Energy optimization in process systems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Elsevier Science
2009
|
Ausgabe: | 1. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | XVII, 751 S. graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035364736 | ||
003 | DE-604 | ||
005 | 20200414 | ||
007 | t | ||
008 | 090312s2009 d||| |||| 00||| eng d | ||
015 | |a GBA8C5774 |2 dnb | ||
020 | |z 9780080451411 |c (hbk.) |9 978-0-08-045141-1 | ||
020 | |z 0080451411 |c (hbk.) |9 0-08-045141-1 | ||
035 | |a (OCoLC)264041508 | ||
035 | |a (DE-599)BVBBV035364736 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-29T | ||
050 | 0 | |a QC20.7.M27 | |
082 | 0 | |a 660.281 |2 22 | |
084 | |a VN 7300 |0 (DE-625)147616:253 |2 rvk | ||
100 | 1 | |a Sieniutycz, Stanislaw |d 1940- |e Verfasser |0 (DE-588)1208248626 |4 aut | |
245 | 1 | 0 | |a Energy optimization in process systems |c Stanislaw Sieniutycz ; Jacek Jeżowski |
250 | |a 1. ed. | ||
264 | 1 | |a Amsterdam [u.a.] |b Elsevier Science |c 2009 | |
300 | |a XVII, 751 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Chemical process control | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Chemical process control | |
650 | 4 | |a Mathematical optimization | |
650 | 0 | 7 | |a Chemischer Prozess |0 (DE-588)4147636-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Energieverbrauch |0 (DE-588)4014733-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Prozessoptimierung |0 (DE-588)4176074-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Chemischer Prozess |0 (DE-588)4147636-0 |D s |
689 | 0 | 1 | |a Prozessoptimierung |0 (DE-588)4176074-8 |D s |
689 | 0 | 2 | |a Energieverbrauch |0 (DE-588)4014733-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Jeżowski, Jacek |d 1950-2010 |e Sonstige |0 (DE-588)1195086784 |4 oth | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017168720&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017168720&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-017168720 |
Datensatz im Suchindex
_version_ | 1804138690457370624 |
---|---|
adam_text | Contents
Preface
Acknowledgements
χι
xix
Chapter
1:
Brief review of static optimization methods
1.1.
Introduction: Significance of Mathematical Models
1.2.
Unconstrained Problems
1.3.
Equality Constraints and
Lagrange
Multipliers
1.4.
Methods of Mathematical Programming
1.5.
Iterative Search Methods
1.6.
On Some Stochastic Optimization Techniques
Chapter
2:
Dynamic optimization problems
2.1.
Discrete Representations and Dynamic Programming
Algorithms
2.2.
Recurrence Equations
2.3.
Discrete Processes Linear with Respect to the Time Interval
2.4.
Discrete Algorithm of the Pontryagin s Type for
Processes Linear in
ΘΝ
2.5.
Hamilton-Jacobi-Bellman Equations for Continuous Systems
2.6.
Continuous Maximum Principle
2.7.
Calculus of Variations
2.8.
Viscosity Solutions and Non-smooth Analyses
2.9.
Stochastic Control and Stochastic Maximum Principle
Chapter
3:
Energy limits for thermal engines and heat-pumps at steady states
3.1.
Introduction: Role of Optimization in Determining
Thermodynamic Limits
3.2.
Classical Problem of Thermal Engine Driven by Heat Flux
3.3.
Toward Work Limits in Sequential Systems
3.4.
Energy Utilization and Heat-pumps
3.5.
Thermal Separation Processes
3.6.
Steady Chemical, Electrochemical and Other Systems
3.7.
Limits in Living Systems
3.8.
Final Remarks
Chapter
4:
Hamiltonian optimization of imperfect cascades
4.1.
Basic Properties of Irreversible Cascade Operations
with a Work Flux
1
1
4
7
11
13
17
45
45
47
51
55
58
70
73
76
84
85
85
90
109
112
116
117
123
124
127
127
Contents
4.2.
Description
of Imperfect Units in Terms of Carnot
Temperature Control
132
4.3.
Single-stage Formulae in a Model of Cascade Operation
138
4.4.
Work Optimization in Cascade by Discrete Maximum Principle
141
4.5.
Example
155
4.6.
Continuous Imperfect System with Two Finite Reservoirs
157
4.7.
Final Remarks
164
Chapter
5:
Maximum power from solar energy
167
5.1.
Introducing Carnot Controls for Modeling Solar-assisted
Operations
167
5.2.
Thermodynamics of Radiation
175
5.3.
Classical Exergy of Radiation
180
5.4.
Flux of Classical Exergy
184
5.5.
Efficiencies of Energy Conversion
186
5.6.
