Computational geometry of positive definite quadratic forms: polyhedral reduction theories, algorithms and applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Providence, R.I.
American Mathematical Society
2008
|
Schriftenreihe: | University lecture series
48 |
Schlagworte: | |
Beschreibung: | XV, 162 S. Ill. 21 cm |
ISBN: | 082184735X 9780821847350 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV035312083 | ||
003 | DE-604 | ||
005 | 20100419 | ||
007 | t | ||
008 | 090216s2008 gw a||| m||| 00||| eng d | ||
015 | |a 08,H07,0936 |2 dnb | ||
016 | 7 | |a 989166929 |2 DE-101 | |
020 | |a 082184735X |9 0-8218-4735-X | ||
020 | |a 9780821847350 |9 978-0-8218-4735-0 | ||
035 | |a (OCoLC)635083503 | ||
035 | |a (DE-599)DNB989166929 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE | ||
049 | |a DE-355 |a DE-91 | ||
082 | 0 | |a 512.75 |2 22//ger | |
082 | 0 | |a 512.75 |2 22/ger | |
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
084 | |a MAT 530f |2 stub | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Schürmann, Achill |d 1973- |e Verfasser |0 (DE-588)122475488 |4 aut | |
245 | 1 | 0 | |a Computational geometry of positive definite quadratic forms |b polyhedral reduction theories, algorithms and applications |c Achill Schürmann |
264 | 1 | |a Providence, R.I. |b American Mathematical Society |c 2008 | |
300 | |a XV, 162 S. |b Ill. |c 21 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a University lecture series |v 48 | |
502 | |a Zugl.: Magdeburg, Univ., Habil.-Schr., 2008 | ||
650 | 0 | 7 | |a Positive Definitheit |0 (DE-588)4382343-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quadratische Form |0 (DE-588)4128297-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algorithmische Geometrie |0 (DE-588)4130267-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Diskrete Geometrie |0 (DE-588)4130271-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Polyedrische Charakterisierung |0 (DE-588)4175163-2 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Quadratische Form |0 (DE-588)4128297-8 |D s |
689 | 0 | 1 | |a Polyedrische Charakterisierung |0 (DE-588)4175163-2 |D s |
689 | 0 | 2 | |a Diskrete Geometrie |0 (DE-588)4130271-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Quadratische Form |0 (DE-588)4128297-8 |D s |
689 | 1 | 1 | |a Positive Definitheit |0 (DE-588)4382343-9 |D s |
689 | 1 | 2 | |a Algorithmische Geometrie |0 (DE-588)4130267-9 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
830 | 0 | |a University lecture series |v 48 |w (DE-604)BV004153846 |9 48 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-017116813 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804138616755060736 |
---|---|
any_adam_object | |
author | Schürmann, Achill 1973- |
author_GND | (DE-588)122475488 |
author_facet | Schürmann, Achill 1973- |
author_role | aut |
author_sort | Schürmann, Achill 1973- |
author_variant | a s as |
building | Verbundindex |
bvnumber | BV035312083 |
classification_rvk | SK 240 |
classification_tum | MAT 530f |
ctrlnum | (OCoLC)635083503 (DE-599)DNB989166929 |
dewey-full | 512.75 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.75 |
dewey-search | 512.75 |
dewey-sort | 3512.75 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02259nam a2200577 cb4500</leader><controlfield tag="001">BV035312083</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100419 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090216s2008 gw a||| m||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,H07,0936</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">989166929</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">082184735X</subfield><subfield code="9">0-8218-4735-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780821847350</subfield><subfield code="9">978-0-8218-4735-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)635083503</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB989166929</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.75</subfield><subfield code="2">22//ger</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.75</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 530f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schürmann, Achill</subfield><subfield code="d">1973-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122475488</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational geometry of positive definite quadratic forms</subfield><subfield code="b">polyhedral reduction theories, algorithms and applications</subfield><subfield code="c">Achill Schürmann</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, R.I.</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 162 S.</subfield><subfield code="b">Ill.</subfield><subfield code="c">21 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">University lecture series</subfield><subfield code="v">48</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="a">Zugl.: Magdeburg, Univ., Habil.