Tikhonov-regularization of ill-posed linear operator equations on closed convex sets:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Linz
Univ.
1985
|
Schriftenreihe: | Bericht / Johannes Kepler Universität Linz, Institut für Mathematik
298 |
Schlagworte: | |
Beschreibung: | 44 S. graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV035451173 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 090424s1985 d||| |||| 00||| eng d | ||
035 | |a (OCoLC)255382377 | ||
035 | |a (DE-599)BSZ013839446 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
100 | 1 | |a Neubauer, Andreas |e Verfasser |4 aut | |
245 | 1 | 0 | |a Tikhonov-regularization of ill-posed linear operator equations on closed convex sets |c A. Neubauer |
264 | 1 | |a Linz |b Univ. |c 1985 | |
300 | |a 44 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Bericht / Johannes Kepler Universität Linz, Institut für Mathematik |v 298 | |
650 | 0 | 7 | |a Linearer Operator |0 (DE-588)4167721-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Approximation |0 (DE-588)4002498-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Abgeschlossene Menge |0 (DE-588)4575601-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konvexe Menge |0 (DE-588)4165212-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Tichonov-Regularisierung |0 (DE-588)4124313-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineare Operatorgleichung |0 (DE-588)4123658-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Operatorgleichung |0 (DE-588)4043601-9 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Tichonov-Regularisierung |0 (DE-588)4124313-4 |D s |
689 | 0 | 1 | |a Lineare Operatorgleichung |0 (DE-588)4123658-0 |D s |
689 | 0 | 2 | |a Abgeschlossene Menge |0 (DE-588)4575601-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Operatorgleichung |0 (DE-588)4043601-9 |D s |
689 | 1 | 1 | |a Tichonov-Regularisierung |0 (DE-588)4124313-4 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Linearer Operator |0 (DE-588)4167721-3 |D s |
689 | 2 | |8 2\p |5 DE-604 | |
689 | 3 | 0 | |a Konvexe Menge |0 (DE-588)4165212-5 |D s |
689 | 3 | |8 3\p |5 DE-604 | |
689 | 4 | 0 | |a Approximation |0 (DE-588)4002498-2 |D s |
689 | 4 | |8 4\p |5 DE-604 | |
810 | 2 | |a Johannes Kepler Universität Linz, Institut für Mathematik |t Bericht |v 298 |w (DE-604)BV010668285 |9 298 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-017371207 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804138902119776256 |
---|---|
any_adam_object | |
author | Neubauer, Andreas |
author_facet | Neubauer, Andreas |
author_role | aut |
author_sort | Neubauer, Andreas |
author_variant | a n an |
building | Verbundindex |
bvnumber | BV035451173 |
classification_rvk | SK 620 |
ctrlnum | (OCoLC)255382377 (DE-599)BSZ013839446 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02432nam a2200577 cb4500</leader><controlfield tag="001">BV035451173</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090424s1985 d||| |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255382377</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ013839446</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Neubauer, Andreas</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tikhonov-regularization of ill-posed linear operator equations on closed convex sets</subfield><subfield code="c">A. Neubauer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Linz</subfield><subfield code="b">Univ.</subfield><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">44 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Bericht / Johannes Kepler Universität Linz, Institut für Mathematik</subfield><subfield code="v">298</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Linearer Operator</subfield><subfield code="0">(DE-588)4167721-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Abgeschlossene Menge</subfield><subfield code="0">(DE-588)4575601-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Menge</subfield><subfield code="0">(DE-588)4165212-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tichonov-Regularisierung</subfield><subfield code="0">(DE-588)4124313-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Operatorgleichung</subfield><subfield code="0">(DE-588)4123658-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operatorgleichung</subfield><subfield code="0">(DE-588)4043601-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Tichonov-Regularisierung</subfield><subfield code="0">(DE-588)4124313-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lineare Operatorgleichung</subfield><subfield