Towards a Dissipative Exergy of Radiation at Flow
187
5.7.
Basic Analytical Formulae of Steady Pseudo-Newtonian
Model
190
5.8.
Steady Non-Linear Models applying Stefan-Boltzmann
Equation
192
5.9.
Dynamical Theory for Pseudo-Newtonian Models
195
5.10.
Dynamical Models using the Stefan-Boltzmann Equation
204
5.11.
Towards the Hamilton-Jacobi-Bellman Approaches
211
5.12.
Final Remarks
212
Chapter
6:
Hamilton-Jacobi-Bellman theory of energy systems
215
6.1.
Introduction
215
6.2.
Dynamic Optimization of Power in a Finite-resource Process
216
6.3.
Two Different Works and Finite-Rate Exergies
219
6.4.
Some Aspects of Classical Analytical HJB Theory for
Continuous Systems
223
6.5.
HJB Equations for Non-Linear Power Generation Systems
225
6.6.
Analytical Solutions in Systems with Linear Kinetics
227
6.7.
Extensions for Systems with Non-Linear Kinetics and
Internal Dissipation
230
6.8.
Generalized Exergies for Non-Linear Systems with
Minimum Dissipation
232
6.9.
Final Remarks
235
Chapter
7:
Numerical optimization in allocation, storage and recovery
of thermal energy and resources
237
7.1.
Introduction
237
7.2.
A Discrete Model for a Non-Linear Problem of Maximum
Power from Radiation
239
Contents
vii
7.3.
Non-Constant Hamiltonians and Convergence of Discrete
DP Algorithms to Viscosity Solutions of HJB Equations
240
7.4.
Dynamic Programming Equation for Maximum Power
From Radiation
249
7.5.
Discrete Approximations and Time Adjoint as a
Lagrange
Multiplier
250
7.6.
Mean and Local Intensities in Discrete Processes
257
7.7.
Legendre Transform and Original Work Function
259
7.8.
Numerical Approaches Applying Dynamic Programming
261
7.9.
Dimensionality Reduction in Dynamic Programming
Algorithms
265
7.10.
Concluding Remarks
267
Chapter
8:
Optimal control of separation processes
271
8.1.
General Thermokinetic Issues
271
8.2.
Thermodynamic Balances toward Minimum Heat or Work
273
8.3.
Results for Irreversible Separations Driven by
Work or Heat
279
8.4.
Thermoeconomic Optimization of Thermal Drying with
Fluidizing Solids
282
8.5.
Solar Energy Application to Work-Assisted Drying
312
8.6.
Concluding Remarks
320
Chapter
9:
Optimal decisions for chemical and electrochemical reactors
321
9.1.
Introduction
321
9.2.
Driving Forces in Transport Processes and Chemical
Reactions
321
9.3.
General Non-Linear Equations of Macrokinetics
324
9.4.
Classical Chemical and Electrochemical Kinetics
325
9.5.
Inclusion of Non-Linear Transport Phenomena
327
9.6.
Continuous Description of Chemical (Electrochemical)
Kinetics and Transport Phenomena
329
9.7.
Towards Power Production in Chemical Systems
331
9.8.
Thermodynamics of Power Generation in Non-Isothermal
Chemical Engines
334
9.9.
Non-Isothermal Engines in Terms of Carnot Variables
338
9.10.
Entropy Production in Steady Systems
340
9.11.
Dissipative Availabilities in Dynamical Systems
341
9.12.
Characteristics of Steady Isothermal Engines
343
9.13.
Sequential Models for Dynamic Power Generators
351
9.14.
A Computational Algorithm for Dynamical Process with
Power Maximization
355
9.15.
Results of Computations
358
9.16.
Some Additional Comments
359
Contents
9.17.
Comparison of Chemical and Thermal Operations of
Power Production
360
9.18.
Fuel Cell Application
361
9.19.
Final Remarks
365
Chapter
10:
Energy limits and evolution in biological systems
367
10.1.
Introduction
367
10.2.
Energy and Size Limits
368
10.3.
Toward a Quantitative Description of Development
and Evolution of Species
375
10.4.
Significance of Complexity and Entropy
378
10.5.
Evolutions of Multiple Organs without Mutations
381
10.6.
Organisms with Mutations or Specializations of Organs
383
10.7.
A Variational Approach to the Dynamics of Evolution
384
10.8.
Concluding Remarks
388
Chapter
11:
Systems theory in thermal
&
chemical engineering
391
11.1.
Introduction
391
11.2.
System Energy Analyses
392
11.3.
Mathematical Modeling of Industrial Energy Management
392
11.4.
Linear Model of the Energy Balance for an Industrial Plant
and its Applications
395
11.5.
Non-Linear Mathematical Model of a Short-Term Balance
of Industrial Energy System
399
11.6.
