Geometric properties of Banach spaces and nonlinear iterations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
London
Springer
2009
|
Schriftenreihe: | Lecture notes in mathematics
1965 |
Schlagworte: | |
Online-Zugang: | Cover Vorwort 1 Kapitel 1 Inhaltsverzeichnis |
Beschreibung: | XVII, 326 S. |
ISBN: | 9781848821897 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV035440721 | ||
003 | DE-604 | ||
005 | 20150512 | ||
007 | t | ||
008 | 090420s2009 |||| 00||| eng d | ||
020 | |a 9781848821897 |9 978-1-84882-189-7 | ||
024 | 3 | |a 9781848821897 | |
035 | |a (OCoLC)305125310 | ||
035 | |a (DE-599)DNB990359697 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-706 |a DE-824 |a DE-355 |a DE-83 |a DE-11 |a DE-188 |a DE-20 | ||
050 | 0 | |a QA3 | |
082 | 0 | |a 515.732 | |
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
084 | |a MAT 462f |2 stub | ||
084 | |a 47J25 |2 msc | ||
084 | |a 46B20 |2 msc | ||
084 | |a MAT 652f |2 stub | ||
084 | |a MAT 476f |2 stub | ||
100 | 1 | |a Chidume, Charles |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometric properties of Banach spaces and nonlinear iterations |c Charles Chidume |
264 | 1 | |a London |b Springer |c 2009 | |
300 | |a XVII, 326 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics |v 1965 | |
650 | 4 | |a Banach, Espaces de | |
650 | 4 | |a Banach spaces | |
650 | 0 | 7 | |a Banach-Raum |0 (DE-588)4004402-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Iterationstheorie |0 (DE-588)4027855-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Funktionalanalysis |0 (DE-588)4042093-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Banach-Raum |0 (DE-588)4004402-6 |D s |
689 | 0 | 1 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 0 | 2 | |a Nichtlineare Funktionalanalysis |0 (DE-588)4042093-0 |D s |
689 | 0 | 3 | |a Iterationstheorie |0 (DE-588)4027855-4 |D s |
689 | 0 | |C b |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-84882-190-3 |
830 | 0 | |a Lecture notes in mathematics |v 1965 |w (DE-604)BV000676446 |9 1965 | |
856 | 4 | |m DE-576;springer |q image/jpeg |u http://swbplus.bsz-bw.de/bsz305210122cov.htm |v 20090407020615 |3 Cover | |
856 | 4 | |m DE-576;springer |q application/pdf |u http://swbplus.bsz-bw.de/bsz305210122vor.htm |v 20090407021127 |3 Vorwort 1 | |
856 | 4 | |m DE-576;springer |q application/pdf |u http://swbplus.bsz-bw.de/bsz305210122kap.htm |v 20090407021123 |3 Kapitel 1 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017360986&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-017360986 |
Datensatz im Suchindex
_version_ | 1804138887229997056 |
---|---|
adam_text | CONTENTS 1 SOME GEOMETRIC PROPERTIES OF BANACH SPACES . . . . . . . . .
. . . 1 1.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 1 1.2 UNIFORMLY CONVEX SPACES . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3
STRICTLY CONVEX BANACH SPACES . . . . . . . . . . . . . . . . . . . . .
. . . . . . 3 1.4 THE MODULUS OF CONVEXITY . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 4 1.5 UNIFORM CONVEXITY, STRICT
CONVEXITY AND REFLEXIVITY . . . . . . . . 7 1.6 HISTORICAL REMARKS . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2
SMOOTH SPACES . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 11 2.1 INTRODUCTION . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 THE
MODULUS OF SMOOTHNESS . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 11 2.3 DUALITY BETWEEN SPACES . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 14 2.4 HISTORICAL REMARKS . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 DUALITY
MAPS IN BANACH SPACES . . . . . . . . . . . . . . . . . . . . . . . . .
. . 19 3.1 MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 19 3.2 DUALITY MAPS OF SOME
CONCRETE SPACES. . . . . . . . . . . . . . . . . . . . 23 3.3 HISTORICAL
REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 28 4 INEQUALITIES IN UNIFORMLY CONVEX SPACES . . . . . . . . .
. . . . . . . . . 29 4.1 INTRODUCTION . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2 BASIC NOTIONS
OF CONVEX ANALYSIS. . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 P -UNIFORMLY CONVEX SPACES . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 34 4.4 UNIFORMLY CONVEX SPACES . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 39 4.5 HISTORICAL REMARKS . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5
INEQUALITIES IN UNIFORMLY SMOOTH SPACES . . . . . . . . . . . . . . . .
