Heat transfer:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2009
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXXVII, 1107 S. Ill., graph. Darst. |
ISBN: | 9780521881074 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035342741 | ||
003 | DE-604 | ||
005 | 20120928 | ||
007 | t | ||
008 | 090303s2009 xxuad|| |||| 00||| eng d | ||
010 | |a 2008021961 | ||
020 | |a 9780521881074 |c hardback |9 978-0-521-88107-4 | ||
035 | |a (OCoLC)228503279 | ||
035 | |a (DE-599)BVBBV035342741 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 |a DE-91G |a DE-83 |a DE-859 | ||
050 | 0 | |a TJ260 | |
082 | 0 | |a 621.402/2 | |
084 | |a UG 2500 |0 (DE-625)145618: |2 rvk | ||
084 | |a MTA 720f |2 stub | ||
100 | 1 | |a Nellis, Gregory |e Verfasser |4 aut | |
245 | 1 | 0 | |a Heat transfer |c Gregory Nellis ; Sanford Klein |
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2009 | |
300 | |a XXXVII, 1107 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Chaleur - Transmission - Manuels d'enseignement supérieur | |
650 | 4 | |a Heat |x Transmission | |
650 | 0 | 7 | |a Wärmeübergang |0 (DE-588)4188877-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wärmeübertragung |0 (DE-588)4064211-2 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Wärmeübergang |0 (DE-588)4188877-7 |D s |
689 | 0 | 1 | |a Wärmeübertragung |0 (DE-588)4064211-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Klein, Sanford A. |d 1950- |e Verfasser |0 (DE-588)1023566028 |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017147014&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-017147014 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804138659729899520 |
---|---|
adam_text | CONTENTS
Preface
pagem
Acknowledgments ^
Study guide
xxiü
Nomenclature
jo^ü
1
ONE-DIMENSIONAL, STEADY-STATE CONDUCTION
· 1
1.1
Conduction Heat Transfer
1
1.1.1
Introduction
1
1.1.2
Thermal Conductivity
1
Thermal Conductivity of a Gas* (E
1 ) 5
1.2
Steady-State
1
-D Conduction without Generation
5
1.2.1
Introduction
5
1.2.2
The Plane Wall
5
1.2.3
The Resistance Concept
g
1.2.4
Resistance to Radial Conduction through a Cylinder
1
о
1.2.5
Resistance to Radial Conduction through a Sphere
1
1
1.2.6
Other Resistance Formulae
13
Convection Resistance
14
Contact Resistance
14
Radiation Resistance
16
EXAMPLE
1.2-1:
LIQUID OXYGEN DEWAR
17
1.3
Steady-State 1-D Conduction with Generation
24
1.3.1
Introduction
24
1.3.2
Uniform Thermal Energy Generation in a Plane Wall
24
1.3.3
Uniform Thermal Energy Generation in Radial Geometries
29
EXAMPLE
1.3-1:
MAGNETIC ABLATION
31
1.3.4
Spatially Non-Uniform Generation
37
EXAMPLE
1.3-2:
ABSORPTION IN A LENS
З8
1.4
Numerical Solutions to Steady-State
1
-D Conduction Problems
(EES)
44
1.4.1
Introduction
44
1.4.2
Numerical Solutions in
EES
45
1.4.3
Temperature-Dependent Thermal Conductivity
55
1.4.4
Alternative Rate Models
60
EXAMPLE
1.4-1:
FUEL ELEMENT
62
1.5
Numerical Solutions to Steady-State
1
-D Conduction Problems using
MATLAB
68
1.5.1
Introduction
68
1.5.2
Numerical Solutions in Matrix Format
69
1.5.3
Implementing a Numerical Solution in
MATLAB
71
*
Section can be found on the website that accompanies this book (www.cambridge.org/nellisandklein)
vii
viii Contents
1.5.4
Functions
77
1.5.5
Sparse Matrices
80
1.5.6
Temperature-Dependent Properties
82
EXAMPLE
1.5-1 :
THERMAL PROTECTION SYSTEM