Mathematical Optimization Model for the Preliminary
Design of Industrial Energy Systems
401
11.7.
Remarks on Diverse Methodologies and Link with
Ecological Criteria
406
11.8.
Control Thermodynamics for Explicitly Dynamical Systems
412
11.9.
Interface of Energy Limits, Structure Design,
Thermoeconomics and Ecology
414
11.10.
Towards the Thermoeconomics and Integration of
Heat Energy
425
Chapter
12:
Heat integration within process integration
427
Chapter
13:
Maximum heat recovery and its consequences for process system
design
437
13.1.
Introduction and Problem Formulation
437
13.2.
Composite Curve (CC) Plot
439
13.3.
Problem Table (PR
-Т)
Method
446
13.4.
Grand Composite Curve (GCC) Plot
450
13.5.
Special Topics in MER/MUC Calculations
454
13.6.
Summary and Further Reading
458
Contents ix
Chapter
14: Targeting
and supertargeting in heat exchanger network
design
461
14.1.
Targeting Stage in Overall Design Process
461
14.2.
Basis of Sequential Approaches for HEN Targeting
462
14.3.
Basis of Simultaneous Approaches for HEN Targeting
467
Chapter
15:
Minimum utility cost
(MUC)
target by optimization approaches
469
15.1.
Introduction and
MER
Problem Solution by Mathematical
Programming
469
15.2.
MUC
Problem Solution Methods
472
15.3.
Dual Matches
485
15.4.
Minimum Utility Cost under Disturbances
488
Chapter
16:
Minimum number of units
(MNU)
and minimum total surface
area
(MTA)
targets
495
16.1.
Introduction
495
16.2.
Minimum Number of Matches (MNM) Target
496
16.3.
Minimum Total Area for Matches (MTA-M) Target
515
16.4.
Minimum Number of Shells (MNS) Target
521
16.5.
Minimum Total Area for Shells (MTA-S) Target
525
Chapter
17:
Simultaneous HEN targeting for total annual cost
533
Chapter
18:
Heat exchanger network synthesis
547
18.1.
Introduction
547
18.2.
Sequential Approaches
548
18.3.
Simultaneous Approaches to HEN Synthesis
566
Chapter
19:
Heat exchanger network retrofit
583
19.1.
Introduction
583
19.2.
Network Pinch Method
586
19.3.
Simultaneous Approaches for HEN Retrofit
596
Chapter
20:
Approaches to water network design
613
20.1.
Introduction
613
20.2.
Mathematical Models and Data for Water
Network Problem
617
20.3.
Overview of Approaches in the Literature
621
References
659
Glossary of symbols
725
Index
735
Despite the vast research on energy optimization and process integration, there has, to date,
been no synthesis linking these together. This book fills the gap, presenting optimization and
integration in energy and process engineering. The content is based on the current literature
and includes innovative approaches developed by the authors.
Various thermal and chemical systems (heat and mass exchangers, thermal and water
networks, energy converters, recovery units, solar collectors, and separators) are considered.
Thermodynamics, kinetics and economics are used to formulate and solve problems with
constraints on process rates, equipment size, environmental parameters, and costs.
Comprehensive coverage of dynamic optimization of energy conversion systems and separation
units is provided; along with suitable computational algorithms for deterministic and stochastic
optimization approaches based on: nonlinear programming, dynamic programming, variational
calculus, Hamilton-Jacobi-Bellman theory, Pontryagin s maximum principles, and special
methods of process integration.
Integration of heat energy and process water within a total site is shown to be a significant
factor reducing production costs, in particular, costs of utilities for the chemical industry. This
integration involves systematic design and optimization of heat exchangers and water networks
(HEN and WN)
.
After presenting basic, insight-based Pinch Technology, systematic, optimization-
based sequential and simultaneous approaches to design HEN and WN are described. Special
consideration is given to the HEN design problem targeting stage, in view of its importance at
various levels of system design. Seleaed, advanced methods for HEN synthesis and retrofit are
presented. For WN design an innovative approach based on stochastic optimization is described
that accounts for both grassroot and revamp design scenarios.
