Frobenius Categories versus Brauer Blocks: the Grothendieck Group of the Frobenius Category of a Brauer Block
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Basel [u.a.]
Birkhäuser
2009
|
Ausgabe: | 1. Ed. |
Schriftenreihe: | Progress in Mathematics
274 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 498 S. 235 mm x 155 mm |
ISBN: | 9783764399979 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV035384249 | ||
003 | DE-604 | ||
005 | 20150710 | ||
007 | t | ||
008 | 090320s2009 |||| 00||| eng d | ||
015 | |a 08,N49,0634 |2 dnb | ||
016 | 7 | |a 991246039 |2 DE-101 | |
020 | |a 9783764399979 |c Gb. : EUR 85.49 (freier Pr.), sfr 139.00 (freier Pr.) |9 978-3-7643-9997-9 | ||
024 | 3 | |a 9783764399979 | |
028 | 5 | 2 | |a 12561582 |
035 | |a (OCoLC)297148429 | ||
035 | |a (DE-599)DNB991246039 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-19 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA251.5 | |
082 | 0 | |a 512 | |
084 | |a SA 1055 |0 (DE-625)142588: |2 rvk | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Puig, Lluís |e Verfasser |4 aut | |
245 | 1 | 0 | |a Frobenius Categories versus Brauer Blocks |b the Grothendieck Group of the Frobenius Category of a Brauer Block |c Lluis Puig |
250 | |a 1. Ed. | ||
264 | 1 | |a Basel [u.a.] |b Birkhäuser |c 2009 | |
300 | |a 498 S. |c 235 mm x 155 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Progress in Mathematics |v 274 | |
650 | 4 | |a Endliche Gruppe - Darstellungstheorie | |
650 | 4 | |a Brauer groups | |
650 | 4 | |a Finite groups | |
650 | 4 | |a Frobenius algebras | |
650 | 4 | |a Frobenius groups | |
650 | 4 | |a Grothendieck groups | |
650 | 4 | |a Representations of groups | |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Endliche Gruppe |0 (DE-588)4014651-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Endliche Gruppe |0 (DE-588)4014651-0 |D s |
689 | 0 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Progress in Mathematics |v 274 |w (DE-604)BV000004120 |9 274 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017188466&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-017188466 |
Datensatz im Suchindex
_version_ | 1804138715186987008 |
---|---|
adam_text | Contents
Introduction
...................................................... 1
1 General
notation
and quoted results
............................... 15
2
Frobenius P-categories: the first definition
........................ 27
3
The Frobenius P-category of a block
.............................. 39
4
Nilcentralized, selfcentralizing and intersected objects
in Frobenius P-categories
.................................. 47
5
Alperin fusions in Frobenius P-categories
.......................... 57
6
Exterior quotient of a Frobenius P-category
over the selfcentralizing objects
............................. 73
7
Nilcentralized and selfcentralizing
Brauer
pairs in blocks
........... 93
8
Decompositions for
Dade
P-algebras
..............................103
9
Polarizations for
Dade
P-algebras
.................................117
10
A gluing theorem for
Dade
P-algebras
............................137
11
The nilcentralized chain k*-functor of a block
......................151
12
Quotients and normal subcategories in Frobenius P-categories
.....179
13
The hyperfocal subcategory of a Frobenius P-category
.............195
14
The Grothendieck groups of a Frobenius P-category
...............211
15
Reduction results for Grothendieck groups
........................241
16
The local-global question: reduction to the simple groups
..........287
17
Localities associated with a Frobenius P-category
.................319
18
The localizers in a Frobenius P-category
..........................333
19
Solvability for Frobenius P-categories
.............................361
20
A perfect ^ -locality from a perfect
.F*
-locality
....................369
21
Frobenius P-categories: the second definition
......................389
22
The basic ^-locality
..............................................397
23
Narrowing the basic ^ -locality
..................................409
24
Looking for a perfect ^ -locality
.................................437
Appendix
.........................................................449
References
........................................................489
Index
.............................................................493
|
any_adam_object | 1 |
author | Puig, Lluís |
author_facet | Puig, Lluís |
author_role | aut |
author_sort | Puig, Lluís |
author_variant | l p lp |
building | Verbundindex |
bvnumber | BV035384249 |
callnumber-first | Q - Science |
callnumber-label | QA251 |
callnumber-raw | QA251.5 |
callnumber-search | QA251.5 |
callnumber-sort | QA 3251.5 |
callnumber-subject | QA - Mathematics |
classification_rvk | SA 1055 SK 260 |
ctrlnum | (OCoLC)297148429 (DE-599)DNB991246039 |
dewey-full | 512 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512 |
dewey-search | 512 |