. 45 5.1 DEFINITIONS AND BASIC THEOREMS . . . . . . . . . . . . . . . .
. . . . . . . . . . 45 5.2 Q * UNIFORMLY SMOOTH SPACES . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 46 5.3 UNIFORMLY SMOOTH SPACES .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 XIII XIV
CONTENTS 5.4 CHARACTERIZATION OF SOME REAL BANACH SPACES BY THE DUALITY
MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 51 5.4.1 DUALITY MAPS ON UNIFORMLY SMOOTH SPACES . . . . . . . . .
. 51 5.4.2 DUALITY MAPS ON SPACES WITH UNIFORMLY G* ATEAUX
DIFFERENTIABLE NORMS . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 51 6 ITERATIVE METHOD FOR FIXED POINTS OF NONEXPANSIVE MAPPINGS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 57 6.1 INTRODUCTION . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.2
ASYMPTOTIC REGULARITY . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 59 6.3 UNIFORM ASYMPTOTIC REGULARITY . . . . . . . . .
. . . . . . . . . . . . . . . . . 61 6.4 STRONG CONVERGENCE . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.5
WEAK CONVERGENCE. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 68 6.6 SOME EXAMPLES . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 69 6.7 HALPERN-TYPE
ITERATION METHOD . . . . . . . . . . . . . . . . . . . . . . . . . . .
73 6.7.1 CONVERGENCE THEOREMS . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 77 6.7.2 THE CASE OF NON-SELF MAPPINGS . . . . . . . . . .
. . . . . . . . . . 80 6.8 HISTORICAL REMARKS . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 84 7 HYBRID STEEPEST
DESCENT METHOD FOR VARIATIONAL INEQUALITIES . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 7.1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 87 7.2 PRELIMINARIES. . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7.3
CONVERGENCE THEOREMS . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 92 7.4 FURTHER CONVERGENCE THEOREMS. . . . . . . . . . .
. . . . . . . . . . . . . . . . 99 7.4.1 CONVERGENCE THEOREMS . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 99 7.5 THE CASE OF L P
SPACES, 1
* 2 . . . . . . . . . . . . . . . . . . . . . . . . . 107 7.6 HISTORICAL
REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 111 8 ITERATIVE METHODS FOR ZEROS OF * * ACCRETIVE-TYPE
OPERATORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 113 8.1 INTRODUCTION AND PRELIMINARIES
. . . . . . . . . . . . . . . . . . . . . . . . . . . 113 8.2 SOME
REMARKS ON ACCRETIVE OPERATORS . . . . . . . . . . . . . . . . . . . .
116 8.3 LIPSCHITZ STRONGLY ACCRETIVE MAPS . . . . . . . . . . . . . . .
. . . . . . . . . 117 8.4 GENERALIZED PHI-ACCRETIVE SELF-MAPS . . . . .
. . . . . . . . . . . . . . . . . 120 8.5 GENERALIZED PHI-ACCRETIVE
NON-SELF MAPS . . . . . . . . . . . . . . . . . . 124 8.6 HISTORICAL
REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 127 9 ITERATION PROCESSES FOR ZEROS OF GENERALIZED * *
ACCRETIVE MAPPINGS . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 129 9.1 INTRODUCTION . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 129 9.2 UNIFORMLY CONTINUOUS GENERALIZED * -HEMI-CONTRACTIVE MAPS
. 130 9.3 GENERALIZED LIPSCHITZ, GENERALIZED * -QUASI-ACCRETIVE MAPPINGS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 134 9.4 HISTORICAL REMARKS . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 138 CONTENTS XV 10 AN
EXAMPLE; MANN ITERATION FOR STRICTLY PSEUDO-CONTRACTIVE MAPPINGS . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 141 10.1 INTRODUCTION
AND A CONVERGENCE THEOREM . . . . . . . . . . . . . . . . . 141 10.2 AN
EXAMPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 141 10.3 MANN ITERATION FOR A CLASS OF LIPSCHITZ
PSEUDO-CONTRACTIVE MAPS . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 145 10.4 HISTORICAL
REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 149 11 APPROXIMATION OF FIXED POINTS OF LIPSCHITZ
PSEUDO-CONTRACTIVE MAPPINGS . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 151 11.1 ITERATION METHODS FOR LIPSCHITZ
PSEUDO-CONTRACTIONS . . . . . . . . 151 11.2 HISTORICAL REMARKS . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 12
GENERALIZED LIPSCHITZ ACCRETIVE AND PSEUDO-CONTRACTIVE MAPPINGS . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 161 12.1 INTRODUCTION . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 161 12.2
CONVERGENCE THEOREMS . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 161 12.3 SOME APPLICATIONS . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 166 12.4 HISTORICAL
REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 166 13 APPLICATIONS TO HAMMERSTEIN INTEGRAL EQUATIONS . . . .