84
1.6
Analytical Solutions for Constant Cross-Section Extended Surfaces
92
1.6.1
Introduction
92
1.6.2
The Extended Surface Approximation
92
1.6.3
Analytical Solution
95
1.6.4
Fin Behavior
103
1.6.5
Fin Efficiency and Resistance
105
EXAMPLE
1.6-1:
SOLDERING TUBES
110
1.6.6
Finned Surfaces
113
EXAMPLE
1.6-2:
THERMOELECTRIC HEAT SINK
117
1.6.7
Fin Optimization* (E2)
122
1.7
Analytical Solutions for Advanced Constant Cross-Section Extended Surfaces
122
1.7.1
Introduction
122
1.7.2
Additional Thermal Loads
122
EXAMPLE
1.7-1:
BENT-BEAM ACTUATOR
127
1.7.3
Moving Extended Surfaces
133
EXAMPLE
1.7-2:
DRAWING A WIRE
136
1.8
Analytical Solutions for Non-Constant Cross-Section Extended Surfaces
139
1.8.1
Introduction
139
1.8.2
Series Solutions
139
1.8.3
Bessel Functions
142
1.8.4
Rules for Using Bessel Functions
150
EXAMPLE
1.8-1:
PIPE IN A ROOF
155
EXAMPLE
1.8-2:
MAGNETIC ABLATION WITH BLOOD
PERFUSION
161
1.9
Numerical Solution to Extended Surface Problems
164
1.9.1
Introduction
164
EXAMPLE
1.9-1 :
TEMPERATURE SENSOR ERROR DUE TO MOUNTING
&
SELF HEATING
165
EXAMPLE
1.9-2:
CRYOGENIC CURRENT LEADS
171
Problems
185
References
201
2
TWO-DIMENSIONAL, STEADY-STATE CONDUCTION
· 202
2.1
Shape Factors
202
EXAMPLE
2.1 -1 :
MAGNETIC ABLATIVE POWER MEASUREMENT
205
2.2
Separation of Variables Solutions
207
2.2.1
Introduction
207
2.2.2
Separation of Variables
208
Requirements for using Separation of Variables
209
Separate the Variables
211
Solve the
Eigenproblem 212
Solve the Non-homogeneous Problem for each Eigenvalue
213
Obtain Solution for each Eigenvalue
214
Create the Series Solution and Enforce the Remaining Boundary Conditions
215
Summary of Steps
222
Section can be found on the website that accompanies this book (www.cambridge.org/nellisandklein)
Contents ¡x
2.2.3 Simple
Boundary Condition Transformations
224
EXAMPLE
2.2-1 :
TEMPERATURE
DISTRIBUTION IN A 2-D FIN
225
EXAMPLE
2.2-2:
CONSTRICTION RESISTANCE
236
2.3
Advanced Separation of Variables Solutions* (E3)
242
2.4
Superposition
242
2.4.1
Introduction
242
2.4.2
Superposition for 2-D Problems
245
2.5
Numerical Solutions to Steady-State 2-D Problems with
EES
250
2.5.1
Introduction
250
2.5.2
Numerical Solutions with
EES
251
2.6
Numerical Solutions to Steady-State 2-D Problems with
MATLAB
260
2.6.1
Introduction
260
2.6.2
Numerical Solutions with
MATLAB
260
2.6.3
Numerical Solution by Gauss-Seidel Iteration* (E4)
268
2.7
Finite Element Solutions
269
2.7.1
Introduction to FEHT* (E5)
269
2.7.2
The Galerkin Weighted Residual Method* (E6)
269
2.8
Resistance Approximations for Conduction Problems
269
2.8.1
Introduction
269
EXAMPLE
2.8-1:
RESISTANCE OF A BRACKET
270
2.8.2
Isothermal and Adiabatic Resistance Limits
272
2.8.3
Average Area and Average Length Resistance Limits
275
EXAMPLE
2.8-2:
RESISTANCE OF A SQUARE CHANNEL
276
2.9
Conduction through Composite Materials
278
2.9.1
Effective Thermal Conductivity
278
EXAMPLE
2.9-1:
FIBER OPTIC BUNDLE
282
Problems
290
References
301
3
TRANSIENT CONDUCTION
· 302
3.1
Analytical Solutions to 0-D Transient Problems
302
3.1.1
Introduction
302
3.1.2
The Lumped Capacitance Assumption
302
3.1.3
The Lumped Capacitance Problem
303
3.1.4
The Lumped Capacitance Time Constant
304
EXAMPLE
3.1-1:
DESIGN OF A CONVEYOR BELT
307
EXAMPLE
3.1-2:
SENSOR IN AN OSCILLATING TEMPERATURE ENVIRONMENT
310
3.2
