Introduction to continuum mechanics:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Elsevier Butterworth-Heinemann
2010
|
Ausgabe: | 4. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. [511] - 512 |
Beschreibung: | XIV, 520 S. graph. Darst. |
ISBN: | 9780750685603 0750685603 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035286431 | ||
003 | DE-604 | ||
005 | 20151126 | ||
007 | t | ||
008 | 090203s2010 d||| |||| 00||| eng d | ||
010 | |a 2009003607 | ||
015 | |a GBA8B4483 |2 dnb | ||
020 | |a 9780750685603 |9 978-0-7506-8560-3 | ||
020 | |a 0750685603 |9 0-7506-8560-3 | ||
035 | |a (OCoLC)260207478 | ||
035 | |a (DE-599)BVBBV035286431 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-20 |a DE-29T |a DE-573 |a DE-860 |a DE-91G |a DE-83 | ||
050 | 0 | |a QA808.2 .L3 2010 | |
082 | 0 | |a 531 |2 22 | |
082 | 0 | |a 531 22 | |
084 | |a UF 2000 |0 (DE-625)145568: |2 rvk | ||
084 | |a PHY 210f |2 stub | ||
100 | 1 | |a Lai, Wei Michael |d 1930- |e Verfasser |0 (DE-588)10931204X |4 aut | |
245 | 1 | 0 | |a Introduction to continuum mechanics |c W. Michael Lai ; David Rubin ; Erhard Krempl |
250 | |a 4. ed. | ||
264 | 1 | |a Amsterdam [u.a.] |b Elsevier Butterworth-Heinemann |c 2010 | |
300 | |a XIV, 520 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturverz. S. [511] - 512 | ||
650 | 4 | |a Continuum mechanics | |
650 | 4 | |a Continuum mechanics | |
650 | 0 | 7 | |a Kontinuumsmechanik |0 (DE-588)4032296-8 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143389-0 |a Aufgabensammlung |2 gnd-content | |
655 | 7 | |8 2\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Kontinuumsmechanik |0 (DE-588)4032296-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Rubin, David |e Verfasser |4 aut | |
700 | 1 | |a Krempl, Erhard |e Verfasser |0 (DE-588)105990884 |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017091564&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-017091564 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804138581160099840 |
---|---|
adam_text | Table
of Contents
Preface to the Fourth Edition
...........................................................................................................................xiii
Chapter
1
Introduction
...........................................................................................1
1.1
Introduction
...............................................................................................................................1
1.2
What Is Continuum Mechanics?
..............................................................................................1
Chapter
2
Tensors
.................................................................................................3
Part
A: Indiciai
Notation
..................................................................................................................3
2.1
Summation Convention, Dummy Indices
................................................................................3
2.2
Free Indices
...............................................................................................................................4
2.3
The
Kronecker
Delta
.................................................................................................................5
2.4
The Permutation Symbol
..........................................................................................................6
2.5
Indiciai
Notation Manipulations
...............................................................................................7
Problems for Part A
............................................................................................................................8
PartB: Tensors
..................................................................................................................................9
2.6
Tensor: A Linear Transformation
.............................................................................................9
2.7
Components of a Tensor
.........................................................................................................11
2.8
Components of a Transformed Vector
...................................................................................14
2.9
Sum of Tensors
.......................................................................................................................16
2.10
Product of Two Tensors
.........................................................................................................16
2.11
Transpose of a Tensor
............................................................................................................18
2.12
Dyadic Product of Vectors
.....................................................................................................19
2.13
Trace of a Tensor
....................................................................................................................20
2.14
Identity Tensor and Tensor Inverse
........................................................................................20
2.15
Orthogonal Tensors
.................................................................................................................22
2.16
Transformation Matrix Between Two Rectangular Cartesian Coordinate
Systems
....................................................................................................................................24
2.17
Transformation Law for Cartesian Components of a Vector
................................................26
2.18
Transformation Law for Cartesian Components of a Tensor
...............................................27
2.19
Defining Tensor by Transformation Laws
.............................................................................29
2.20
Symmetric and Antisymmetric Tensors
.................................................................................31
2.21
The Dual Vector of an Antisymmetric Tensor
......................................................................32
2.22
Eigenvalues and Eigenvectors of a Tensor
............................................................................34
2.23
Principal Values and Principal Directions of Real Symmetric Tensors
...............................38
2.24
Matrix of a Tensor with Respect to Principal Directions
.....................................................39
2.25
Principal Scalar Invariants of a Tensor
..................................................................................40
Problems for Part
В
...........................................................................................................................41
vi
Table of Contents
Part C: Tensor Calculus
.................................................................................................................45
2.26
Tensor-Valued Functions of a Scalar
