Theory of probability: a historical essay
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
NG-Verl.
2009
|
Ausgabe: | 2., rev. and enlarged ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 326 S. graph. Darst. 24 cm |
ISBN: | 3938417889 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035441152 | ||
003 | DE-604 | ||
005 | 20091002 | ||
007 | t | ||
008 | 090420s2009 gw d||| |||| 00||| eng d | ||
015 | |a 05,A43,0834 |2 dnb | ||
020 | |a 3938417889 |c kart. |9 3-938417-88-9 | ||
035 | |a (OCoLC)317290701 | ||
035 | |a (DE-599)BVBBV035441152 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE | ||
049 | |a DE-210 |a DE-12 |a DE-83 |a DE-11 | ||
082 | 0 | |a 519.2 |2 22/ger | |
084 | |a SK 800 |0 (DE-625)143256: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
084 | |a 7,41 |2 ssgn | ||
084 | |a 60-03 |2 msc | ||
100 | 1 | |a Šejnin, Oskar B. |d 1925- |e Verfasser |0 (DE-588)128703350 |4 aut | |
245 | 1 | 0 | |a Theory of probability |b a historical essay |c Oscar Sheynin |
250 | |a 2., rev. and enlarged ed. | ||
264 | 1 | |a Berlin |b NG-Verl. |c 2009 | |
300 | |a 326 S. |b graph. Darst. |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
648 | 7 | |a Geschichte Anfänge-2000 |2 gnd |9 rswk-swf | |
648 | 7 | |a Geschichte |2 gnd |9 rswk-swf | |
650 | 4 | |a Wahrscheinlichkeitstheorie - Geschichte | |
650 | 4 | |a Geschichte | |
650 | 4 | |a Probabilities |x History | |
650 | 0 | 7 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |D s |
689 | 0 | 1 | |a Geschichte Anfänge-2000 |A z |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |D s |
689 | 1 | 1 | |a Geschichte Anfänge-2000 |A z |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |D s |
689 | 2 | 1 | |a Geschichte |A z |
689 | 2 | |8 1\p |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung BSBMuenchen |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017361404&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
940 | 1 | |n oe | |
999 | |a oai:aleph.bib-bvb.de:BVB01-017361404 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
942 | 1 | 1 | |c 509 |e 22/bsb |
Datensatz im Suchindex
_version_ | 1804138887839219712 |
---|---|
adam_text | Contents
Preface
............................................................................................................5
0.
Introduction
...............................................................................................8
0.1.
The Stages
................................................................................................8
0.2.
Mathematical Statistics
..............................................................................8
0.3.
The Theory of Errors
.................................................................................9
0.4.
The Statistical Method
................................................................................9
1.
The Antenatal Period
..............................................................................11
1.1.
Randomness, Probability, Expectation
....................................................11
1.2.
Mathematical Treatment of Observations
...............................................11
2.
The Early History
....................................................................................38
2.1.
Stochastic Ideas in Science and Society
.................................................38
2.2.
Mathematical Investigations
...................................................................47
3.
Jakob Bernoulli and the Law of Large Numbers
....................................55
3.1.
Bernoulli s Works
...................................................................................55
3.2.
The Art of Conjecturing
(1713),
Part
4:
Its Main Propositions
...............58
3.3.
Bernoulli s Contemporaries
............................................................,.......63
4.
DeMoivre and the
De
Moivre
-
Laplace Limit Theorem
.....................67
4.1.
The Measurement of Chance
(1712)..................................................67
4.2.
Life Insurance
........................................................................................68
4.3.
The Doctrine of Chances
(1718,1738, 1756)........................................69
4.4.
The
De
Moivre
-
Laplace Theorem
........................................................70
5.
Bayes
.........................................................................................................73
5.1.
The
Bayes
Formula and Induction
..........................................................73
5.2.
The Limit Theorem
.................................................................................75
5.3.
