1 EXTERIOR FORM 66 1.3.2 EXTERIOR ALGEBRA 68 1.4 FOUNDATION OF
DIFFERENTIAL FORM 75 1.4.1 DIFFERENTIAL FORM 76 1.4.2 THE BEHAVIOR OF
DIFFERENTIAL FORMS UNDER MAPS 80 1.4.3 EXTERIOR DIFFERENTIAL 82 1.4.4
POINCARE LEMMA AND ITS INVERSE LEMMA 84 1.4.5 DIFFERENTIAL FORM IN R 3
86 1.4.6 HODGE DUALITY AND STAR OPERATORS 88 1.4.7 CODIFFERENTIAL
OPERATOR 6 89 1.4.8 LAPLACE-BELTRAMI OPERATOR 90 1.5 INTEGRATION ON A
MANIFOLD 91 1.5.1 GEOMETRICAL PRELIMINARY 91 1.5.2 INTEGRATION AND
STOKES THEOREM 93 1.5.3 SOME CLASSICAL THEORIES ON VECTOR ANALYSIS 96
1.6 COHOMOLOGY AND HOMOLOGY 98 1.7 LIE DERIVATIVE 99 1.7.1 VECTOR FIELDS
AS DIFFERENTIAL OPERATOR 99 1.7.2 FLOWS OF VECTOR FIELDS 101 1.7.3 LIE
DERIVATIVE AND CONTRACTION 103 BIBLIOGRAPHY ILL BIBLIOGRAFISCHE
INFORMATIONEN HTTP://D-NB.INFO/993961665 DIGITALISIERT DURCH XVIII
CONTENTS 2. SYMPLECTIC ALGEBRA AND GEOMETRY PRELIMINARIES 113 2.1
SYMPLECTIC ALGEBRA AND ORTHOGONAL ALGEBRA 113 2.1.1 BILINEAR FORM 113
2.1.2 SESQUILINEAR FORM 116 2.1.3 SCALAR PRODUCT, HERMITIAN PRODUCT 117
2.1.4 INVARIANT GROUPS FOR SCALAR PRODUCTS 119 2.1.5 REAL REPRESENTATION
OF COMPLEX VECTOR SPACE 121 2.1.6 COMPLEXIFICATION OF REAL VECTOR SPACE
AND REAL LINEAR TRANSFORMATION 123 2.1.7 LIE ALGEBRA FOR GL(N, F) 124
2.2 CANONICAL REDUCTIONS OF BILINEAR FORMS 128 2.2.1 CONGRUENT
REDUCTIONS 129 2.2.2 CONGRUENCE CANONICAL FORMS OF CONFORMALLY SYMMET-
RIC AND HERMITIAN MATRICES 130 2.2.3 SIMILAR REDUCTION TO CANONICAL
FORMS UNDER ORTHOGO- NAL TRANSFORMATION 134 2.3 SYMPLECTIC SPACE 137
2.3.1 SYMPLECTIC SPACE AND ITS SUBSPACE 137 2.3.2 SYMPLECTIC GROUP 144
2.3.3 LAGRANGIAN SUBSPACES 147 2.3.4 SPECIAL TYPES OF SP(2N) 148 2.3.5
GENERATORS OF SP(2N) 155 2.3.6 EIGENVALUES OF SYMPLECTIC AND
INFINITESIMAL MATRICES ... 158 2.3.7 GENERATING FUNCTIONS FOR LAGRANGIAN
SUBSPACES 160 2.3.8 GENERALIZED LAGRANGIAN SUBSPACES 162 BIBLIOGRAPHY
164 3. HAMILTONIAN MECHANICS AND SYMPLECTIC GEOMETRY 165 3.1 SYMPLECTIC
MANIFOLD 165 3.1.1 SYMPLECTIC STRUCTURE ON MANIFOLDS 165 3.1. CONTENTS
4.1.2 GEOMETRICAL MEANING OF PRESERVING SYMPLECTIC STRUC- TURES 189
4.1.3 SOME PROPERTIES OF A SYMPLECTIC MATRIX 190 4.2 SYMPLECTIC SCHEMES
FOR LINEAR HAMILTONIAN SYSTEMS 192 4.2.1 SOME SYMPLECTIC SCHEMES FOR
LINEAR HAMILTONIAN SYS- TEMS 192 4.2.2 SYMPLECTIC SCHEMES BASED ON PADE