.....................................................................................45
2.27
Scalar Field and Gradient of a Scalar Function
....................................................................47
2.28
Vector Field and Gradient of a Vector Function
...................................................................50
2.29
Divergence of a Vector Field and Divergence of a Tensor Field
........................................50
2.30
Curl of a Vector Field
............................................................................................................52
2.31
Laplacian of a Scalar Field
.....................................................................................................52
2.32
Laplacian of a Vector Field
....................................................................................................52
Problems for Part
С
...........................................................................................................................53
Part D: Curvilinear Coordinates
...................................................................................................54
2.33
Polar Coordinates
....................................................................................................................54
2.34
Cylindrical Coordinates
..........................................................................................................59
2.35
Spherical Coordinates
.............................................................................................................61
Problems for Part
D
..........................................................................................................................67
Chapter
3
Kinematics of a Continuum
...................................................................69
3.1
Description of Motions of a Continuum
................................................................................69
3.2
Material Description and Spatial Description
........................................................................72
3.3
Material Derivative
.................................................................................................................74
3.4
Acceleration of a Particle
.......................................................................................................76
3.5
Displacement Field
.................................................................................................................81
3.6
Kinematic Equation for Rigid Body Motion
.........................................................................82
3.7
Infinitesimal Deformation
.......................................................................................................84
3.8
Geometrical Meaning of the Components of the Infinitesimal Strain
Tensor
......................................................................................................................................88
3.9
Principal Strain
........................................................................................................................93
3.10
Dilatation
.................................................................................................................................93
3.11
The Infinitesimal Rotation Tensor
.........................................................................................94
3.12
Time Rate of Change of a Material Element
........................................................................95
3.13
The Rate of Deformation Tensor
...........................................................................................95
3.14
The Spin Tensor and the Angular Velocity Vector
...............................................................98
3.15
Equation of Conservation of Mass
.........................................................................................99
3.16
Compatibility Conditions for Infinitesimal Strain Components
..........................................101
3.17
Compatibility Condition for Rate of Deformation Components
.........................................104
3.18
Deformation Gradient
...........................................................................................................105
3.19
Local Rigid Body Motion
.....................................................................................................106
3.20
Finite Deformation
................................................................................................................106
3.21
Polar Decomposition Theorem
.............................................................................................110
3.22
Calculation of Stretch and Rotation Tensors from the Deformation
Gradient
.................................................................................................................................
Ill
3.23
Right Cauchy-Green Deformation Tensor
...........................................................................114
3.24
Lagrangian Strain Tensor
.....................................................................................................118
Table
of Contents
vii
3.25
Left Cauchy-Green Deformation Tensor
.............................................................................121
3.26
Eulerian Strain Tensor
..........................................................................................................125
3.27
Change of Area Due to Deformation
...................................................................................128
3.28
Change of Volume Due to Deformation
..............................................................................129
3.29
Components of Deformation Tensors in Other Coordinates
...............................................131
3.30
Current Configuration as the Reference Configuration
.......................................................139
Appendix
3.1:
Necessary and Sufficient Conditions for Strain Compatibility
............................140
Appendix
3.2:
Positive Definite Symmetric Tensors
....................................................................143
Appendix
3.3:
The Positive Definite Root of U2
=
D
.................................................................143
Problems for Chapter
3...................................................................................................................145
Chapter
4
Stress and Integral Formulations of General
Principles
..........................................................................................155
4.1
Stress Vector
.........................................................................................................................155
4.2
Stress Tensor
.........................................................................................................................156
4.3
Components of Stress Tensor