Additional Remark
.................................................................................76
6.
Other Investigations before Laplace
.......................................................77
6.1
Stochastic Investigations
.........................................................................77
6.2.
Statistical Investigations
.........................................................................85
6.3.
Mathematical Treatment of Observations
................................................91
7.
Laplace
.....................................................................................................106
7.1.
Theory of Probability
............................................................................106
7.2.
Theory of Errors
....................................................................................117
7.3.
Philosophical Views
...............................................................................128
7.4.
Conclusions
............................................................................................130
8.
Poisson
.......................................................................................................134
8.1.
Subjective Probability
............................................................................134
8.2.
Two New Notions
.................................................................................135
8.3.
The
De
Moivre-Laplace Limit Theorem
...............................................136
8.4.
Sampling without Replacement
............................................................136
8.5.
Limit Theorems for the
Poisson
Trials
...................................................138
8.6.
The Central Limit Theorem
...................................................................139
8.7.
The Law of Large Numbers
....................................................................140
8.8.
The Theory of Errors and Artillery.
..........................................................142
8.9.
Statistics
................................................................................................142
9.
Gauss
......................................................................................................146
9.1.
The Method of Least Squares before
1809.............................................147
9.2. Theoria
Mof,us( 809)
.............................................................................151
9.3.
Determining the Precision of Observations
(1816)..........................153
9.4.
The Theory of Combinations
(1823 - 1828)......................................155
9.5.
Additional Considerations
.....................................................................159
9.6.
More about the Method of Least Squares
.............................................161
9.7.
Other Topics
.........................................................................................162
10.
The Second Half of the
19
Century
....................................................164
lO.l.Cauchy
.................................................................................................164
10.2.Bienaymé
..............................................................................................165
10.3.
Cournot
................................................................................................169
lOABuniakovsky
.........................................................................................172
lO.S.Quetelet
...............................................................................................176
10.6.
Helmert
................................................................................................180
10.7.
Galton
...................................................................................................184
10.8.
Statistics
...............................................................................................186
10.9.
Statistics andNatural Sciences
.............................................................189
10.9.1.
Medicine
......................................................................................190
10.9.2.
Biology
.........................................................................................194
10.9.3.
Meteorology
................................................................................196
10.9.4.
Astronomy
..................................................................................199
10.9.5.
Physics
........................................................................................205
10.10.
Natural scientists
................................................................................211
10.10.1.
Ivory
.........................................................................................211
10.10.2
Fechner
......................................................................................212
10.10.3.
Mendeleev
.................................................................................214
11.
Bertrand
and
Poincaré
.........................................................................216
11.1.
Bertrand
.................................................................................................216
11.2.
Poincaré
................................................................................................219
12.
Geometric Probability
...........................................................................227
lS.Chebyshev
............................................................................................231
13.1.
His Contributions
................................................................................231
13.2.
His
Lectores
........................................................................................235
13.3.
Some General Considerations
.............................................................241
14.
Markov, Liapunov, Nekrasov
..............................................................243
14.1.
Markov: General Scientific Issues
..............................................■........243
14.2-Markov: His Main Investigations
..........................................................247
14.3.
Markov: His Personal Traits
.................................................................253
14ALiapunov
..............................................................................................255
l^.Nekrasov
...............................................................................................256
15.
The Birth of Mathematical Statistics
.................................................260
15.1.
The Stability of Statistical Series
........................................................260
15.1.1.
Lexis
...........................................................................................260
lS.l^.Bortkiewicz
..................................................................................262
15.1.3.
Markov and Chuprov
...................................................................265
15.2.
The
Biometrie
School
............................................................................267
15.3.
The Merging of the Continental Direction and the
Biometrie
School?