APPROXIMATION 193 4.2.3 GENERALIZED CAYLEY TRANSFORMATION AND ITS
APPLICATION .. 197 4.3 SYMPLECTIC DIFFERENCE SCHEMES FOR A NONLINEAR
HAMILTONIAN SYS- TEM 200 4.4 EXPLICIT SYMPLECTIC SCHEME FOR HAMILTONIAN
SYSTEM 203 4.4.1 SYSTEMS WITH NILPOTENT OF DEGREE 2 204 4.4.2
SYMPLECTICALLY SEPARABLE HAMILTONIAN SYSTEMS 205 4.4.3 SEPARABILITY OF
ALL POLYNOMIALS IN R 2N 207 4.5 ENERGY-CONSERVATIVE SCHEMES BY
HAMILTONIAN DIFFERENCE 209 BIBLIOGRAPHY 211 5. THE GENERATING FUNCTION
METHOD 213 5.1 LINEAR FRACTIONAL TRANSFORMATION 213 5.2 SYMPLECTIC,
GRADIENT MAPPING AND GENERATING FUNCTION 215 5.3 GENERATING FUNCTIONS
FOR THE PHASE FLOW 221 5.4 CONSTRUCTION OF CANONICAL DIFFERENCE SCHEMES
226 5.5 FURTHER REMARKS ON GENERATING FUNCTION 231 5.6 CONSERVATION LAWS
234 5.7 CONVERGENCE OF SYMPLECTIC DIFFERENCE SCHEMES 239 5.8 SYMPLECTIC
SCHEMES FOR NONAUTONOMOUS SYSTEM 242 BIBLIOGRAPHY 247 6. THE CALCULUS OF
GENERATING FUNCTIONS AND FORMAL ENERGY 249 6.1 DARBOUX TRANSFORMATION
249 6.2 NORMALIZATION OF DARBOUX TRANSFORMATION 251 6. XX CONTENTS 7.2
SYMPLECTIC P-R-K METHOD 302 7.2.1 P-R-K METHOD 302 7.2.2 SYMPLIFIED
ORDER CONDITIONS OF EXPLICIT SYMPLECTIC R-K METHOD 307 7.3 SYMPLECTIC
R-K-N METHOD 319 7.3.1 ORDER CONDITIONS FOR SYMPLECTIC R-K-N METHOD 319
7.3.2 THE 3-STAGE AND 4-TH ORDER SYMPLECTIC R-K-N METHOD . 323 7.3.3
SYMPLIFIED ORDER CONDITIONS FOR SYMPLECTIC R-K-N METHOD 327 7.4 FORMAL
ENERGY FOR SYMPLECTIC R-K METHOD 333 7.4.1 MODIFIED EQUATION 334 7.4.2
FORMAL ENERGY FOR SYMPLECTIC R-K METHOD 339 7.5 DEFINITION OF A(T) AND
B(T) 345 7.5.1 CENTERED EULER SCHEME 345 7.5.2 GAUSS-LEGENDRE METHOD 346
7.5.3 DIAGONAL IMPLICIT R-K METHOD 347 7.6 MULTISTEP SYMPLECTIC METHOD
347 7.6.1 LINEAR MULTISTEP METHOD 347 7.6.2 SYMPLECTIC LMM FOR LINEAR
HAMILTONIAN SYSTEMS 348 7.6.3 RATIONAL APPROXIMATIONS TO EXP AND LOG
FUNCTION 352 BIBLIOGRAPHY 357 8. COMPOSITION SCHEME 365 8.1 CONSTRUCTION
OF FOURTH ORDER WITH 3-STAGE SCHEME 365 8.1.1 FOR SINGLE EQUATION 365
8.1.2 FOR SYSTEM OF EQUATIONS 370 8.2 ADJOINT METHOD AND SELF-ADJOINT
METHOD 372 8.3 CONSTRUCTION OF HIGHER ORDER SCHEMES 377 8.4 STABILITY
ANALYSIS FOR COMPOSITION SCHEME 388 8.5 APPLICATION OF COMPOSITION
SCHEMES TO PDE 396 8.6 H-STABILITY OF HAMILTONIAN SYSTEM 401
BIBLIOGRAPHY 405 9. FORMAL POWER SERIES AND B-SERIES 40 CONTENTS 10.