...............................................................................................158
4.4
Symmetry of Stress Tensor: Principle of Moment of Momentum
.....................................159
4.5
Principal Stresses
..................................................................................................................162
4.6
Maximum Shearing Stresses
.................................................................................................162
4.7
Equations of Motion: Principle of Linear Momentum
........................................................168
4.8
Equations of Motion in Cylindrical and Spherical Coordinates
.........................................170
4.9
Boundary Condition for the Stress Tensor
..........................................................................171
4.10
Piola
Kirchhoff
Stress Tensors
.............................................................................................174
4.11
Equations of Motion Written with Respect to the Reference Configuration
.....................179
4.12
Stress Power
..........................................................................................................................180
4.13
Stress Power in Terms of the Piola-Kirchhoff Stress Tensors
............................................181
4.14
Rate of Heat Flow Into a Differential Element by Conduction
..........................................183
4.15
Energy Equation
....................................................................................................................184
4.16
Entropy Inequality
.................................................................................................................185
4.17
Entropy Inequality in Terms of the Helmholtz Energy Function
.......................................186
4.18
Integral Formulations of the General Principles of Mechanics
..........................................187
Appendix
4.1:
Determination of Maximum Shearing Stress and the Planes on
Which It Acts
.........................................................................................................191
Problems for Chapter
4...................................................................................................................194
Chapter
5
The Elastic Solid
...............................................................................201
5.1
Mechanical Properties
...........................................................................................................201
5.2
Linearly Elastic Solid
...........................................................................................................204
Part A:
Isotropie
Linearly Elastic Solid
___________________________________________207
5.3 Isotropie
Linearly Elastic Solid
............................................................................................207
5.4
Young s Modulus, Poisson s Ratio, Shear Modulus, and Bulk Modulus
...........................209
5.5
Equations of the Infinitesimal Theory of Elasticity
............................................................213
viii Table of
Contents
5.6
Navier
Equations
of Motion for Elastic Medium
................................................................215
5.7
Navier
Equations in Cylindrical and Spherical Coordinates
...............................................216
5.8
Principle of Superposition
....................................................................................................218
A.I Plane Elastic Waves
............................................................................................................218
5.9
Plane Irrotational Waves
.......................................................................................................218
5.10
Plane Equivoluminal Waves
.................................................................................................221
5.11
Reflection of Plane Elastic Waves
.......................................................................................226
5.12
Vibration of an Infinite Plate
...............................................................................................229
A.2 Simple Extension, Torsion and Pure Bending
.................................................................231
5.13
Simple Extension
..................................................................................................................231
5.14
Torsion of a Circular Cylinder
.............................................................................................234
5.15
Torsion of a Noncircular Cylinder. St. Venant s Problem
..................................................239
5.16
Torsion of Elliptical Bar
.......................................................................................................240
5.17
Prandtl s Formulation of the Torsion Problem
....................................................................242
5.18
Torsion of a Rectangular Bar
...............................................................................................246
5.19
Pure Bending of a Beam
......................................................................................................247
A.3 Plane Stress and Plane Strain Solutions
..........................................................................250
5.20
Plane Strain Solutions
...........................................................................................................250
5.21
Rectangular Beam Bent by End Couples
.............................................................................253
5.22
Plane Stress Problem
............................................................................................................254
5.23
Cantilever Beam with End Load
..........................................................................................255
5.24
Simply Supported Beam Under Uniform Load
...................................................................258
5.25
Slender Bar Under Concentrated Forces and St. Venant s Principle
.................................260
5.26
Conversion for Strains Between Plane Strain and Plane Stress Solutions
.........................262
5.27
Two-Dimensional Problems in Polar Coordinates
...............................................................264
5.28
Stress Distribution Symmetrical About an Axis
..................................................................265
5.29
Displacements for Symmetrical Stress Distribution in Plane Stress Solution
....................265
5.30
Thick-Walled Circular Cylinder Under Internal and External Pressure
.............................267
5.31
Pure Bending of a Curved Beam
.........................................................................................268
5.32
Initial Stress in a Welded Ring
............................................................................................270
5.33
Airy Stress Function