Numerical Solutions to 0-D Transient Problems
317
3.2.1
Introduction
317
3.2.2
Numerical Integration Techniques
317
Euler s Method
318
Heun s Method
322
Runge-Kutta Fourth Order Method
326
Fully Implicit Method
328
Crank-Nicolson Method
330
Adaptive Step-Size and
EES
Integral Command
332
MATLAB s Ordinary Differential Equation Solvers
335
EXAMPLE
3.2-1
(A): OVEN BRAZING
(EES)
339
EXAMPLE
3.2-1
(В):
OVEN BRAZING
(MATLAB)
344
*
Section can be found on the website that accompanies this book (www.cambridge.org/nellisandkle
in)
x
Contents
3.3
Semi-Infinite
1-D
Transient
Problems 348
3.3.1
Introduction
348
3.3.2
The Diffusive Time Constant
348
EXAMPLE
3.3-1 :
TRANSIENT RESPONSE OF A TANK WALL
351
3.3.3
The Self-Similar Solution
354
3.3.4
Solutions to other Semi-Infinite Problems
361
EXAMPLE
3.3-2:
QUENCHING A COMPOSITE STRUCTURE
363
3.4
The Laplace Transform
369
3.4.1
Introduction
369
3.4.2
The Laplace Transformation
370
Laplace Transformations with Tables
371
Laplace Transformations with Maple
371
3.4.3
The Inverse Laplace Transform
372
Inverse Laplace Transform with Tables and the Method of Partial Fractions
373
Inverse Laplace Transformation with Maple
376
3.4.4
Properties of the Laplace Transformation
378
3.4.5
Solution to Lumped Capacitance Problems
380
3.4.6
Solution to Semi-Infinite Body Problems
386
EXAMPLE
3.4-1 :
QUENCHING OF A SUPERCONDUCTOR
391
3.5
Separation of Variables for Transient Problems
395
3.5.1
Introduction
395
3.5.2
Separation of Variables Solutions for Common Shapes
396
The Plane Wall
396
The Cylinder
401
The Sphere
403
EXAMPLE
3.5-1 :
MATERIAL PROCESSING IN A RADIANT OVEN
405
3.5.3
Separation of Variables Solutions in Cartesian Coordinates
408
Requirements for using Separation of Variables
409
Separate the Variables
410
Solve the
Eigenproblem 411
Solve the Non-homogeneous Problem for each Eigenvalue
413
Obtain a Solution for each Eigenvalue
414
Create the Series Solution and Enforce the Initial Condition
414
Limits of the Separation of Variables Solution
417
EXAMPLE
3.5-2:
TRANSIENT RESPONSE OF A TANK WALL (REVISITED)
420
3.5.4
Separation of Variables Solutions in Cylindrical Coordinates* (E7)
427
3.5.5
Non-homogeneous Boundary Conditions* (E8)
428
3.6
Duhamel s Theorem* (E9)
428
3.7
Complex Combination*
(ЕЮ)
428
3.8
Numerical Solutions to 1-D Transient Problems
428
3.8.1
Introduction
428
3.8.2
Transient Conduction in a Plane Wall
429
Euler s Method
432
Fully Implicit Method
438
Heun s Method
442
Runge-Kutta 4th Order Method
445
Crank-Nicolson Method
449
EES
Integral Command
452
MATLAB s Ordinary Differential Equation Solvers
453
ł
Section can be found on the website that accompanies this book (www.cambridge.org/nellisandklein)
Contents
x¡
EXAMPLE
3.8-1 :
TRANSIENT RESPONSE OF A BENT-BEAM ACTUATOR
457
3.8.3
Temperature-Dependent Properties
463
3.9
Reduction of Multi-Dimensional Transient Problems* (EH)
468
Problems
469
References
482
4
EXTERNAL FORCED CONVECTION
· 483
4.1
Introduction to Laminar Boundary Layers
483
4.1.1
Introduction
483
4.1.2
The Laminar Boundary Layer
484
A Conceptual Model of the Laminar Boundary Layer
485
A Conceptual Model of the Friction Coefficient and Heat Transfer Coefficient
488
The Reynolds Analogy
492
4.1.3
Local and Integrated Quantities
494
4.2
The Boundary Layer Equations
495
4.2.1
Introduction
495
4.2.2
The Governing Equations for Viscous Fluid Flow
495