VOLUME-PRESERVING METHODS FOR SOURCE-FREE SYSTEMS 443 10.1 LIOUVILLE S
THEOREM 443 10.2 VOLUME-PRESERVING SCHEMES 444 10.2.1 CONDITIONS FOR
CENTERED EULER METHOD TO BE VOLUME PRESERVING 444 10.2.2 SEPARABLE
SYSTEMS AND VOLUME-PRESERVING EXPLICIT METH- ODS 447 10.3 SOURCE-FREE
SYSTEM 449 10.4 OBSTRUCTION TO ANALYTIC METHODS 450 10.5 DECOMPOSITIONS
OF SOURCE-FREE VECTOR FIELDS 452 10.6 CONSTRUCTION OF VOLUME-PRESERVING
SCHEMES 454 10.7 SOME SPECIAL DISCUSSIONS FOR SEPARABLE SOURCE-FREE
SYSTEMS .... 458 10.8 CONSTRUCTION OF VOLUME-PRESERVING SCHEME VIA
GENERATING FUNC- TION 460 10.8.1 FUNDAMENTAL THEOREM 460 10.8.2
CONSTRUCTION OF VOLUME-PRESERVING SCHEMES 464 10.9 SOME
VOLUME-PRESERVING ALGORITHMS 467 10.9.1 VOLUME-PRESERVING R-K METHODS
467 10.9.2 VOLUME-PRESERVING 2-STAGE P-R-K METHODS 471 10.9.3 SOME
GENERALIZATIONS 473 10.9.4 SOME EXPLANATIONS 474 BIBLIOGRAPHY 476 11.
CONTACT ALGORITHMS FOR CONTACT DYNAMICAL SYSTEMS 477 11.1 CONTACT
STRUCTURE 477 11.1.1 BASIC CONCEPTS OF CONTACT GEOMETRY 477 11.1.2
CONTACT STRUCTURE 480 11.2 CONTACTIZATION AND SYMPLECTIZATION 484 11.3
CONTACT GENERATING FUNCTIONS FOR CONTACT MAPS 488 11.4 CONTACT
ALGORITHMS FOR CONTACT SYSTEMS 492 11.4.1 Q CONTACT ALGORITHM 493 11.4.2
P XXII CONTENTS 12.2.2 CONSTRUCTION OF DIFFERENCE SCHEMES FOR GENERAL
POIS- SON MANIFOLD 509 12.2.3 ANSWERS OF SOME QUESTIONS 511 12.3
GENERATING FUNCTION AND LIE-POISSON SCHEME 514 12.3.1
LIE-POISSON-HAMILTON-JACOBI (LPHJ) EQUATION AND GEN- ERATING FUNCTION
514 12.3.2 CONSTRUCTION OF LIE-POISSON SCHEMES VIA GENERATING FUNCTION
519 12.4 CONSTRUCTION OF STRUCTURE PRESERVING SCHEMES FOR RIGID BODY
.... 523 12.4.1 RIGID BODY IN EUCLIDEAN SPACE 523 12.4.2
ENERGY-PRESERVING AND ANGULAR MOMENTUM-PRESERVING SCHEMES FOR RIGID BODY
525 12.4.3 ORBIT-PRESERVING AND ANGULAR-MOMENTUM-PRESERVING EX- PLICIT
SCHEME 527 12.4.4 LIE-POISSON SCHEMES FOR FREE RIGID BODY 530 12.4.5
LIE-POISSON SCHEME ON HEAVY TOP 535 12.4.6 OTHER LIE-POISSON ALGORITHM
538 12.5 RELATION AMONG SOME SPECIAL GROUP AND ITS LIE ALGEBRA 543
12.5.1 RELATION AMONG SO(3), SO(3) AND SH X ,SU{2) 543 12.5.2
REPRESENTATIONS OF SOME FUNCTIONS IN SO(3) 545 BIBLIOGRAPHY 547 13. KAM
THEOREM OF SYMPLECTIC ALGORITHMS 549 13.1 BRIEF INTRODUCTION TO
STABILITY OF GEOMETRIC NUMERICAL ALGORITHMS 549 13.2 MAPPING VERSION OF
THE KAM THEOREM 551 13.2.1 FORMULATION OF THE THEOREM 551 13.2.2 OUTLINE
OF THE PROOF OF THE THEOREMS 554 13.2.3 APPLICATION TO SMALL TWIST
MAPPINGS 558 13. CONTENTS XXIII 14.2.2 TOTAL VARIATION IN HAMILTONIAN
MECHANICS 593 14.2.3 SYMPLECTIC-ENERGY INTEGRATORS 596 14.2.4 HIGH ORDER
SYMPLECTIC-ENERGY INTEGRATOR 600 14.2.5 AN EXAMPLE AND AN OPTIMIZATION
METHOD 603 14.2.6 CONCLUDING REMARKS 605 14.3 DISCRETE MECHANICS BASED
ON FINITE ELEMENT METHODS 606 14.3.1 DISCRETE MECHANICS BASED ON LINEAR
FINITE ELEMENT 606 14.3.2 DISCRETE MECHANICS WITH LAGRANGIAN OF HIGH
ORDER 608 14.3.3 TIME STEPS AS VARIABLES 613 14.3.4 CONCLUSIONS 614
