Handbook of statistical analysis and data mining applications:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Elsevier AP
2009
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXXIV, 824 S. Ill., graph. Darst. DVD (12 cm) |
ISBN: | 9780123747655 0123747651 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035483378 | ||
003 | DE-604 | ||
005 | 20111116 | ||
007 | t | ||
008 | 090512s2009 ad|| |||| 00||| eng d | ||
010 | |a 2009008997 | ||
020 | |a 9780123747655 |c hbk |9 978-0-12-374765-5 | ||
020 | |a 0123747651 |9 0-12-374765-1 | ||
035 | |a (OCoLC)468187597 | ||
035 | |a (DE-599)GBV593618297 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-945 |a DE-473 |a DE-20 |a DE-91 |a DE-634 |a DE-898 |a DE-739 |a DE-703 |a DE-355 |a DE-824 |a DE-384 |a DE-11 |a DE-858 |a DE-N32 |a DE-859 |a DE-N2 | ||
050 | 0 | |a QA76.9.D343 | |
082 | 0 | |a 006.3/12 |2 22 | |
084 | |a QH 500 |0 (DE-625)141607: |2 rvk | ||
084 | |a SK 850 |0 (DE-625)143263: |2 rvk | ||
084 | |a ST 530 |0 (DE-625)143679: |2 rvk | ||
084 | |a DAT 703f |2 stub | ||
100 | 1 | |a Nisbet, Robert |d 1942- |e Verfasser |0 (DE-588)140490930 |4 aut | |
245 | 1 | 0 | |a Handbook of statistical analysis and data mining applications |c Robert Nisbet ; John Elder ; Gary Miner |
264 | 1 | |a Amsterdam [u.a.] |b Elsevier AP |c 2009 | |
300 | |a XXXIV, 824 S. |b Ill., graph. Darst. |e DVD (12 cm) | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Exploration de données (Informatique) - Méthodes statistiques | |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Data Mining |0 (DE-588)4428654-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 0 | 1 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 0 | |C b |5 DE-604 | |
700 | 1 | |a Elder, John F. |d 1961- |e Verfasser |0 (DE-588)140491279 |4 aut | |
700 | 1 | |a Miner, Gary |d 1942- |e Verfasser |0 (DE-588)140491813 |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Bamberg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017539888&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-017539888 |
Datensatz im Suchindex
_version_ | 1804139094889988096 |
---|---|
adam_text | Table
of
Contents
Foreword
1
жу
Foreword
2 xvii
Preface
xix
Łitrodttetion
xxiii
List of Tutorials by Guest
Autàors
xxix
DATA
ANALYSIS»
BASIC
THEORY, AND THE DATA
MINING PROCESS
1.
The Background
fot EMa
Mtotog
Practice
Preamble
3
Ä
Short History of Statistics end Data Mining
4
Mildem
Statistics: A Duality!
5
Assumptions of the Parametric Model
6
Two Views of Reality
8
Aristotle
8
Plato
9
The Rise of Modem Statistical Analysis! The Second
Generation
10
Data, Data Everywhere
...
і І
Machine Learning Methods; The Third
Oeaeiation 11
Statistical Learning Theory; The fourth
Generation
К
Postscript
13
2.
Theoretical Considerations for
Data Mining
Preamble
15
The
Sdentine
Method
16
What
Ь
Data Mtaieg?
17
A Theoretical Framework for the Data Mining
Process
18
Місюеадпотіе
Approach
19
Inductive Database Approach
19
Strengths of the Data Mining Process
19
Customer-Centric Versus Account-Centric:
Ä
New
Way to Look at Your Data
20
The Physical Data Mart
20
The
Virtual
Data Mart
21
Householded Databases
21
The Data Paradigm Shift
22
Creation of the Car
22
Major Activities of Dam Mining
2,3
Major Challenges of Data Mining
25
Examples of Data Mining Applications
26
Major Issues in Data Mining
26
General Requirements for Success in a Data Mining
Project
28
Example of a Data Mining Project: Classify a Bat s
Species by Its Sound
28
The Importance of Domain
iuiowíedge
30
Postscript
30
Why Did Data Mining Arise?