The Continuity Equation
495
The Momentum Conservation Equations
496
The Thermal Energy Conservation Equation
498
4.2.3
The Boundary Layer Simplifications
500
The Continuity Equation
500
The
х
-Momentum Equation
501
The y-Momentum Equation
502
The Thermal Energy Equation
503
4.3
Dimensional Analysis in Convection
506
4.3.1
Introduction
506
4.3.2
The Dimensionless Boundary Layer Equations
508
The Dimensionless Continuity Equation
508
The Dimensionless Momentum Equation in the Boundary Layer
509
The Dimensionless Thermal Energy Equation in the Boundary Layer
509
4.3.3
Correlating the Solutions of the Dimensionless Equations
511
The Friction and Drag Coefficients
51
1
The Nusselt Number
513
EXAMPLE
4.3-1 :
SUB-SCALE TESTING OF A CUBE-SHAPED MODULE
515
4.3.4
The Reynolds Analogy (revisited)
520
4.4
Self-Similar Solution for Laminar Flow over a Flat Plate
521
4.4.1
Introduction
521
4.4.2
The Blasius Solution
522
The Problem Statement
522
The Similarity Variables
522
The Problem Transformation
526
Numerical Solution
530
4.4.3
The Temperature Solution
535
The Problem Statement
535
The Similarity Variables
536
The Problem Transformation
536
Numerical Solution
538
4.4.4
The Falkner-Skan Transformation* (E1
2) 542
*
Section can be found on the website that accompanies this book (www.cambridge.org/nellisandklein)
x¡¡
Contents
4.5 Turbulent
Boundary Layer Concepts
542
4.5.1
Introduction
542
4.5.2
A Conceptual Model of the Turbulent Boundary Layer
543
4.6
The Reynolds Averaged Equations
548
4.6.1
Introduction
548
4.6.2
The Averaging Process
549
The Reynolds A veraged Continuity Equation
550
The Reynolds A veraged Momentum Equation
551
The Reynolds A veraged Thermal Energy Equation
554
4.7
The Laws of the Wall
556
4.7.1
Introduction
556
4.7.2
Inner Variables
557
4.7.3
Eddy Diffusivity of Momentum
560
4.7.4
The Mixing Length Model
561
4.7.5
The Universal Velocity Profile
562
4.7.6
Eddy Diffusivity of Momentum Models
565
4.7.7
Wake Region
566
4.7.8
Eddy Diffusivity of Heat Transfer
567
4.7.9
The Thermal Law of the Wall
568
4.8
Integral Solutions
571
4.8.1
Introduction
571
4.8.2
The Integral Form of the Momentum Equation
571
Derivation of the Integral Form of the Momentum Equation
571
Application of the Integral Form of the Momentum Equation
575
EXAMPLE
4.8-1:
PLATE WITH TRANSPIRATION
580
4.8.3
The Integral Form of the Energy Equation
584
Derivation of the Integral Form of the Energy Equation
584
Application of the Integral Form of the Energy Equation
587
4.8.4
Integral Solutions for Turbulent Flows
591
4.9
External Flow Correlations
593
4.9.1
Introduction
593
4.9.2
Flow over a Flat Plate
593
Friction Coefficient
593
Nusselt Number
598
EXAMPLE
4.9-1:
PARTIALLY SUBMERGED
PUTE 603
Unheated Starting Length
606
Constant Heat Flux
606
Flow over a Rough Plate
607
4.9.3
Flow across a Cylinder
609
Drag Coefficient
611
Nusselt Number
613
EXAMPLE
4.9-2:
HOT WIRE ANEMOMETER
615
Flow across a Bank of Cylinders
617
Non-
Circular Extrusions
617
4.9.4
Flow past a Sphere
618
EXAMPLE
4.9-3:
BULLET TEMPERATURE
620
Problems
624
References
633
*
Section can be found on the website that accompanies this book (www.cambridge.org/nellisandklein)
Contents xiii
5
INTERNAL FORCED CONVECTION
· 635
5.1
Internal Flow Concepts
635
5.1.1
Introduction
535
5.1.2
Momentum Considerations
635
The Mean Velocity
637
The Laminar Hydrodynamic Entry Length