. . . . . 169 13.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 169 13.2 SOLUTION OF
HAMMERSTEIN EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . 169
13.2.1 CONVERGENCE THEOREMS FOR LIPSCHITZ MAPS . . . . . . . . . . 175
13.2.2 CONVERGENCE THEOREMS FOR BOUNDED MAPS . . . . . . . . . . . 177
13.2.3 EXPLICIT ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 178 13.3 CONVERGENCE THEOREMS WITH EXPLICIT ALGORITHMS .
. . . . . . . . . . 179 13.3.1 SOME USEFUL LEMMAS . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 179 13.3.2 CONVERGENCE THEOREMS WITH
COUPLED SCHEMES FOR THE CASE OF LIPSCHITZ MAPS . . . . . . . . . . . . .
. . . . . . . . 180 13.3.3 CONVERGENCE IN L P , 1
* 2 . . . . . . . . . . . . . . . . . . . . . . 183 13.4 COUPLED SCHEME
FOR THE CASE OF BOUNDED OPERATORS . . . . . . . . 185 13.4.1 CONVERGENCE
THEOREMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
13.4.2 CONVERGENCE FOR BOUNDED OPERATORS IN L P SPACES, 1
* 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 188 13.4.3 CONVERGENCE THEOREMS FOR GENERALIZED LIPSCHITZ MAPS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
188 13.5 REMARKS AND OPEN QUESTIONS . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 190 13.6 HISTORICAL REMARKS . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 191 14 ITERATIVE
METHODS FOR SOME GENERALIZATIONS OF NONEXPANSIVE MAPS . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 193 14.1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 193 14.2 ITERATION METHODS FOR ASYMPTOTICALLY
NONEXPANSIVE MAPPINGS . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 193 14.2.1 MODIFIED MANN PROCESS
. . . . . . . . . . . . . . . . . . . . . . . . . . . 193 XVI CONTENTS
14.2.2 ITERATION METHOD OF SCHU . . . . . . . . . . . . . . . . . . . .
. . . . . . 197 14.2.3 HALPERN-TYPE PROCESS . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 198 14.3 ASYMPTOTICALLY QUASI-NONEXPANSIVE
MAPPINGS. . . . . . . . . . . . . . 200 14.4 HISTORICAL REMARKS . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 15
COMMON FIXED POINTS FOR FINITE FAMILIES OF NONEXPANSIVE MAPPINGS . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 205 15.1 INTRODUCTION . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 205 15.2
CONVERGENCE THEOREMS FOR A FAMILY OF NONEXPANSIVE MAPPINGS . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 209 15.3 NON-SELF MAPPINGS . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 213 16 COMMON FIXED POINTS FOR
COUNTABLE FAMILIES OF NONEXPANSIVE MAPPINGS . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 215 16.1 INTRODUCTION . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
215 16.2 PATH CONVERGENCE THEOREMS . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 218 16.3 PATH CONVERGENCE IN UNIFORMLY CONVEX REAL
BANACH SPACES . 220 16.4 ITERATIVE CONVERGENCE IN UNIFORMLY CONVEX REAL
BANACH SPACES . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 223 16.5 NON-SELF MAPPINGS . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
16.6 HISTORICAL REMARKS . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 229 17 COMMON FIXED POINTS FOR FAMILIES OF
COMMUTING NONEXPANSIVE MAPPINGS . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 231 17.1 INTRODUCTION . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 17.2
THREE COMMUTING NONEXPANSIVE MAPPINGS . . . . . . . . . . . . . . . .
232 17.3 COMMON FIXED POINTS FOR FAMILY OF COMMUTING NONEXPANSIVE
MAPPINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 237 17.4 CONVERGENCE THEOREMS FOR INFINITE FAMILY OF COMMUTING
NONEXPANSIVE MAPPINGS . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 239 17.5 HISTORICAL REMARKS . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 242 18 FINITE FAMILIES OF
LIPSCHITZ PSEUDO-CONTRACTIVE AND ACCRETIVE MAPPINGS . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 243 18.1 INTRODUCTION .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 243 18.2 CONVERGENCE THEOREMS . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 243 18.3 FINITE FAMILIES OF
LIPSCHITZ ACCRETIVE OPERATORS . . . . . . . . . . . . 249 18.4 SOME
APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 250 18.5 HISTORICAL REMARKS . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 250 19 GENERALIZED
LIPSCHITZ PSEUDO-CONTRACTIVE AND ACCRETIVE MAPPINGS . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 251 19.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 251 19.2 GENERALIZED LIPSCHITZ
PSEUDO-CONTRACTIVE MAPPINGS . . . . . . . . . 251 19.3 GENERALIZED
LIPSCHITZ ACCRETIVE OPERATORS . . . . . . . . . . . . . . . . . 255 19.4
SOME APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 255 19.5 HISTORICAL REMARKS . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 256 CONTENTS XVII 20
FINITE FAMILIES OF NON-SELF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 257 20.1 INTRODUCTION . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 257 20.2
PRELIMINARIES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 259 20.3 STRONG CONVERGENCE THEOREMS . . . . .