ψ
=f(r) cos
ηθ
and
φ
=f(r) sin
ηθ
.................................................270
5.34
Stress Concentration Due to a Small Circular Hole in a Plate under Tension
..................274
5.35
Stress Concentration Due to a Small Circular Hole in a Plate under Pure Shear
.............276
5.36
Simple Radial Distribution of Stresses in a Wedge Loaded at the Apex
..........................277
5.37
Concentrated Line Load on a 2-D Half-Space: The Flamont Problem
..............................278
A.4 Elastostatic Problems Solved with Potential Functions
.................................................279
5.38
Fundamental Potential Functions for Elastostatic Problems
...............................................279
5.39
Kelvin Problem: Concentrated Force at the Interior of an Infinite Elastic Space
.............290
5.40
Boussinesq Problem: Normal Concentrated Load on an Elastic Half-Space
.....................293
5.41
Distributive Normal Load on the Surface of an Elastic Half-Space
..................................296
5.42
Hollow Sphere Subjected to Uniform Internal and External Pressure
...............................297
Table
of Contents
ix
5.43
Spherical Hole in a Tensile Field
.........................................................................................298
5.44
Indentation by a Rigid Flat-Ended Smooth Indenter on an Elastic Half-Space
................300
5.45
Indentation by a Smooth Rigid Sphere on an Elastic Half-Space
......................................302
Appendix 5A.1·. Solution of the Integral Equation in Section
5.45..............................................306
Problems for Chapter
5,
Part A
......................................................................................................309
Part B:
Anisotropie
Linearly Elastic Solid
................................................................................319
5.46
Constitutive Equations for an
Anisotropie
Linearly Elastic Solid
......................................319
5.47
Plane of Material Symmetry
.................................................................................................321
5.48
Constitutive Equation for a Monoclinic Linearly Elastic Solid
..........................................323
5.49
Constitutive Equation for an Orthotropic Linearly Elastic Solid
........................................324
5.50
Constitutive Equation for a Transversely
Isotropie
Linearly Elastic Material
...................325
5.51
Constitutive Equation for an
Isotropie
Linearly Elastic Solid
............................................327
5.52
Engineering Constants for an
Isotropie
Linearly Elastic Solid
...........................................328
5.53
Engineering Constants for a Transversely
Isotropie
Linearly Elastic Solid
.......................329
5.54
Engineering Constants for an Orthotropic Linearly Elastic Solid
......................................330
5.55
Engineering Constants for a Monoclinic Linearly Elastic Solid
........................................332
Problems for Part
В
.........................................................................................................................333
Part C:
Isotropie
Elastic Solid Under Large Deformation
......................................................334
5.56
Change of Frame
...................................................................................................................334
5.57
Constitutive Equation for an Elastic Medium Under Large Deformation
..........................338
5.58
Constitutive Equation for an
Isotropie
Elastic Medium
......................................................340
5.59
Simple Extension of an Incompressible
Isotropie
Elastic Solid
.........................................342
5.60
Simple Shear of an Incompressible
Isotropie
Elastic Rectangular Block
..........................343
5.61
Bending of an Incompressible
Isotropie
Rectangular Bar
...................................................344
5.62
Torsion and Tension of an Incompressible
Isotropie
Solid Cylinder
.................................347
Appendix 5C.1: Representation of
Isotropie
Tensor-Valued Functions
.......................................349
Problems for Part
С
.........................................................................................................................351
Chapter
6
Newtonian Viscous Fluid
....................................................................353
6.1
Fluids
.....................................................................................................................................353
6.2
Compressible and Incompressible Fluids
.............................................................................354
6.3
Equations of Hydrostatics
.....................................................................................................355
6.4
Newtonian Fluids
..................................................................................................................357
6.5
Interpretation of A and
μ
.......................................................................................................358
6.6
Incompressible Newtonian Fluid
..........................................................................................359
6.7
Navier-Stokes Equations for Incompressible Fluids
............................................................360
6.8
Navier-Stokes Equations for Incompressible Fluids in Cylindrical and Spherical
Coordinates
............................................................................................................................364
6.9
Boundary Conditions
............................................................................................................365
6.10
Streamline, Pathline, Steady, Unsteady, Laminar, and Turbulent Flow
.............................365
6.11
Plane
Couette
Flow
...............................................................................................................368
Table
of Contents
6.12
Plane Poiseuille Flow
............................................................................................................368
6.13
Hagen-Poiseuille Flow
..........................................................................................................371
6.14
Plane
Couette
Flow of Two Layers of Incompressible Viscous Fluids
.............................372
6.15
Couette
Flow
.........................................................................................................................374
6.16
Flow Near an Oscillating Plane
............................................................................................375
6.17
Dissipation Functions for Newtonian Fluids
........................................................................376
6.18
Energy Equation for a Newtonian Fluid