30
Some Caveats with Data Mining Solutions
31
1
The Data Mining Process
Preamble
33
The Science of Data Mining
33
The Approach to
Unaerstandïag
and Problem
Solving
34
CRÏSP-DM
35
Business Understanding {Mostly Art)
36
Define the Business Objectives of the Data Mining
Model
36
Assess the Business Environment for Data
Mining
37
Pomulase the Dam Mining Goals and
Objectives
37
VI
TABLE OF CONTENTS
Data Understanding (Mostly Science)
39
Data Acquisition
39
Data Integration
39
Data Description
40
Data Quality Assessment
40
Data Preparation (A Mixture of Art and
Science)
40
Modeling (A Mixture of Art and Science)
41
Steps in the Modeling Phase of CRISP-DM
41
Deployment (Mostly Art)
45
Closing the Information Loop (Art)
Ą6
The Art of Data Mining
46
Artistic Steps in Data Mining
47
Postscript
47
4.
Data Understanding and Preparation
Preamble
49
Activities of Data Understanding and
Preparation
50
Definitions
50
Issues That Should be Resolved
51
Basic Issues That Must Be Resolved in Data
Understanding
51
Basic Issues That Must Be Resolved in Data
Preparation
51
Data Understanding
51
Data Acquisition
51
Data Extraction
53
Data Description
54
Data Assessment
56
Data Profiling
56
Data Cleansing
56
Data Transformation
57
Data Imputation
59
Data Weighting and Balancing
62
Data Filtering and Smoothing
64
Data Abstraction
66
Data Reduction
69
Data Sampling
69
Data Discretization
73
Data Derivation
73
Postscript
75
5.
Feature Selection
Preamble
77
Variables as Features
78
Types of Feature Selections
78
Feature Ranking Methods
78
Gini
Index
78
Bi-variate Methods
80
Mukivariate Methods
80
Complex Methods
82
Subset Selection Methods
82
The Other Two Ways of Using Feature
Selection in
STATISTICA:
Interactive
Workspace
93
$ΤΑΉ$ΤΙ0Α
DMRecipe Method
93
Postscript
96
6.
Accessory Took for Doing
Data Mining
Preamble
99
Data Access Tools
100
Structured Query Language (SQL) Tools
1ÖÖ
Extract, Transform, and Load (ETL)
Capabilities
100
Data Exploration Tools
101
Basic Descriptive Statistics
101
Combining Groups (Classes) for Predictive Data
Mining
105
Slicing/Dicing and Drilling Down into Data Sets/
Results Spreadsheets
106
Modeling Management Tools
107
Data Miner Workspace Templates
107
Modeling Analysis Tools
107
Feature Selection
107
Importance Plots of Variables
108
In-Place Data Processing (IDP)
113
Example: The IDP Facility of
STATÌSTICA Data
Miner
114
How to Use the SQL
114
Rapid Deployment of Predictive Models
114
Model Monitors
116
Postscript
117
TABLE
OF
CONTENTS
Vil
THE ALGORITHMS IN DATA
MINING AND TEXT MINING,
THE ORGANIZATION OF THE
THREE MOST COMMON DATA
MINING TOOLS, AND
SELECTED SPECIALIZED
AREAS USING DATA MINING
?.
Basic Algorithms for Data Mining:
A Brief Overview
Preamble
121
STATISTICA
Data Miner Recipe
(DMRecipe)
123
KXEN
124
Basic Data Mining Algorithms
126
Association Rules
126
Neural Networks
128
Radial Basis Function (RBF) Networks
136
Automated Neural Nets
138
Generalized Additive Models (GAMs)
138
Outputs of GAMs
139
Interpreting Results of GAMs
139
Classification and Regression Trees (CART)
139
Recursive Partitioning
144
Pruning Trees
144
General Comments about CART for
Statisticians
144
Advantages of CART over Other Decision
Trees
145
Uses of CART
146
General CHAID Models
146
Advantages of CHAID
147
Disadvantages of CHAID
147
Generalized EM and fe-Means Cluster Analysis
—
An
Overview
147
k Means Clustering
147
EM Cluster Analysis
148
Processing Steps of the EM Algorithm
149
V-fold Cross Validation as Applied to
Clustering
149
Postscript
150
8.