638
Turbulent Internal Flow
638
The Turbulent Hydrodynamic Entry Length
640
The Friction Factor
641
5.1.3
Thermal Considerations
644
The Mean Temperature
644
The Heat Transfer Coefficient and Nusselt Number
645
The Laminar Thermal Entry Length
646
Turbulent Internal Flow
648
5.2
Internal Flow Correlations
649
5.2.1
Introduction
649
5.2.2
Flow Classification
650
5.2.3
The Friction Factor
650
Laminar Flow
651
Turbulent Flow
654
EES
Internal Flow Convection Library
656
EXAMPLE
5.2-1:
FILLING A WATERING TANK
657
5.2.4
The Nusselt Number
661
Laminar Flow
662
Turbulent Flow
667
EXAMPLE
5.2-2:
DESIGN OF AN AIR HEATER
668
5.3
The Energy Balance
671
5.3.1
Introduction
671
5.3.2
The Energy Balance
671
5.3.3
Prescribed Heat Flux
673
Constant Heat Flux
674
5.3.4
Prescribed Wall Temperature
674
Constant Wall Temperature
674
5.3.5
Prescribed External Temperature
675
EXAMPLE
5.3-1 :
ENERGY RECOVERY WITH AN ANNULAR JACKET
677
5.4
Analytical Solutions for Internal Flows
686
5.4.1
Introduction
686
5.4.2
The Momentum Equation
686
Fully Developed Flow between Parallel Plates
687
The Reynolds Equation* (E1
3) 689
Fully Developed Flow in a Circular
Tubď (E1
4) 689
5.4.3
The Thermal Energy Equation
689
Fully Developed Flow through a Round Tube with a Constant Heat Flux
691
Fully Developed Flow through Parallel Plates with a Constant Heat Flux
695
5.5
Numerical Solutions to Internal Flow Problems
697
5.5.1
Introduction
697
5.5.2
Hydrodynamically Fully Developed Laminar Flow
698
EES
Integral Command 702
*
Section can be found on the website that accompanies this book (www.cambridge.org/nellisandklein)
x¡v
Contents
The
Euler
Technique
704
The Crank-Nicolson Technique
706
MATLAB s Ordinary Differential Equation Solvers
710
5.5.3
Hydrodynamically Fully Developed Turbulent Flow
712
Problems
723
References
734
6
NATURAL CONVECTION
· 735
6.1
Natural Convection Concepts
735
6.1.1
Introduction
735
6.1.2
Dimensionless Parameters for Natural Convection
735
Identification from Physical Reasoning
736
Identification from the Governing Equations
739
6.2
Natural Convection Correlations
741
6.2.1
Introduction
741
6.2.2
Plate
741
Heated or Cooled Vertical Plate
742
Horizontal Heated Upward Facing or Cooled Downward Facing Plate
744
Horizontal Heated Downward Facing or Cooled Upward Facing Plate
745
Plate at an Arbitrary Tilt Angle
747
EXAMPLE
6.2-1:
AIRCRAFT FUEL ULLAGE HEATER
748
6.2.3
Sphere
752
EXAMPLE
6.2-2:
FRUIT IN A WAREHOUSE
753
6.2.4
Cylinder
757
Horizontal Cylinder
757
Vertical Cylinder
758
6.2.5
Open Cavity
760
Vertical Parallel Plates
761
EXAMPLE
6.2-3:
HEAT SINK DESIGN
763
6.2.6
Enclosures
766
6.2.7
Combined Free and Forced Convection
768
EXAMPLE
6.2-4:
SOUR FLUX METER
769
6.3
Self-Similar Solution* (E1
5) 772
6.4
Integral Solution* (E1
6) 772
Problems
773
References
777
7
BOILING AND CONDENSATION
· 778
7.1
Introduction
778
7.2
Pool Boiling
779
7.2.1
Introduction
779
7.2.2
The Boiling Curve
780
7.2.3
Pool Boiling Correlations
784
EXAMPLE
7.2-1 :
COOLING AN ELECTRONICS MODULE USING NUCLEATE BOILING
786
7.3
Flow Boiling
790
7.3.1
Introduction
790
7.3.2
Flow Boiling Correlations
791
EXAMPLE
7.3-1 :
CARBON DIOXIDE EVAPORATING IN A TUBE
794
Section can be found on the website that accompanies this book (www.cambridge.org/nellisandklein)
Contents xv
7.4 Film
Condensation
798
7.4.1
Introduction
798