-Schr., 2008</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Positive Definitheit</subfield><subfield code="0">(DE-588)4382343-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quadratische Form</subfield><subfield code="0">(DE-588)4128297-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algorithmische Geometrie</subfield><subfield code="0">(DE-588)4130267-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diskrete Geometrie</subfield><subfield code="0">(DE-588)4130271-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polyedrische Charakterisierung</subfield><subfield code="0">(DE-588)4175163-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quadratische Form</subfield><subfield code="0">(DE-588)4128297-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Polyedrische Charakterisierung</subfield><subfield code="0">(DE-588)4175163-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Diskrete Geometrie</subfield><subfield code="0">(DE-588)4130271-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Quadratische Form</subfield><subfield code="0">(DE-588)4128297-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Positive Definitheit</subfield><subfield code="0">(DE-588)4382343-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Algorithmische Geometrie</subfield><subfield code="0">(DE-588)4130267-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">University lecture series</subfield><subfield code="v">48</subfield><subfield code="w">(DE-604)BV004153846</subfield><subfield code="9">48</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017116813</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV035312083 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:31:01Z |
institution | BVB |
isbn | 082184735X 9780821847350 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017116813 |
oclc_num | 635083503 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-91 DE-BY-TUM |
owner_facet | DE-355 DE-BY-UBR DE-91 DE-BY-TUM |
physical | XV, 162 S. Ill. 21 cm |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | American Mathematical Society |
record_format | marc |
series | University lecture series |
series2 | University lecture series |
spelling | Schürmann, Achill 1973- Verfasser (DE-588)122475488 aut Computational geometry of positive definite quadratic forms polyhedral reduction theories, algorithms and applications Achill Schürmann Providence, R.I. American Mathematical Society 2008 XV, 162 S. Ill. 21 cm txt rdacontent n rdamedia nc rdacarrier University lecture series 48 Zugl.: Magdeburg, Univ., Habil.-Schr., 2008 Positive Definitheit (DE-588)4382343-9 gnd rswk-swf Quadratische Form (DE-588)4128297-8 gnd rswk-swf Algorithmische Geometrie (DE-588)4130267-9 gnd rswk-swf Diskrete Geometrie (DE-588)4130271-0 gnd rswk-swf Polyedrische Charakterisierung (DE-588)4175163-2 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Quadratische Form (DE-588)4128297-8 s Polyedrische Charakterisierung (DE-588)4175163-2 s Diskrete Geometrie (DE-588)4130271-0 s DE-604 Positive Definitheit (DE-588)4382343-9 s Algorithmische Geometrie (DE-588)4130267-9 s 1\p DE-604 University lecture series 48 (DE-604)BV004153846 48 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Schürmann, Achill 1973- Computational geometry of positive definite quadratic forms polyhedral reduction theories, algorithms and applications University lecture series Positive Definitheit (DE-588)4382343-9 gnd Quadratische Form (DE-588)4128297-8 gnd Algorithmische Geometrie (DE-588)4130267-9 gnd Diskrete Geometrie (DE-588)4130271-0 gnd Polyedrische Charakterisierung (DE-588)4175163-2 gnd |
subject_GND | (DE-588)4382343-9 (DE-588)4128297-8 (DE-588)4130267-9 (DE-588)4130271-0 (DE-588)4175163-2 (DE-588)4113937-9 |
title | Computational geometry of positive definite quadratic forms polyhedral reduction theories, algorithms and applications |
title_auth | Computational geometry of positive definite quadratic forms polyhedral reduction theories, algorithms and applications |
title_exact_search | Computational geometry of positive definite quadratic forms polyhedral reduction theories, algorithms and applications |
title_full | Computational geometry of positive definite quadratic forms polyhedral reduction theories, algorithms and applications Achill Schürmann |
title_fullStr | Computational geometry of positive definite quadratic forms polyhedral reduction theories, algorithms and applications Achill Schürmann |
title_full_unstemmed | Computational geometry of positive definite quadratic forms polyhedral reduction theories, algorithms and applications Achill Schürmann |
title_short | Computational geometry of positive definite quadratic forms |
title_sort | computational geometry of positive definite quadratic forms polyhedral reduction theories algorithms and applications |
title_sub | polyhedral reduction theories, algorithms and applications |
topic | Positive Definitheit (DE-588)4382343-9 gnd Quadratische Form (DE-588)4128297-8 gnd Algorithmische Geometrie (DE-588)4130267-9 gnd Diskrete Geometrie (DE-588)4130271-0 gnd Polyedrische Charakterisierung (DE-588)4175163-2 gnd |
topic_facet | Positive Definitheit Quadratische Form Algorithmische Geometrie Diskrete Geometrie Polyedrische Charakterisierung Hochschulschrift |
volume_link | (DE-604)BV004153846 |
work_keys_str_mv | AT schurmannachill computationalgeometryofpositivedefinitequadraticformspolyhedralreductiontheoriesalgorithmsandapplications |