Advanced Algorithms for Data Mining
Preample
151
Advanced Data Mining Algorithms
154
Interactive Trees
154
Multivariate Adaptive Regression Splines
(MARSplines)
158
Statistical Learning Theory: Support Vector
Machines
162
Sequence, Association, and Link Analyses
164
Independent Components Analysis
(ICA)
168
Kohonen Networks
169
Characteristics of a Kohonen Network
169
Quality Control Data Mining and Root Cause
Analysis
169
Image and Object Data Mining: Visualization and
ЗD-Medical
and Other Scanning Imaging
170
Postscript
171
s?. Text Mining and Natural Language
Processing
Preamble
173
The Development of Text Mining
174
A Practical Example: NTSB
175
Goals of Text Mining of NTSB Accident
Reports
184
Drilling into Words of Interest
188
Means with Error Plots
189
Feature Selection Tool
190
A Conclusion: Losing Control of the Aircraft in
Bad Weather Is Often Fatal
191
Summary
194
Text Mining Concepts Used in Conducting Text
Mining Studies
194
Postscript
194
10.
The Three Most Common Data Mining
Software Tools
Preamble
197
SPSS Clementine Overview
197
Overall Organization of Clementine
Components
198
Organization of the Clementine Interface
199
Clementine Interface Overview
199
Setting the Default Directory
201
SuperNodes
201
VIU
TABLE OF
CONTENTS
Execution of Streams
202
SAS-Enterprise Miner
(SAS
-ЕМ)
Overview
203
Overall Organization of
SAS
-ЕМ
Version
5.3
Components
203
Layout of the SAS-Enterprise Miner Window
204
Various SAS EM Menus, Dialogs, and Windows
Useful During the Data Mining Process
205
Software Requirements to Run SAS-EM
5.3
Software
206
STATISTICA
Data Miner, QC-Mmer, and Text
Miner Overview
214
Overall Organization and Use of
STATISTICA
Data Miner
214
Three Formats for Doing Data Mining in
STATISTICA
230
Postscript
234
11.
Classification
Preample
235
What Is Classification?
235
Initial Operations in Classification
236
Major Issues with Classification
236
What Is the Nature of Data Set to Be
Classified?
236
How Accurate Does the Classification Have
to Be?
236
How Understandable Do the Classes Have
to Be?
237
Assumptions of Classification Procedures
237
Numerical Variables Operate Best
237
No Missing Values
237
Variables Are Linear and Independent in Their
Effects on the Target Variable
237
Methods for Classification
238
Nearest-Neighbor Classifiers
239
Analyzing Imbalanced Data Sets with Machine
Learning Programs
240
CHAID
246
Random Forests and Boosted Trees
248
Logistic Regression
250
Neural Networks
251
Naïve Bayesian
Classifiers
253
What Is the Best Algorithm for
Classification?
256
Postscript
257
12,
Numerical Prediction
Preamble
259
Linear Response Analysis and the Assumptions of the
Parametric Model
260
Parametric Statistical Analysis
261
Assumptions of the Parametric Model
262
The Assumption of Independency
262
The Assumption of Normality
262
Normality and the Central Limit Theorem
263
The Assumption of Linearity
264
Linear Regression
264
Methods for Handling Variable Interactions in
Linear Regression
265
Collinearity among Variables in a Linear
Regression
265
The Concept of the Response Surface
266
Generalized Linear Models (GLMs)
270
Methods for Analyzing Nonlinear Relationships
271
Nonlinear Regression and Estimation
271
Logit and
Probit
Regression
272
Poisson
Regression
272
Exponential Distributions
272
Piecewise Linear Regression
273
Data Mining and Machine Learning Algorithms Used
in Numerical Prediction
274
Numerical Prediction with C&RT
274
Model Results Available in C&RT
276
Advantages of Classification and Regression Trees
(C&RT) Methods
277
General Issues Related to C&RT
279
Application to Mixed Models
280
Neural Nets for Prediction
280
Manual or Automated Operation?
280
Structuring the Network for Manual
Operation
280
Modern Neural Nets Are Gray Boxes
281
Example of Automated Neural Net Results
281
Support Vector Machines (SVMs) and Other Kernel
Learning Algorithms
282
Postscript
284
! 3.