dewey-sort | 3512 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 1. Ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02064nam a2200553 cb4500</leader><controlfield tag="001">BV035384249</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150710 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090320s2009 |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,N49,0634</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">991246039</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764399979</subfield><subfield code="c">Gb. : EUR 85.49 (freier Pr.), sfr 139.00 (freier Pr.)</subfield><subfield code="9">978-3-7643-9997-9</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783764399979</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12561582</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)297148429</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB991246039</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA251.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 1055</subfield><subfield code="0">(DE-625)142588:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Puig, Lluís</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Frobenius Categories versus Brauer Blocks</subfield><subfield code="b">the Grothendieck Group of the Frobenius Category of a Brauer Block</subfield><subfield code="c">Lluis Puig</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. Ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">498 S.</subfield><subfield code="c">235 mm x 155 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">274</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Endliche Gruppe - Darstellungstheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brauer groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frobenius algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frobenius groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Grothendieck groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Endliche Gruppe</subfield><subfield code="0">(DE-588)4014651-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Endliche Gruppe</subfield><subfield code="0">(DE-588)4014651-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in Mathematics</subfield><subfield code="v">274</subfield><subfield code="w">(DE-604)BV000004120</subfield><subfield code="9">274</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017188466&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017188466</subfield></datafield></record></collection> |
id | DE-604.BV035384249 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T21:32:35Z |
institution | BVB |
isbn | 9783764399979 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017188466 |
oclc_num | 297148429 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-11 DE-188 |
owner_facet | DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-11 DE-188 |
physical | 498 S. 235 mm x 155 mm |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Birkhäuser |
record_format | marc |
series | Progress in Mathematics |
series2 | Progress in Mathematics |
spelling | Puig, Lluís Verfasser aut Frobenius Categories versus Brauer Blocks the Grothendieck Group of the Frobenius Category of a Brauer Block Lluis Puig 1. Ed. Basel [u.a.] Birkhäuser 2009 498 S. 235 mm x 155 mm txt rdacontent n rdamedia nc rdacarrier Progress in Mathematics 274 Endliche Gruppe - Darstellungstheorie Brauer groups Finite groups Frobenius algebras Frobenius groups Grothendieck groups Representations of groups Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Endliche Gruppe (DE-588)4014651-0 gnd rswk-swf Endliche Gruppe (DE-588)4014651-0 s Darstellungstheorie (DE-588)4148816-7 s DE-604 Progress in Mathematics 274 (DE-604)BV000004120 274 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017188466&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Puig, Lluís Frobenius Categories versus Brauer Blocks the Grothendieck Group of the Frobenius Category of a Brauer Block Progress in Mathematics Endliche Gruppe - Darstellungstheorie Brauer groups Finite groups Frobenius algebras Frobenius groups Grothendieck groups Representations of groups Darstellungstheorie (DE-588)4148816-7 gnd Endliche Gruppe (DE-588)4014651-0 gnd |
subject_GND | (DE-588)4148816-7 (DE-588)4014651-0 |
title | Frobenius Categories versus Brauer Blocks the Grothendieck Group of the Frobenius Category of a Brauer Block |
title_auth | Frobenius Categories versus Brauer Blocks the Grothendieck Group of the Frobenius Category of a Brauer Block |
title_exact_search | Frobenius Categories versus Brauer Blocks the Grothendieck Group of the Frobenius Category of a Brauer Block |
title_full | Frobenius Categories versus Brauer Blocks the Grothendieck Group of the Frobenius Category of a Brauer Block Lluis Puig |
title_fullStr | Frobenius Categories versus Brauer Blocks the Grothendieck Group of the Frobenius Category of a Brauer Block Lluis Puig |
title_full_unstemmed | Frobenius Categories versus Brauer Blocks the Grothendieck Group of the Frobenius Category of a Brauer Block Lluis Puig |
title_short | Frobenius Categories versus Brauer Blocks |
title_sort | frobenius categories versus brauer blocks the grothendieck group of the frobenius category of a brauer block |
title_sub | the Grothendieck Group of the Frobenius Category of a Brauer Block |
topic | Endliche Gruppe - Darstellungstheorie Brauer groups Finite groups Frobenius algebras Frobenius groups Grothendieck groups Representations of groups Darstellungstheorie (DE-588)4148816-7 gnd Endliche Gruppe (DE-588)4014651-0 gnd |
topic_facet | Endliche Gruppe - Darstellungstheorie Brauer groups Finite groups Frobenius algebras Frobenius groups Grothendieck groups Representations of groups Darstellungstheorie Endliche Gruppe |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017188466&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000004120 |
work_keys_str_mv | AT puiglluis frobeniuscategoriesversusbrauerblocksthegrothendieckgroupofthefrobeniuscategoryofabrauerblock |