..............................................................................378
6.19
Vorticity Vector
....................................................................................................................379
6.20
Irrotational Flow
....................................................................................................................381
6.21
Irrotational Flow of an Inviscid Incompressible Fluid of Homogeneous
Density
...................................................................................................................................382
6.22
Irrotational Flows As Solutions of Navier-Stokes Equation
...............................................384
6.23
Vorticity Transport Equation for Incompressible Viscous Fluid with a Constant
Density
...................................................................................................................................385
6.24
Concept of a Boundary Layer
..............................................................................................388
6.25
Compressible Newtonian Fluid
............................................................................................389
6.26
Energy Equation in Terms of Enthalpy
...............................................................................390
6.27
Acoustic Wave
......................................................................................................................392
6.28
Irrotational, Barotropic Flows of an Inviscid Compressible Fluid
.....................................395
6.29
One-Dimensional Flow of a Compressible Fluid
................................................................398
6.30
Steady Flow of a Compressible Fluid Exiting a Large Tank Through a
Nozzle
....................................................................................................................................399
6.31
Steady Laminar Flow of a Newtonian Fluid in a Thin Elastic Tube: An
Application to Pressure-Flow Relation in a Pulmonary Blood Vessel
...............................401
Problems for Chapter
6...................................................................................................................403
Chapter
7
The Reynolds Transport Theorem and Applications
..............................411
7.1
Green s Theorem
...................................................................................................................411
7.2
Divergence Theorem
.............................................................................................................414
7.3
Integrals Over a Control Volume and Integrals Over a Material Volume
.........................417
7.4
The Reynolds Transport Theorem
........................................................................................418
7.5
The Principle of Conservation of Mass
...............................................................................420
7.6
The Principle of Linear Momentum
.....................................................................................422
7.7
Moving Frames
.....................................................................................................................427
7.8
A Control Volume Fixed with Respect to a Moving Frame
..............................................430
7.9
The Principle of Moment of Momentum
.............................................................................430
7.10
The Principle of Conservation of Energy
............................................................................432
7.11
The Entropy Inequality: The Second Law of Thermodynamics
.........................................436
Problems for Chapter
7...................................................................................................................438
Table
of Contents
xi
Chapter
8
Non-Newtonian Fluids
........................................................................443
Part A: Linear Viscoelastic Fluid
................................................................................................444
8.1
Linear Maxwell Fluid
...........................................................................................................444
8.2
A Generalized Linear Maxwell Fluid with Discrete Relaxation Spectra
...........................450
8.3
Integral Form of the Linear Maxwell Fluid and of the Generalized Linear
Maxwell Fluid with Discrete Relaxation Spectra
................................................................451
8.4
A Generalized Linear Maxwell Fluid with a Continuous Relaxation Spectrum
................452
8.5
Computation of Relaxation Spectrum and Relaxation Function
.........................................454
Part B: Nonlinear Viscoelastic Fluid
..........................................................................................456
8.6
Current Configuration as Reference Configuration
.............................................................456
8.7
Relative Deformation Gradient
.............................................................................................457
8.8
Relative Deformation Tensors
..............................................................................................459
8.9
Calculations of the Relative Deformation Tensor
...............................................................460
8.10
History of the Relative Deformation Tensor and Rivlin-Ericksen Tensors
.......................463
8.11
Rivlin-Ericksen Tensors in Terms of Velocity Gradient: The Recursive Formula
............468
8.12
Relation Between Velocity Gradient and Deformation Gradient
.......................................471
8.13
Transformation Law for the Relative Deformation Tensors Under a Change
of Frame
................................................................................................................................471
8.14
Transformation Law for Rivlin-Ericksen Tensors Under a Change of Frame
...................474
8.15
Incompressible Simple Fluid
................................................................................................474
8.16
Special Single Integral-Type Nonlinear Constitutive Equations
.........................................475
8.17
General Single Integral-Type Nonlinear Constitutive Equations
........................................478
8.18
Differential-Type Constitutive Equations for Incompressible Fluids
.................................481
8.19
Objective Rate of Stress
.......................................................................................................483
8.20
Rate-Type Constitutive Equations
........................................................................................487
Part C: Viscometric Flow of an Incompressible Simple Fluid
................................................491
8.21
Viscometric Flow