BIBLIOGRAPHY 615 15. STRUCTURE PRESERVING SCHEMES FOR BIRKHOFF SYSTEMS
617 15.1 INTRODUCTION 617 15.2 BIRKHOFFIAN SYSTEMS 618 15.3 GENERATING
FUNCTIONS FOR K(Z, ^-SYMPLECTIC MAPPINGS 621 15.4 SYMPLECTIC DIFFERENCE
SCHEMES FOR BIRKHOFFIAN SYSTEMS 625 15.5 EXAMPLE 629 15.6 NUMERICAL
EXPERIMENTS 634 BIBLIOGRAPHY 639 16. MULTISYMPLECTIC AND VARIATIONAL
INTEGRATORS 641 1 6. 1 INTRODUCTION 641 1 6.2 MULTISYMPLECTIC GEOMETRY
AND MULTISYMPLECTIC HAMILTONIAN SYS- TEMS 642 16.3 MULTISYMPLECTIC
INTEGRATORS AND COMPOSITION METHODS 646 16.4 VARIATIONAL INTEGRATORS 652
16.5 SOME GENERALIZATIONS 654 BIBLIOGRAPHY 658 SYMBOL 663 INDEX 66
|
any_adam_object | 1 |
author | Feng, Kang 1920-1993 Qin, Mengzhao |
author_GND | (DE-588)142632791 (DE-588)110328531 |
author_facet | Feng, Kang 1920-1993 Qin, Mengzhao |
author_role | aut aut |
author_sort | Feng, Kang 1920-1993 |
author_variant | k f kf m q mq |
building | Verbundindex |
bvnumber | BV035518763 |
classification_rvk | SK 350 SK 370 |
ctrlnum | (OCoLC)432409304 (DE-599)DNB993961665 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 1. Aufl. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01991nam a2200505 c 4500</leader><controlfield tag="001">BV035518763</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20101028 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090526s2010 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">09,N20,1216</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">993961665</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9787534135958</subfield><subfield code="9">978-7-5341-3595-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642017766</subfield><subfield code="c">GB. : ca. EUR 211.86 (freier Pr.), ca. sfr 329.00 (freier Pr.)</subfield><subfield code="9">978-3-642-01776-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642017773</subfield><subfield code="9">978-3-642-01777-3</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783642017766</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12205646</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)432409304</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB993961665</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Feng, Kang</subfield><subfield code="d">1920-1993</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)142632791</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Symplectic geometric algorithms for Hamiltonian systems</subfield><subfield code="c">Kang Feng ; Mengzhao Qin</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. Aufl.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hangzhou [u.a.]</subfield><subfield code="b">Zhejiang Publ. United Group [u.a.]</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIII, 676 S.</subfield><subfield code="b">Ill., graph. Drast.</subfield><subfield code="c">235 mm x 155 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hamilton-Jacobi equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symplectic geometry</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qin, Mengzhao</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)110328531</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017574902&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017574902</subfield></datafield></record></collection> |