Model Evaluation and Enhancement
Preamble
285
Introduction
286
Model Evaluation
286
Splitting Data
287
TABLE
OF
CONTENTS
ЇХ
Avoiding Ovetfit Through Complexity
Régularisation
288
Error Metric: Estimation
291
Error Metric: Classification
291
Error Metric: Ranking
293
Cross-Validation to Estimate Error Rate and Its
Confidence
295
Bootstrap
296
Target Shuffling to Estimate Baseline
Performance
297
Re-Cap of the Most Popular Algorithms
300
Linear Methods (Consensus Method, Stepwise Is
Variable-Selecting)
300
Decision Trees (Consensus Method, Variable-
Selecting)
300
Neural Networks (Consensus Method)
301
Nearest Neighbors (Contributory Method)
301
Clustering (Consensus or Contributory
Method)
302
Enhancement Action Checklist
302
Ensembles of Models: The Single Greatest
Enhancement Technique
304
Bagging
305
Boosting
305
Ensembles in General
306
How to Thrive as a Data Miner
307
Big Picture of the Project
307
Project Methodology and Deliverables
308
Professional Development
309
Three Goals
310
Postscript
311
14.
Medical Informatics
Preamble
313
What Is Medical Informatics?
313
How Data Mining and Text Mining Relate to
Medical Informatics
314
XplorMed
316
ABView: HivResist
317
3D
Medical Informatics
317
What Is
3D
Informatics?
317
Future and Challenges of
3D
Medical
Informatics
318
Journals and Associations in the Field of Medical
Informatics
318
Postscript
318
1
5,
Bioinfbrmatics
Preamble
321
What Is Bioinformatics?
323
Data Analysis Methods in Bioinformatics
326
ClustalW2: Sequence Alignment
326
Searching Databases for
RNA
Molecules
327
Web Services in Bioinformatics
327
How Do We Apply Data Mining Methods to
Bioinformatics?
329
Postscript
332
Tutorial Associated with This Chapter on
Bioinformatics
332
Books, Associations, and Journals on
Bioinformatics, and Other Resources,
Including Online
332
16.
Customer Response Modeling
Preamble
335
Early CRM Issues in Business
336
Knowing How Customers Behaved Before They
Acted
336
Transforming Corporations into Business
Ecosystems: The Path to Customer
Fulfillment
337
CRM in Business Ecosystems
338
Differences Between Static Measures and
Evolutionary Measures
338
How Can Human Nature as Viewed Through
Plato Help Us in Modeling Customer
Response?
339
How Can We Reorganize Our Data to Reflect
Motives and Attitudes?
339
What Is a Temporal Abstraction?
340
Conclusions
344
Postscript
345
1?.
Fraud Detection
Preamble
347
Issues with Fraud Detection
348
Fraud Is Rare
348
Fraud Is Evolving!
348
Large Data Sets Are Needed
348
The Fact of Fraud Is Not Always Known during
Modeling
348
When the Fraud Happened Is Very Important
to Its Detection
349
χ
TABLE OF CONTENTS
Fraud Is Very Complex
349
Fraud Detection May Require the Formulation of
Rules Based on General Principles/ Red Flags,
Alerts, and Profiles
349
Fraud Detection Requires Both Internal and
External Business Data
349
Very Few Data Sets and Modeling Details Are
Available
350
How Do You Detect Fraud?
350
Supervised Classification of Fraud
351
How Do You Model Fraud?
352
How Are Fraud Detection Systems Built?
353
Intrusion Detection Modeling
355
Comparison of Models with and without
Time-Based Features
355
Building Profiles
360
Deployment of Fraud Profiles
360
Postscript and Prolegomenon
361
TUTORIALS—STEP-BY-STEP
CASE STUDIES AS A
STARTING POINT TO LEARN
HOW TO DO DATA MINING
ANALYSES
Guest Authors of the Tutorials
A. How to Use Data Miner Recipe
What is
STATISTICA
Data Miner Recipe
(DMR)?