7.4.2
Solution
for Inertia-Free Film Condensation on a Vertical Wall
799
7.4.3
Correlations for Film Condensation
805
Vertical Wall 805
EXAMPLE
7.4-1:
WATER DISTILLATION DEVICE
807
Horizontal, Downward Facing Plate
810
Horizontal, Upward Facing Plate
811
Single Horizontal Cylinder
811
Bank of Horizontal Cylinders
811
Single Horizontal Finned Tube
811
7.5
Flow Condensation
812
7.5.1
Introduction
812
7.5.2
Flow Condensation Correlations
813
Problems
815
References
821
8
HEAT EXCHANGERS
· 823
8.1
Introduction to Heat Exchangers
823
8.1.1
Introduction
823
8.1.2
Applications of Heat Exchangers
823
8.1.3
Heat Exchanger Classifications and Flow Paths
824
8.1.4
Overall Energy Balances
828
8.1.5
Heat Exchanger Conductance
831
Fouling Resistance
831
EXAMPLE
8.1 -1 :
CONDUCTANCE OF A CROSS-FLOW HEAT EXCHANGER
832
8.1.6
Compact Heat Exchanger Correlations
838
EXAMPLE
8.1 -2:
CONDUCTANCE OF A CROSS-FLOW HEAT EXCHANGER (REVISITED)
841
8.2
The Log-Mean Temperature Difference Method
841
8.2.1
Introduction
841
8.2.2
LMTD Method for Counter-Flow and Parallel-Flow Heat Exchangers
842
8.2.3
LMTD Method for Shell-and-Tube and Cross-Flow Heat Exchangers
847
EXAMPLE
8.2-1 :
PERFORMANCE OF A CROSS-FLOW HEAT EXCHANGER
848
8.3
The Effectiveness-Wn/ Method
851
8.3.1
Introduction
851
8.3.2
The Maximum Heat Transfer Rate
852
8.3.3
Heat Exchanger Effectiveness
853
EXAMPLE
8.3-1 :
PERFORMANCE OF A CROSS-FLOW HEAT EXCHANGER (REVISITED)
858
8.3.4
Further Discussion of Heat Exchanger Effectiveness
861
Behavior as CR Approaches Zero
862
Behavior as NTU Approaches Zero
863
Behavior as NTU Becomes Infinite
864
Heat Exchanger Design
865
8.4
Pinch Point Analysis
867
8.4.1
Introduction
867
8.4.2
Pinch Point Analysis for a Single Heat Exchanger
867
8.4.3
Pinch Point Analysis for a Heat Exchanger Network
872
8.5
Heat Exchangers with Phase Change
876
*
Section can be found on the website that accompanies this book (www.cambridge.org/nellisandklein)
xv¡
Contents
8.5.1
Introduction
876
8.5.2
Sub-Heat Exchanger Model for Phase-Change
876
8.6
Numerical Model of Parallel- and Counter-Flow Heat Exchangers
888
8.6.1
Introduction
888
8.6.2
Numerical Integration of Governing Equations
888
Parallel-Flow Configuration
889
Counter-Flow Configuration* (EM)
896
8.6.3
Discretization into Sub-Heat Exchangers
897
Parallel-Flow Configuration
897
Counter-Flow Configuration* (E1
8) 902
8.6.4
Solution with Axial Conduction* (E1
9) 902
8.7
Axial Conduction in Heat Exchangers
903
8.7.1
Introduction
903
8.7.2
Approximate Models for Axial Conduction
905
Approximate Model at Low
λ
907
Approximate Model at High
λ
907
Temperature Jump Model
909
8.8
Perforated Plate Heat Exchangers
911
8.8.1
Introduction
911
8.8.2
Modeling Perforated Plate Heat Exchangers
913
8.9
Numerical Modeling of Cross-Flow Heat Exchangers
919
8.9.1
Introduction
919
8.9.2
Finite Difference Solution
920
Both Fluids Unmixed with Uniform Properties
920
Sortì
Fluids Unmixed with Temperature-Dependent Properties
927
One Fluid Mixed, One Fluid
Unmixeď (E20)
936
Both Fluids
Mixeď (E21)
936
8.10
Regenerators
937
8.10.1
Introduction
937
8.10.2
Governing Equations
939
8.10.3
Balanced, Symmetric Flow with No Entrained Fluid Heat Capacity
942
Utilization and Number of Transfer Units
942
Regenerator Effectiveness
944
8.10.4
Correlations for Regenerator Matrices
948
Packed Bed of Spheres
950