•
Presents a unique synthesis of energy optimization and process integration that applies
scientific information from thermodynamics, kinetics, and systems theory
•
Discusses engineering applications including: power generation, resource upgrading,
radiation conversion and chemical transformation, in static and dynamic systems
•
Clarifies how to identify thermal and chemical constraints and incorporate them into
optimization models and solutions
|
any_adam_object | 1 |
author | Sieniutycz, Stanislaw 1940- |
author_GND | (DE-588)1208248626 (DE-588)1195086784 |
author_facet | Sieniutycz, Stanislaw 1940- |
author_role | aut |
author_sort | Sieniutycz, Stanislaw 1940- |
author_variant | s s ss |
building | Verbundindex |
bvnumber | BV035364736 |
callnumber-first | Q - Science |
callnumber-label | QC20 |
callnumber-raw | QC20.7.M27 |
callnumber-search | QC20.7.M27 |
callnumber-sort | QC 220.7 M27 |
callnumber-subject | QC - Physics |
classification_rvk | VN 7300 |
ctrlnum | (OCoLC)264041508 (DE-599)BVBBV035364736 |
dewey-full | 660.281 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 660 - Chemical engineering |
dewey-raw | 660.281 |
dewey-search | 660.281 |
dewey-sort | 3660.281 |
dewey-tens | 660 - Chemical engineering |
discipline | Chemie / Pharmazie |
edition | 1. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02152nam a2200493 c 4500</leader><controlfield tag="001">BV035364736</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200414 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090312s2009 d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA8C5774</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780080451411</subfield><subfield code="c">(hbk.)</subfield><subfield code="9">978-0-08-045141-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0080451411</subfield><subfield code="c">(hbk.)</subfield><subfield code="9">0-08-045141-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)264041508</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035364736</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC20.7.M27</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660.281</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 7300</subfield><subfield code="0">(DE-625)147616:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sieniutycz, Stanislaw</subfield><subfield code="d">1940-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1208248626</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Energy optimization in process systems</subfield><subfield code="c">Stanislaw Sieniutycz ; Jacek Jeżowski</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier Science</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 751 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical process control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical process control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chemischer Prozess</subfield><subfield code="0">(DE-588)4147636-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Energieverbrauch</subfield><subfield code="0">(DE-588)4014733-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prozessoptimierung</subfield><subfield code="0">(DE-588)4176074-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Chemischer Prozess</subfield><subfield code="0">(DE-588)4147636-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Prozessoptimierung</subfield><subfield code="0">(DE-588)4176074-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Energieverbrauch</subfield><subfield code="0">(DE-588)4014733-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jeżowski, Jacek</subfield><subfield code="d">1950-2010</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1195086784</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017168720&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017168720&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017168720</subfield></datafield></record></collection> |
id | DE-604.BV035364736 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:32:12Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017168720 |
oclc_num | 264041508 |
open_access_boolean | |
owner | DE-703 DE-29T |
owner_facet | DE-703 DE-29T |
physical | XVII, 751 S. graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Elsevier Science |
record_format | marc |
spelling | Sieniutycz, Stanislaw 1940- Verfasser (DE-588)1208248626 aut Energy optimization in process systems Stanislaw Sieniutycz ; Jacek Jeżowski 1. ed. Amsterdam [u.a.] Elsevier Science 2009 XVII, 751 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Chemical process control Mathematical optimization Chemischer Prozess (DE-588)4147636-0 gnd rswk-swf Energieverbrauch (DE-588)4014733-2 gnd rswk-swf Prozessoptimierung (DE-588)4176074-8 gnd rswk-swf Chemischer Prozess (DE-588)4147636-0 s Prozessoptimierung (DE-588)4176074-8 s Energieverbrauch (DE-588)4014733-2 s DE-604 Jeżowski, Jacek 1950-2010 Sonstige (DE-588)1195086784 oth Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017168720&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017168720&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Sieniutycz, Stanislaw 1940- Energy optimization in process systems Chemical process control Mathematical optimization Chemischer Prozess (DE-588)4147636-0 gnd Energieverbrauch (DE-588)4014733-2 gnd Prozessoptimierung (DE-588)4176074-8 gnd |
subject_GND | (DE-588)4147636-0 (DE-588)4014733-2 (DE-588)4176074-8 |
title | Energy optimization in process systems |
title_auth | Energy optimization in process systems |
title_exact_search | Energy optimization in process systems |
title_full | Energy optimization in process systems Stanislaw Sieniutycz ; Jacek Jeżowski |
title_fullStr | Energy optimization in process systems Stanislaw Sieniutycz ; Jacek Jeżowski |
title_full_unstemmed | Energy optimization in process systems Stanislaw Sieniutycz ; Jacek Jeżowski |
title_short | Energy optimization in process systems |
title_sort | energy optimization in process systems |
topic | Chemical process control Mathematical optimization Chemischer Prozess (DE-588)4147636-0 gnd Energieverbrauch (DE-588)4014733-2 gnd Prozessoptimierung (DE-588)4176074-8 gnd |
topic_facet | Chemical process control Mathematical optimization Chemischer Prozess Energieverbrauch Prozessoptimierung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017168720&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017168720&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT sieniutyczstanislaw energyoptimizationinprocesssystems AT jezowskijacek energyoptimizationinprocesssystems |