code="0">(DE-588)4123658-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Abgeschlossene Menge</subfield><subfield code="0">(DE-588)4575601-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Operatorgleichung</subfield><subfield code="0">(DE-588)4043601-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Tichonov-Regularisierung</subfield><subfield code="0">(DE-588)4124313-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Linearer Operator</subfield><subfield code="0">(DE-588)4167721-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Konvexe Menge</subfield><subfield code="0">(DE-588)4165212-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Johannes Kepler Universität Linz, Institut für Mathematik</subfield><subfield code="t">Bericht</subfield><subfield code="v">298</subfield><subfield code="w">(DE-604)BV010668285</subfield><subfield code="9">298</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017371207</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV035451173 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:35:34Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017371207 |
oclc_num | 255382377 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 44 S. graph. Darst. |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | Univ. |
record_format | marc |
series2 | Bericht / Johannes Kepler Universität Linz, Institut für Mathematik |
spelling | Neubauer, Andreas Verfasser aut Tikhonov-regularization of ill-posed linear operator equations on closed convex sets A. Neubauer Linz Univ. 1985 44 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Bericht / Johannes Kepler Universität Linz, Institut für Mathematik 298 Linearer Operator (DE-588)4167721-3 gnd rswk-swf Approximation (DE-588)4002498-2 gnd rswk-swf Abgeschlossene Menge (DE-588)4575601-6 gnd rswk-swf Konvexe Menge (DE-588)4165212-5 gnd rswk-swf Tichonov-Regularisierung (DE-588)4124313-4 gnd rswk-swf Lineare Operatorgleichung (DE-588)4123658-0 gnd rswk-swf Operatorgleichung (DE-588)4043601-9 gnd rswk-swf 1\p (DE-588)4113937-9 Hochschulschrift gnd-content Tichonov-Regularisierung (DE-588)4124313-4 s Lineare Operatorgleichung (DE-588)4123658-0 s Abgeschlossene Menge (DE-588)4575601-6 s DE-604 Operatorgleichung (DE-588)4043601-9 s Linearer Operator (DE-588)4167721-3 s 2\p DE-604 Konvexe Menge (DE-588)4165212-5 s 3\p DE-604 Approximation (DE-588)4002498-2 s 4\p DE-604 Johannes Kepler Universität Linz, Institut für Mathematik Bericht 298 (DE-604)BV010668285 298 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Neubauer, Andreas Tikhonov-regularization of ill-posed linear operator equations on closed convex sets Linearer Operator (DE-588)4167721-3 gnd Approximation (DE-588)4002498-2 gnd Abgeschlossene Menge (DE-588)4575601-6 gnd Konvexe Menge (DE-588)4165212-5 gnd Tichonov-Regularisierung (DE-588)4124313-4 gnd Lineare Operatorgleichung (DE-588)4123658-0 gnd Operatorgleichung (DE-588)4043601-9 gnd |
subject_GND | (DE-588)4167721-3 (DE-588)4002498-2 (DE-588)4575601-6 (DE-588)4165212-5 (DE-588)4124313-4 (DE-588)4123658-0 (DE-588)4043601-9 (DE-588)4113937-9 |
title | Tikhonov-regularization of ill-posed linear operator equations on closed convex sets |
title_auth | Tikhonov-regularization of ill-posed linear operator equations on closed convex sets |
title_exact_search | Tikhonov-regularization of ill-posed linear operator equations on closed convex sets |
title_full | Tikhonov-regularization of ill-posed linear operator equations on closed convex sets A. Neubauer |
title_fullStr | Tikhonov-regularization of ill-posed linear operator equations on closed convex sets A. Neubauer |
title_full_unstemmed | Tikhonov-regularization of ill-posed linear operator equations on closed convex sets A. Neubauer |
title_short | Tikhonov-regularization of ill-posed linear operator equations on closed convex sets |
title_sort | tikhonov regularization of ill posed linear operator equations on closed convex sets |
topic | Linearer Operator (DE-588)4167721-3 gnd Approximation (DE-588)4002498-2 gnd Abgeschlossene Menge (DE-588)4575601-6 gnd Konvexe Menge (DE-588)4165212-5 gnd Tichonov-Regularisierung (DE-588)4124313-4 gnd Lineare Operatorgleichung (DE-588)4123658-0 gnd Operatorgleichung (DE-588)4043601-9 gnd |
topic_facet | Linearer Operator Approximation Abgeschlossene Menge Konvexe Menge Tichonov-Regularisierung Lineare Operatorgleichung Operatorgleichung Hochschulschrift |
volume_link | (DE-604)BV010668285 |
work_keys_str_mv | AT neubauerandreas tikhonovregularizationofillposedlinearoperatorequationsonclosedconvexsets |