Screens
951
Triangular Passages
952
EXAMPLE
8.10-1:
AN ENERGY RECOVERY WHEEL
953
8.10.5
Numerical Model of a Regenerator with No Entrained Heat Capacity* (E22)
962
Problems
962
References
973
9
MASS TRANSFER* (E23)
· 974
Problems
974
10
RADIATION
· 979
10.1
Introduction to Radiation
979
10.1.1
Radiation
979
*
Section can be found on the website that accompanies this book (www.cambridge.org/nellisandklein)
Contents
xvj¡
10.1.2
The Electromagnetic Spectrum
980
10.2
Emission of Radiation by
a Blackbody
981
10.2.1
Introduction 981
10.2.2
Blackbody
Emission
982
Planck s Law
982
Blackbody
Emission in Specified Wa velength Bands
985
EXAMPLE
10.2-1:
UV RADIATION FROM THE SUN
987
10.3
Radiation Exchange between Black Surfaces
989
10.3.1
Introduction
989
10.3.2
View Factors
939
The Enclosure Rule 990
Reciprocity
991
Other View Factor Relationships
992
The Crossed and Uncrossed String Method
992
EXAMPLE
10.3-1 :
CROSSED AND UNCROSSED STRING METHOD
993
View Factor Library
996
EXAMPLE
10.3-2:
THE VIEW FACTOR LIBRARY
998
10.3.3
Blackbody
Radiation Calculations
1001
The Space Resistance
1
001
EXAMPLE
10.3-3:
APPROXIMATE TEMPERATURE OF THE EARTH
1002
N-Surface Solutions
1
0O6
EXAMPLE
10.3-4:
HEAT TRANSFER IN A RECTANGULAR ENCLOSURE
1007
EXAMPLE
10.3-5:
DIFFERENTIAL VIEW FACTORS: RADIATION EXCHANGE BETWEEN
PARALLEL PLATES
1009
10.4
Radiation Characteristics of Real Surfaces
1012
10.4.1
Introduction
1012
10.4.2
Emission of Real Materials
1012
Intensity
1012
Spectral, Directional Emissivity
1014
Hemispherical Emissivity
1014
Total Hemispherical Emissivity
1015
The Diffuse
Suđace
Approximation
1016
The Diffuse Gray Surface Approximation
1016
The Semi-Gray
Suđace
1016
10.4.3
Reflectivity, Absorptivity, and Transmittivity
1018
Diffuse and Specular Surfaces
1019
Hemispherical Reflectivity, Absorptivity, and Transmittivity
1020
Kirchoff
s Law
1020
Total Hemispherical Values
1022
The Diffuse Surface Approximation
1023
The Diffuse Gray Surface Approximation
1023
The Semi-Gray
Suđace
1023
EXAMPLE
10.4-1 :
ABSORPTIVITY AND EMISSIVITY OF A SOUR SELECTIVE SURFACE
1024
10.5
Diffuse Gray Surface Radiation Exchange
1027
10.5.1
Introduction
1027
10.5.2
Radiosity
1028
10.5.3
Gray Surface Radiation Calculations
1029
EXAMPLE
10.5-1 :
RADIATION SHIELD
1032
EXAMPLE
10.5-2:
EFFECT OF OVEN SURFACE PROPERTIES
1037
Section can be found on the website that accompanies this book (www.cambridge.org/nellisandklein)
xviü Contents
10.5.4
The F Parameter
1043
EXAMPLE
10.5-3:
RADIATION HEAT TRANSFER BETWEEN PARALLEL PLATES
1046
10.5.5
Radiation Exchange for Semi-Gray Surfaces
1050
EXAMPLE
10.5-4:
RADIATION EXCHANGE IN A DUCT WITH SEMI-GRAY SURFACES
1051
10.6
Radiation with other Heat Transfer Mechanisms
1055
10.6.1
Introduction
1055
10.6.2
When Is Radiation Important?
1055
10.6.3
Multi-Mode Problems
1057
10.7
The Monte Carlo Method
1058
10.7.1
Introduction
1058
10.7.2
Determination of View Factors with the Monte Carlo Method
1058
Select a Location on Surface
1 1060
Select the Direction of the Ray
1060
Determine whether the Ray from Surface
1
Strikes Surface
2 1061
10.7.3
Radiation Heat Transfer Determined by the Monte Carlo Method
1068
Problems
1077
References
1088
Appendices
1089
A.
1:
Introduction to
EES* (E24)
1089
A.2: Introduction to Maple (E25)
1089
A.3: Introduction to
MATLAB* (E26)
1089
A4:
Introduction to FEHT (E27)
1090
A.