. . . . . . . . . . . . . . . . . . . . . . 260 20.4 WEAK CONVERGENCE
THEOREMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
20.5 THE CASE FOR NONEXPANSIVE MAPPINGS . . . . . . . . . . . . . . . .
. . . . . 269 20.6 HISTORICAL REMARKS . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 270 21 FAMILIES OF TOTAL
ASYMPTOTICALLY NONEXPANSIVE MAPS . . . . . 271 21.1 INTRODUCTION . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 271 21.2 CONVERGENCE THEOREMS . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 273 21.2.1 NECESSARY AND SUFFICIENT
CONDITIONS FOR CONVERGENCE IN REAL BANACH SPACES . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 275 21.2.2 CONVERGENCE THEOREM IN REAL
UNIFORMLY CONVEX BANACH SPACES . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 277 21.3 THE CASE OF NON-SELF MAPS . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 282 21.4 HISTORICAL
REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 282 22 COMMON FIXED POINTS FOR ONE-PARAMETER NONEXPANSIVE
SEMIGROUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 283 22.1 INTRODUCTION . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
283 22.2 EXISTENCE THEOREMS . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 284 22.3 CONVERGENCE THEOREMS . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 285 22.4
HISTORICAL REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 285 23 SINGLE-VALUED ACCRETIVE OPERATORS;
APPLICATIONS; SOME OPEN QUESTIONS . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 287 23.1 INTRODUCTION . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
287 23.2 LOWER SEMI-CONTINUOUS ACCRETIVE OPERATORS ARE SINGLE-VALUED . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 287 23.3 AN APPLICATION TO VARIATIONAL INEQUALITIES . . . . . . . . .
. . . . . . . . 293 23.4 GENERAL COMMENTS ON SOME FIXED POINT THEOREMS .
. . . . . . . . 295 23.5 EXAMPLES OF ACCRETIVE OPERATORS . . . . . . . .
. . . . . . . . . . . . . . . . . 296 23.6 EXAMPLES OF NONEXPANSIVE
RETRACTS. . . . . . . . . . . . . . . . . . . . . . . 297 23.7 SOME
QUESTIONS OF INTEREST . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 297 23.8 FURTHER READING . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 299 REFERENCES . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 301 INDEX . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
|
any_adam_object | 1 |
author | Chidume, Charles |
author_facet | Chidume, Charles |
author_role | aut |
author_sort | Chidume, Charles |
author_variant | c c cc |
building | Verbundindex |
bvnumber | BV035440721 |
callnumber-first | Q - Science |
callnumber-label | QA3 |
callnumber-raw | QA3 |
callnumber-search | QA3 |
callnumber-sort | QA 13 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 850 SK 600 |
classification_tum | MAT 462f MAT 652f MAT 476f |
ctrlnum | (OCoLC)305125310 (DE-599)DNB990359697 |
dewey-full | 515.732 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.732 |
dewey-search | 515.732 |
dewey-sort | 3515.732 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02464nam a2200589 cb4500</leader><controlfield tag="001">BV035440721</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150512 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090420s2009 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848821897</subfield><subfield code="9">978-1-84882-189-7</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781848821897</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)305125310</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB990359697</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.732</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 462f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">47J25</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">46B20</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 652f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 476f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chidume, Charles</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric properties of Banach spaces and nonlinear iterations</subfield><subfield code="c">Charles Chidume</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Springer</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 326 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1965</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Banach, Espaces de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Banach spaces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Iterationstheorie</subfield><subfield code="0">(DE-588)4027855-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Funktionalanalysis</subfield><subfield code="0">(DE-588)4042093-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Nichtlineare Funktionalanalysis</subfield><subfield