A convergence rate result for a steepest descent method and a minimal error method for the solution of nonlinear ill-posed problems:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Linz
Univ., Institut für Mathematik
1994
|
Schriftenreihe: | Institutsbericht / Johannes Kepler Universität Linz, Institut für Mathematik
480 |
Beschreibung: | 7 Bl. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV035451955 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 090424s1994 |||| 00||| eng d | ||
035 | |a (OCoLC)1071705714 | ||
035 | |a (DE-599)HBZTT001548036 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Neubauer, Andreas |e Verfasser |0 (DE-588)135832918 |4 aut | |
245 | 1 | 0 | |a A convergence rate result for a steepest descent method and a minimal error method for the solution of nonlinear ill-posed problems |c Andreas Neubauer and Otmar Scherzer |
264 | 1 | |a Linz |b Univ., Institut für Mathematik |c 1994 | |
300 | |a 7 Bl. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Institutsbericht / Johannes Kepler Universität Linz, Institut für Mathematik |v 480 | |
700 | 1 | |a Scherzer, Otmar |d 1964- |e Verfasser |0 (DE-588)120650053 |4 aut | |
810 | 2 | |a Johannes Kepler Universität Linz, Institut für Mathematik |t Institutsbericht |v 480 |w (DE-604)BV010668285 |9 480 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-017371972 |
Datensatz im Suchindex
_version_ | 1804138903308861440 |
---|---|
any_adam_object | |
author | Neubauer, Andreas Scherzer, Otmar 1964- |
author_GND | (DE-588)135832918 (DE-588)120650053 |
author_facet | Neubauer, Andreas Scherzer, Otmar 1964- |
author_role | aut aut |
author_sort | Neubauer, Andreas |
author_variant | a n an o s os |
building | Verbundindex |
bvnumber | BV035451955 |
ctrlnum | (OCoLC)1071705714 (DE-599)HBZTT001548036 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01099nam a2200277 cb4500</leader><controlfield tag="001">BV035451955</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090424s1994 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1071705714</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZTT001548036</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Neubauer, Andreas</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)135832918</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A convergence rate result for a steepest descent method and a minimal error method for the solution of nonlinear ill-posed problems</subfield><subfield code="c">Andreas Neubauer and Otmar Scherzer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Linz</subfield><subfield code="b">Univ., Institut für Mathematik</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">7 Bl.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Institutsbericht / Johannes Kepler Universität Linz, Institut für Mathematik</subfield><subfield code="v">480</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Scherzer, Otmar</subfield><subfield code="d">1964-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120650053</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Johannes Kepler Universität Linz, Institut für Mathematik</subfield><subfield code="t">Institutsbericht</subfield><subfield code="v">480</subfield><subfield code="w">(DE-604)BV010668285</subfield><subfield code="9">480</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017371972</subfield></datafield></record></collection> |
id | DE-604.BV035451955 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T21:35:35Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017371972 |
oclc_num | 1071705714 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 7 Bl. |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Univ., Institut für Mathematik |
record_format | marc |
series2 | Institutsbericht / Johannes Kepler Universität Linz, Institut für Mathematik |
spelling | Neubauer, Andreas Verfasser (DE-588)135832918 aut A convergence rate result for a steepest descent method and a minimal error method for the solution of nonlinear ill-posed problems Andreas Neubauer and Otmar Scherzer Linz Univ., Institut für Mathematik 1994 7 Bl. txt rdacontent n rdamedia nc rdacarrier Institutsbericht / Johannes Kepler Universität Linz, Institut für Mathematik 480 Scherzer, Otmar 1964- Verfasser (DE-588)120650053 aut Johannes Kepler Universität Linz, Institut für Mathematik Institutsbericht 480 (DE-604)BV010668285 480 |
spellingShingle | Neubauer, Andreas Scherzer, Otmar 1964- A convergence rate result for a steepest descent method and a minimal error method for the solution of nonlinear ill-posed problems |
title | A convergence rate result for a steepest descent method and a minimal error method for the solution of nonlinear ill-posed problems |
title_auth | A convergence rate result for a steepest descent method and a minimal error method for the solution of nonlinear ill-posed problems |
title_exact_search | A convergence rate result for a steepest descent method and a minimal error method for the solution of nonlinear ill-posed problems |
title_full | A convergence rate result for a steepest descent method and a minimal error method for the solution of nonlinear ill-posed problems Andreas Neubauer and Otmar Scherzer |
title_fullStr | A convergence rate result for a steepest descent method and a minimal error method for the solution of nonlinear ill-posed problems Andreas Neubauer and Otmar Scherzer |
title_full_unstemmed | A convergence rate result for a steepest descent method and a minimal error method for the solution of nonlinear ill-posed problems Andreas Neubauer and Otmar Scherzer |
title_short | A convergence rate result for a steepest descent method and a minimal error method for the solution of nonlinear ill-posed problems |
title_sort | a convergence rate result for a steepest descent method and a minimal error method for the solution of nonlinear ill posed problems |
volume_link | (DE-604)BV010668285 |
work_keys_str_mv | AT neubauerandreas aconvergencerateresultforasteepestdescentmethodandaminimalerrormethodforthesolutionofnonlinearillposedproblems AT scherzerotmar aconvergencerateresultforasteepestdescentmethodandaminimalerrormethodforthesolutionofnonlinearillposedproblems |