373
Core Analytic Ingredients
373
B. Data Mining for Aviation Safety
Airline Safety
378
SDR Database
379
Preparing the Data for Our Tutorial
382
Data Mining Approach
383
Data Mining Algorithm. Error Rate
386
Conclusion
387
С
Predicting Movie
Box-Office
Receipts
Introduction
391
Data and Variable Definitions
392
Getting to Know the Workspace of the Clementine
Data Mining Toolkit
393
Results
396
Publishing and Reuse of Models and Other
Outputs
404
D, Detecting Unsatisfied Customers:
A Case Study
Introduction
418
The Data
418
The Objectives of the Study
418
SAS-EM
5.3
Interface
419
A Primer of
SAS
-ЕМ
Predictive Modeling
420
Homework
1 430
Discussions
431
Homework
2 431
Homework
3 431
Scoring Process and the Total Profit
432
Homework
4 438
Discussions
439
Oversampiing and Rare Event Detection
439
Discussion
446
Decision Matrix and the Profit Charts
446
Discussions
453
Micro-Target the Profitable Customers
453
Appendix
455
E. Credit Scoring
Introduction: What Is Credit Scoring?
459
Credit Scoring: Business Objectives
460
Case Study: Consumer Credit Scoring
461
Description
461
Data Preparation
462
Feature Selection
462
STATISTICA Data
Miner: Workhorses or
Predictive Modeling
463
Overview:
STATISTICA Data
Miner
Workspace
464
Analysis and Results
465
Decision Tree: CHAID
465
Classification Matrix: CHAID Model
467
TABLE
OF
CONTENTS
Xl
Comparative
Assessment of the Models
(Evaluation)
467
Classification Matrix: Boosting Trees with
Deployment Model (Best Model)
469
Deploying the Model for Prediction
469
Conclusion
470
Objectives
Steps
472
F. Churn Analysis
471
G. Text Mining: Automobile Brand
Review
Introduction
481
Text Mining
482
Input Documents
482
Selecting Input Documents
482
Stop Lists, Synonyms, and Phrases
482
Stemming and Support for Different
Languages
483
Indexing of Input Documents: Scalability of
STATISTICA
Text Mining and Document
Retrieval
483
Results, Summaries, and Transformations
483
Car Review Example
484
Saving Results into Input Spreadsheet
498
Interactive Trees (C&RT, CHAID)
503
Other Applications of Text Mining
512
Conclusion
512
HL Predictive Process Control: QC Data
Mining
Predictive Process Control Using
ЅТАПЅПСА
and
STATISTICA Qc-miner
513
Case Study: Predictive Process Control
514
Understanding Manufacturing Processes
514
Data File: ProcessControl.sta
515
Variable Information
515
Problem Definition
515
Design Approaches
515
Data Analyses with
STATISTICA
517
Split Input Data into the Training and Testing
Sample
517
Stratified Random Sampling
517
Feature Selection and Root Cause Analyses
517
Different Models Used for Prediction
518
Compute Overlaid Lift Charts from All Models:
Static Analyses
520
Classification Trees: CHAID
521
Compute Overlaid Lift/Gain Charts from All
Models: Dynamic Analyses
523
Cross-Tabulation Matrix
524
Comparative Evaluation of Models: Dynamic
Analyses
526
Gains Analyses by Deciles: Dynamic
Analyses
526
Transformation of Change
527
Feature Selection and Root Cause Analyses
528
Interactive Trees: C&RT
528
Conclusion
529
I. Business Administration in a Medical
Industry
}.
Clinical Psychology: Making Decisions
about Best Therapy for a Client
K. Education-Leadership Training for
Business and Education
L
Dentistry: Facial Pain Study
M. Profit Analysis of the German Credit
Data
Introduction
651
Modeling Strategy
653
SAS-EM
5.3
Interface
654
A Primer of
SAS
-ЕМ
Predictive Modeling
654
Advanced Techniques of Predictive Modeling
669
MicrO Target the Profitable Customers
676
Appendix
678
N.