code="0">(DE-588)4042093-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Iterationstheorie</subfield><subfield code="0">(DE-588)4027855-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-84882-190-3</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1965</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">1965</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="m">DE-576;springer</subfield><subfield code="q">image/jpeg</subfield><subfield code="u">http://swbplus.bsz-bw.de/bsz305210122cov.htm</subfield><subfield code="v">20090407020615</subfield><subfield code="3">Cover</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="m">DE-576;springer</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://swbplus.bsz-bw.de/bsz305210122vor.htm</subfield><subfield code="v">20090407021127</subfield><subfield code="3">Vorwort 1</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="m">DE-576;springer</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://swbplus.bsz-bw.de/bsz305210122kap.htm</subfield><subfield code="v">20090407021123</subfield><subfield code="3">Kapitel 1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017360986&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017360986</subfield></datafield></record></collection> |
id | DE-604.BV035440721 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T21:35:19Z |
institution | BVB |
isbn | 9781848821897 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017360986 |
oclc_num | 305125310 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-706 DE-824 DE-355 DE-BY-UBR DE-83 DE-11 DE-188 DE-20 |
owner_facet | DE-91G DE-BY-TUM DE-706 DE-824 DE-355 DE-BY-UBR DE-83 DE-11 DE-188 DE-20 |
physical | XVII, 326 S. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Springer |
record_format | marc |
series | Lecture notes in mathematics |
series2 | Lecture notes in mathematics |
spelling | Chidume, Charles Verfasser aut Geometric properties of Banach spaces and nonlinear iterations Charles Chidume London Springer 2009 XVII, 326 S. txt rdacontent n rdamedia nc rdacarrier Lecture notes in mathematics 1965 Banach, Espaces de Banach spaces Banach-Raum (DE-588)4004402-6 gnd rswk-swf Geometrie (DE-588)4020236-7 gnd rswk-swf Iterationstheorie (DE-588)4027855-4 gnd rswk-swf Nichtlineare Funktionalanalysis (DE-588)4042093-0 gnd rswk-swf Banach-Raum (DE-588)4004402-6 s Geometrie (DE-588)4020236-7 s Nichtlineare Funktionalanalysis (DE-588)4042093-0 s Iterationstheorie (DE-588)4027855-4 s b DE-604 Erscheint auch als Online-Ausgabe 978-1-84882-190-3 Lecture notes in mathematics 1965 (DE-604)BV000676446 1965 DE-576;springer image/jpeg http://swbplus.bsz-bw.de/bsz305210122cov.htm 20090407020615 Cover DE-576;springer application/pdf http://swbplus.bsz-bw.de/bsz305210122vor.htm 20090407021127 Vorwort 1 DE-576;springer application/pdf http://swbplus.bsz-bw.de/bsz305210122kap.htm 20090407021123 Kapitel 1 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017360986&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Chidume, Charles Geometric properties of Banach spaces and nonlinear iterations Lecture notes in mathematics Banach, Espaces de Banach spaces Banach-Raum (DE-588)4004402-6 gnd Geometrie (DE-588)4020236-7 gnd Iterationstheorie (DE-588)4027855-4 gnd Nichtlineare Funktionalanalysis (DE-588)4042093-0 gnd |
subject_GND | (DE-588)4004402-6 (DE-588)4020236-7 (DE-588)4027855-4 (DE-588)4042093-0 |
title | Geometric properties of Banach spaces and nonlinear iterations |
title_auth | Geometric properties of Banach spaces and nonlinear iterations |
title_exact_search | Geometric properties of Banach spaces and nonlinear iterations |
title_full | Geometric properties of Banach spaces and nonlinear iterations Charles Chidume |
title_fullStr | Geometric properties of Banach spaces and nonlinear iterations Charles Chidume |
title_full_unstemmed | Geometric properties of Banach spaces and nonlinear iterations Charles Chidume |
title_short | Geometric properties of Banach spaces and nonlinear iterations |
title_sort | geometric properties of banach spaces and nonlinear iterations |
topic | Banach, Espaces de Banach spaces Banach-Raum (DE-588)4004402-6 gnd Geometrie (DE-588)4020236-7 gnd Iterationstheorie (DE-588)4027855-4 gnd Nichtlineare Funktionalanalysis (DE-588)4042093-0 gnd |
topic_facet | Banach, Espaces de Banach spaces Banach-Raum Geometrie Iterationstheorie Nichtlineare Funktionalanalysis |
url | http://swbplus.bsz-bw.de/bsz305210122cov.htm http://swbplus.bsz-bw.de/bsz305210122vor.htm http://swbplus.bsz-bw.de/bsz305210122kap.htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017360986&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000676446 |
work_keys_str_mv | AT chidumecharles geometricpropertiesofbanachspacesandnonlineariterations |