5:
Introduction to Economics* (E28)
1090
Index
1091
Section can be found on the website that accompanies this book (www.cambridge.org/nellisandklein)
|
any_adam_object | 1 |
author | Nellis, Gregory Klein, Sanford A. 1950- |
author_GND | (DE-588)1023566028 |
author_facet | Nellis, Gregory Klein, Sanford A. 1950- |
author_role | aut aut |
author_sort | Nellis, Gregory |
author_variant | g n gn s a k sa sak |
building | Verbundindex |
bvnumber | BV035342741 |
callnumber-first | T - Technology |
callnumber-label | TJ260 |
callnumber-raw | TJ260 |
callnumber-search | TJ260 |
callnumber-sort | TJ 3260 |
callnumber-subject | TJ - Mechanical Engineering and Machinery |
classification_rvk | UG 2500 |
classification_tum | MTA 720f |
ctrlnum | (OCoLC)228503279 (DE-599)BVBBV035342741 |
dewey-full | 621.402/2 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.402/2 |
dewey-search | 621.402/2 |
dewey-sort | 3621.402 12 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Energietechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01799nam a2200457 c 4500</leader><controlfield tag="001">BV035342741</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120928 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090303s2009 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2008021961</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521881074</subfield><subfield code="c">hardback</subfield><subfield code="9">978-0-521-88107-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)228503279</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035342741</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-859</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ260</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.402/2</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 2500</subfield><subfield code="0">(DE-625)145618:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MTA 720f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nellis, Gregory</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Heat transfer</subfield><subfield code="c">Gregory Nellis ; Sanford Klein</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXVII, 1107 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chaleur - Transmission - Manuels d'enseignement supérieur</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat</subfield><subfield code="x">Transmission</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wärmeübergang</subfield><subfield code="0">(DE-588)4188877-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wärmeübertragung</subfield><subfield code="0">(DE-588)4064211-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wärmeübergang</subfield><subfield code="0">(DE-588)4188877-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Wärmeübertragung</subfield><subfield code="0">(DE-588)4064211-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Klein, Sanford A.</subfield><subfield code="d">1950-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1023566028</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017147014&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017147014</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV035342741 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:31:42Z |
institution | BVB |
isbn | 9780521881074 |
language | English |
lccn | 2008021961 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017147014 |
oclc_num | 228503279 |
open_access_boolean | |
owner | DE-703 DE-91G DE-BY-TUM DE-83 DE-859 |
owner_facet | DE-703 DE-91G DE-BY-TUM DE-83 DE-859 |
physical | XXXVII, 1107 S. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Cambridge Univ. Press |
record_format | marc |
spelling | Nellis, Gregory Verfasser aut Heat transfer Gregory Nellis ; Sanford Klein Cambridge [u.a.] Cambridge Univ. Press 2009 XXXVII, 1107 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Chaleur - Transmission - Manuels d'enseignement supérieur Heat Transmission Wärmeübergang (DE-588)4188877-7 gnd rswk-swf Wärmeübertragung (DE-588)4064211-2 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Wärmeübergang (DE-588)4188877-7 s Wärmeübertragung (DE-588)4064211-2 s 1\p DE-604 Klein, Sanford A. 1950- Verfasser (DE-588)1023566028 aut Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017147014&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Nellis, Gregory Klein, Sanford A. 1950- Heat transfer Chaleur - Transmission - Manuels d'enseignement supérieur Heat Transmission Wärmeübergang (DE-588)4188877-7 gnd Wärmeübertragung (DE-588)4064211-2 gnd |
subject_GND | (DE-588)4188877-7 (DE-588)4064211-2 (DE-588)4123623-3 |
title | Heat transfer |
title_auth | Heat transfer |
title_exact_search | Heat transfer |
title_full | Heat transfer Gregory Nellis ; Sanford Klein |
title_fullStr | Heat transfer Gregory Nellis ; Sanford Klein |
title_full_unstemmed | Heat transfer Gregory Nellis ; Sanford Klein |
title_short | Heat transfer |
title_sort | heat transfer |
topic | Chaleur - Transmission - Manuels d'enseignement supérieur Heat Transmission Wärmeübergang (DE-588)4188877-7 gnd Wärmeübertragung (DE-588)4064211-2 gnd |
topic_facet | Chaleur - Transmission - Manuels d'enseignement supérieur Heat Transmission Wärmeübergang Wärmeübertragung Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017147014&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT nellisgregory heattransfer AT kleinsanforda heattransfer |