Predicting Self-Reported Health Status
Using Artificial Neural Networks
Background
681
Data
682
Preprocessing and Filtering
683
Xli
TABLE
OF
CONTENTS
Part
1:
Using
a
Wrapper Approach
ín
Weka
to
Determine the Most Appropriate Variables for
Your Neural Network Model
684
Part
2:
Taking the Results from, the Wrapper
Approach in
Weka
into
STATISTICA Data
Miner to Do Neural Network Analyses
691
MEASURING TRUE
COMPLEXITY, THE RIGHT
MODEL FOR THE RIGHT USE,
TOP MISTAKES, AND THE
FUTURE OF ANALYTICS
IS. Model Complexity (and How
Ensembles Help)
Preamble
707
Model Ensembles
708
Complexity
710
Generalized Degrees of Freedom
713
Examples: Decision Tree Surface with Noise
714
Summary and Discussion
719
Postscript
720
19.
The Right Model for the Right Purpose:
When Less Is Good Enough
Preamble
723
More Is not Necessarily Better: Lessons from Nature
and Engineering
724
Embrace Change Rather Than Flee from It
725
Decision Making Breeds True in the Business
Organism
725
Muscles in the Business Organism
726
What Is a Complex System?
726
The
80:20
Rule in Action
728
Agile Modeling: An Example of How to Craft
Sufficient Solutions
728
Postscript
730
20.
Top
10
Data Mining Mistakes
Preamble
733
Introduction
734
0.
Lack Data
734
1.
Focus on Training
735
2.
Rely on One Technique
736
3.
Ask the Wrong Question
738
4.
Listen (Only) to the Data
739
5.
Accept Leaks from the Future
742
6.
Discount Pesky Cases
743
7.
Extrapolate
744
8.
Answer Every Inquiry
747
9.
Sample Casually
750
10.
Believe the Best Model
752
How Shall We Then Succeed?
753
Postscript
753
21.
Prospects for the Future of Data Mining
and Text Mining as Part of Our Everyday
Lives
Preamble
755
RFID
756
Social Networking and Data Mining
757
Example
1 758
Example
2 759
Example
3 760
Example
4 761
Image and Object Data Mining
761
Visual Data Preparation for Data Mining: Taking
Photos, Moving Pictures, and Objects into
Spreadsheets Representing the Photos, Moving
Pictures, and Objects
765
Cloud Computing
769
What Can Science Learn from Googk?
772
The Next Generation of Data Mining
772
From the Desktop to the Clouds
... 778
Postscript
778
22.
Summary: Our Design
Preamble
781
Beware of Overtrained Models
782
A Diversity of Models and Techniques Is Best
783
The Process Is More Important Than the Tool
783
TABLE
OF
CONTENTS
хш
Text Mining of Unstructured Data Is Becoming Very
Important
784
Practice Thinking About Your Organization as
Organism Rather Than as Machine
784
Good Solutions Evolve Rather Than Just Appear
After Initial Efforts
785
What You Don t Do Is Just as Important as What
You Do
785
Very Intuitive Graphical Interfaces Are Replacing
Procedural Programming
786
Data Mining Is No Longer a Boutique Operation; It Is
Firmly Established in the Mainstream of Our
Society
786
Smart Systems Are the Direction in Which Data
Mining Technology Is Going
787
Postscript
787
Glossary
789
Index
801
DVD Install Instructions
823
|
any_adam_object | 1 |
author | Nisbet, Robert 1942- Elder, John F. 1961- Miner, Gary 1942- |
author_GND | (DE-588)140490930 (DE-588)140491279 (DE-588)140491813 |
author_facet | Nisbet, Robert 1942- Elder, John F. 1961- Miner, Gary 1942- |
author_role | aut aut aut |
author_sort | Nisbet, Robert 1942- |
author_variant | r n rn j f e jf jfe g m gm |
building | Verbundindex |
bvnumber | BV035483378 |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.9.D343 |
callnumber-search | QA76.9.D343 |
callnumber-sort | QA 276.9 D343 |
callnumber-subject | QA - Mathematics |
classification_rvk | QH 500 SK 850 ST 530 |
classification_tum | DAT 703f |
ctrlnum | (OCoLC)468187597 (DE-599)GBV593618297 |
dewey-full | 006.3/12 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/12 |
dewey-search | 006.3/12 |
dewey-sort | 16.3 212 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01948nam a2200457 c 4500</leader><controlfield tag="001">BV035483378</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20111116 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090512s2009 ad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2009008997</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780123747655</subfield><subfield code="c">hbk</subfield><subfield code="9">978-0-12-374765-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0123747651</subfield><subfield code="9">0-12-374765-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)468187597</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV593618297</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-945</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-N32</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-N2</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.9.D343</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/12</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 