id | DE-604.BV035518763 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:39:26Z |
institution | BVB |
isbn | 9787534135958 9783642017766 9783642017773 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017574902 |
oclc_num | 432409304 |
open_access_boolean | |
owner | DE-20 DE-11 DE-19 DE-BY-UBM |
owner_facet | DE-20 DE-11 DE-19 DE-BY-UBM |
physical | XXIII, 676 S. Ill., graph. Drast. 235 mm x 155 mm |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Zhejiang Publ. United Group [u.a.] |
record_format | marc |
spelling | Feng, Kang 1920-1993 Verfasser (DE-588)142632791 aut Symplectic geometric algorithms for Hamiltonian systems Kang Feng ; Mengzhao Qin 1. Aufl. Hangzhou [u.a.] Zhejiang Publ. United Group [u.a.] 2010 XXIII, 676 S. Ill., graph. Drast. 235 mm x 155 mm txt rdacontent n rdamedia nc rdacarrier Hamilton-Jacobi equations Symplectic geometry Symplektische Geometrie (DE-588)4194232-2 gnd rswk-swf Hamiltonsches System (DE-588)4139943-2 gnd rswk-swf Hamiltonsches System (DE-588)4139943-2 s Symplektische Geometrie (DE-588)4194232-2 s DE-604 Qin, Mengzhao Verfasser (DE-588)110328531 aut DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017574902&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Feng, Kang 1920-1993 Qin, Mengzhao Symplectic geometric algorithms for Hamiltonian systems Hamilton-Jacobi equations Symplectic geometry Symplektische Geometrie (DE-588)4194232-2 gnd Hamiltonsches System (DE-588)4139943-2 gnd |
subject_GND | (DE-588)4194232-2 (DE-588)4139943-2 |
title | Symplectic geometric algorithms for Hamiltonian systems |
title_auth | Symplectic geometric algorithms for Hamiltonian systems |
title_exact_search | Symplectic geometric algorithms for Hamiltonian systems |
title_full | Symplectic geometric algorithms for Hamiltonian systems Kang Feng ; Mengzhao Qin |
title_fullStr | Symplectic geometric algorithms for Hamiltonian systems Kang Feng ; Mengzhao Qin |
title_full_unstemmed | Symplectic geometric algorithms for Hamiltonian systems Kang Feng ; Mengzhao Qin |
title_short | Symplectic geometric algorithms for Hamiltonian systems |
title_sort | symplectic geometric algorithms for hamiltonian systems |
topic | Hamilton-Jacobi equations Symplectic geometry Symplektische Geometrie (DE-588)4194232-2 gnd Hamiltonsches System (DE-588)4139943-2 gnd |
topic_facet | Hamilton-Jacobi equations Symplectic geometry Symplektische Geometrie Hamiltonsches System |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017574902&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT fengkang symplecticgeometricalgorithmsforhamiltoniansystems AT qinmengzhao symplecticgeometricalgorithmsforhamiltoniansystems |