...................................................................................................271
References
..................................................................................................274
Index of Names
..........................................................................................314
|
any_adam_object | 1 |
author | Šejnin, Oskar B. 1925- |
author_GND | (DE-588)128703350 |
author_facet | Šejnin, Oskar B. 1925- |
author_role | aut |
author_sort | Šejnin, Oskar B. 1925- |
author_variant | o b š ob obš |
building | Verbundindex |
bvnumber | BV035441152 |
classification_rvk | SK 800 |
ctrlnum | (OCoLC)317290701 (DE-599)BVBBV035441152 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 2., rev. and enlarged ed. |
era | Geschichte Anfänge-2000 gnd Geschichte gnd |
era_facet | Geschichte Anfänge-2000 Geschichte |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02169nam a2200589 c 4500</leader><controlfield tag="001">BV035441152</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20091002 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090420s2009 gw d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">05,A43,0834</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3938417889</subfield><subfield code="c">kart.</subfield><subfield code="9">3-938417-88-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)317290701</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035441152</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-210</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 800</subfield><subfield code="0">(DE-625)143256:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">7,41</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60-03</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Šejnin, Oskar B.</subfield><subfield code="d">1925-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128703350</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theory of probability</subfield><subfield code="b">a historical essay</subfield><subfield code="c">Oscar Sheynin</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2., rev. and enlarged ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">NG-Verl.</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">326 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte Anfänge-2000</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wahrscheinlichkeitstheorie - Geschichte</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geschichte</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilities</subfield><subfield code="x">History</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geschichte Anfänge-2000</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Geschichte Anfänge-2000</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Geschichte</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung BSBMuenchen</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017361404&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="n">oe</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017361404</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="942" ind1="1" ind2="1"><subfield code="c">509</subfield><subfield code="e">22/bsb</subfield></datafield></record></collection> |
id | DE-604.BV035441152 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:35:20Z |
institution | BVB |
isbn | 3938417889 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017361404 |
oclc_num | 317290701 |
open_access_boolean | |
owner | DE-210 DE-12 DE-83 DE-11 |
owner_facet | DE-210 DE-12 DE-83 DE-11 |
physical | 326 S. graph. Darst. 24 cm |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | NG-Verl. |
record_format | marc |
spelling | Šejnin, Oskar B. 1925- Verfasser (DE-588)128703350 aut Theory of probability a historical essay Oscar Sheynin 2., rev. and enlarged ed. Berlin NG-Verl. 2009 326 S. graph. Darst. 24 cm txt rdacontent n rdamedia nc rdacarrier Geschichte Anfänge-2000 gnd rswk-swf Geschichte gnd rswk-swf Wahrscheinlichkeitstheorie - Geschichte Geschichte Probabilities History Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd rswk-swf Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd rswk-swf Wahrscheinlichkeitstheorie (DE-588)4079013-7 s Geschichte Anfänge-2000 z DE-604 Wahrscheinlichkeitsrechnung (DE-588)4064324-4 s Geschichte z 1\p DE-604 Digitalisierung BSBMuenchen application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017361404&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Šejnin, Oskar B. 1925- Theory of probability a historical essay Wahrscheinlichkeitstheorie - Geschichte Geschichte Probabilities History Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd |
subject_GND | (DE-588)4064324-4 (DE-588)4079013-7 |
title | Theory of probability a historical essay |
title_auth | Theory of probability a historical essay |
title_exact_search | Theory of probability a historical essay |
title_full | Theory of probability a historical essay Oscar Sheynin |
title_fullStr | Theory of probability a historical essay Oscar Sheynin |
title_full_unstemmed | Theory of probability a historical essay Oscar Sheynin |
title_short | Theory of probability |
title_sort | theory of probability a historical essay |
title_sub | a historical essay |
topic | Wahrscheinlichkeitstheorie - Geschichte Geschichte Probabilities History Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd |
topic_facet | Wahrscheinlichkeitstheorie - Geschichte Geschichte Probabilities History Wahrscheinlichkeitsrechnung Wahrscheinlichkeitstheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017361404&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT sejninoskarb theoryofprobabilityahistoricalessay |