500</subfield><subfield code="0">(DE-625)141607:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 850</subfield><subfield code="0">(DE-625)143263:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 703f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nisbet, Robert</subfield><subfield code="d">1942-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)140490930</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Handbook of statistical analysis and data mining applications</subfield><subfield code="c">Robert Nisbet ; John Elder ; Gary Miner</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier AP</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXIV, 824 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="e">DVD (12 cm)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exploration de données (Informatique) - Méthodes statistiques</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Elder, John F.</subfield><subfield code="d">1961-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)140491279</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miner, Gary</subfield><subfield code="d">1942-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)140491813</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bamberg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017539888&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017539888</subfield></datafield></record></collection> |
id | DE-604.BV035483378 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:38:37Z |
institution | BVB |
isbn | 9780123747655 0123747651 |
language | English |
lccn | 2009008997 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017539888 |
oclc_num | 468187597 |
open_access_boolean | |
owner | DE-945 DE-473 DE-BY-UBG DE-20 DE-91 DE-BY-TUM DE-634 DE-898 DE-BY-UBR DE-739 DE-703 DE-355 DE-BY-UBR DE-824 DE-384 DE-11 DE-858 DE-N32 DE-859 DE-N2 |
owner_facet | DE-945 DE-473 DE-BY-UBG DE-20 DE-91 DE-BY-TUM DE-634 DE-898 DE-BY-UBR DE-739 DE-703 DE-355 DE-BY-UBR DE-824 DE-384 DE-11 DE-858 DE-N32 DE-859 DE-N2 |
physical | XXXIV, 824 S. Ill., graph. Darst. DVD (12 cm) |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Elsevier AP |
record_format | marc |
spelling | Nisbet, Robert 1942- Verfasser (DE-588)140490930 aut Handbook of statistical analysis and data mining applications Robert Nisbet ; John Elder ; Gary Miner Amsterdam [u.a.] Elsevier AP 2009 XXXIV, 824 S. Ill., graph. Darst. DVD (12 cm) txt rdacontent n rdamedia nc rdacarrier Exploration de données (Informatique) - Méthodes statistiques Statistik (DE-588)4056995-0 gnd rswk-swf Data Mining (DE-588)4428654-5 gnd rswk-swf Data Mining (DE-588)4428654-5 s Statistik (DE-588)4056995-0 s b DE-604 Elder, John F. 1961- Verfasser (DE-588)140491279 aut Miner, Gary 1942- Verfasser (DE-588)140491813 aut Digitalisierung UB Bamberg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017539888&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Nisbet, Robert 1942- Elder, John F. 1961- Miner, Gary 1942- Handbook of statistical analysis and data mining applications Exploration de données (Informatique) - Méthodes statistiques Statistik (DE-588)4056995-0 gnd Data Mining (DE-588)4428654-5 gnd |
subject_GND | (DE-588)4056995-0 (DE-588)4428654-5 |
title | Handbook of statistical analysis and data mining applications |
title_auth | Handbook of statistical analysis and data mining applications |
title_exact_search | Handbook of statistical analysis and data mining applications |
title_full | Handbook of statistical analysis and data mining applications Robert Nisbet ; John Elder ; Gary Miner |
title_fullStr | Handbook of statistical analysis and data mining applications Robert Nisbet ; John Elder ; Gary Miner |
title_full_unstemmed | Handbook of statistical analysis and data mining applications Robert Nisbet ; John Elder ; Gary Miner |
title_short | Handbook of statistical analysis and data mining applications |
title_sort | handbook of statistical analysis and data mining applications |
topic | Exploration de données (Informatique) - Méthodes statistiques Statistik (DE-588)4056995-0 gnd Data Mining (DE-588)4428654-5 gnd |
topic_facet | Exploration de données (Informatique) - Méthodes statistiques Statistik Data Mining |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017539888&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT nisbetrobert handbookofstatisticalanalysisanddataminingapplications AT elderjohnf handbookofstatisticalanalysisanddataminingapplications AT minergary handbookofstatisticalanalysisanddataminingapplications |