..................................................................................................................491
8.22
Stresses in Viscometric Flow of an Incompressible Simple Fluid
.....................................493
8.23
Channel Flow
........................................................................................................................495
8.24
Couette
Flow
.........................................................................................................................497
Appendix
8.1:
Gradient of Second-Order Tensor for Orthogonal Coordinates
...........................501
Problems for Chapter
8...................................................................................................................506
References
.......................................................................................................................................511
Index
.................................................................................................................................................513
|
any_adam_object | 1 |
author | Lai, Wei Michael 1930- Rubin, David Krempl, Erhard |
author_GND | (DE-588)10931204X (DE-588)105990884 |
author_facet | Lai, Wei Michael 1930- Rubin, David Krempl, Erhard |
author_role | aut aut aut |
author_sort | Lai, Wei Michael 1930- |
author_variant | w m l wm wml d r dr e k ek |
building | Verbundindex |
bvnumber | BV035286431 |
callnumber-first | Q - Science |
callnumber-label | QA808 |
callnumber-raw | QA808.2 .L3 2010 |
callnumber-search | QA808.2 .L3 2010 |
callnumber-sort | QA 3808.2 L3 42010 |
callnumber-subject | QA - Mathematics |
classification_rvk | UF 2000 |
classification_tum | PHY 210f |
ctrlnum | (OCoLC)260207478 (DE-599)BVBBV035286431 |
dewey-full | 531 53122 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531 531 22 |
dewey-search | 531 531 22 |
dewey-sort | 3531 |
dewey-tens | 530 - Physics |
discipline | Physik |
edition | 4. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02057nam a2200517 c 4500</leader><controlfield tag="001">BV035286431</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20151126 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090203s2010 d||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2009003607</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA8B4483</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780750685603</subfield><subfield code="9">978-0-7506-8560-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0750685603</subfield><subfield code="9">0-7506-8560-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)260207478</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035286431</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA808.2 .L3 2010</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531 22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 2000</subfield><subfield code="0">(DE-625)145568:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 210f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lai, Wei Michael</subfield><subfield code="d">1930-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)10931204X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to continuum mechanics</subfield><subfield code="c">W. Michael Lai ; David Rubin ; Erhard Krempl</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">4. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier Butterworth-Heinemann</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 520 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. [511] - 512</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuum mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuum mechanics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontinuumsmechanik</subfield><subfield code="0">(DE-588)4032296-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143389-0</subfield><subfield code="a">Aufgabensammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">2\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kontinuumsmechanik</subfield><subfield code="0">(DE-588)4032296-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rubin, David</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Krempl, Erhard</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)105990884</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017091564&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017091564</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143389-0 Aufgabensammlung gnd-content 2\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Aufgabensammlung Lehrbuch |
id | DE-604.BV035286431 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:30:28Z |
institution | BVB |
isbn | 9780750685603 0750685603 |
language | English |
lccn | 2009003607 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017091564 |
oclc_num | 260207478 |
open_access_boolean | |
owner | DE-703 DE-20 DE-29T DE-573 DE-860 DE-91G DE-BY-TUM DE-83 |
owner_facet | DE-703 DE-20 DE-29T DE-573 DE-860 DE-91G DE-BY-TUM DE-83 |
physical | XIV, 520 S. graph. Darst. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Elsevier Butterworth-Heinemann |
record_format | marc |
spelling | Lai, Wei Michael 1930- Verfasser (DE-588)10931204X aut Introduction to continuum mechanics W. Michael Lai ; David Rubin ; Erhard Krempl 4. ed. Amsterdam [u.a.] Elsevier Butterworth-Heinemann 2010 XIV, 520 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Literaturverz. S. [511] - 512 Continuum mechanics Kontinuumsmechanik (DE-588)4032296-8 gnd rswk-swf 1\p (DE-588)4143389-0 Aufgabensammlung gnd-content 2\p (DE-588)4123623-3 Lehrbuch gnd-content Kontinuumsmechanik (DE-588)4032296-8 s DE-604 Rubin, David Verfasser aut Krempl, Erhard Verfasser (DE-588)105990884 aut Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017091564&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lai, Wei Michael 1930- Rubin, David Krempl, Erhard Introduction to continuum mechanics Continuum mechanics Kontinuumsmechanik (DE-588)4032296-8 gnd |
subject_GND | (DE-588)4032296-8 (DE-588)4143389-0 (DE-588)4123623-3 |
title | Introduction to continuum mechanics |
title_auth | Introduction to continuum mechanics |
title_exact_search | Introduction to continuum mechanics |
title_full | Introduction to continuum mechanics W. Michael Lai ; David Rubin ; Erhard Krempl |
title_fullStr | Introduction to continuum mechanics W. Michael Lai ; David Rubin ; Erhard Krempl |
title_full_unstemmed | Introduction to continuum mechanics W. Michael Lai ; David Rubin ; Erhard Krempl |
title_short | Introduction to continuum mechanics |
title_sort | introduction to continuum mechanics |
topic | Continuum mechanics Kontinuumsmechanik (DE-588)4032296-8 gnd |
topic_facet | Continuum mechanics Kontinuumsmechanik Aufgabensammlung Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017091564&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT laiweimichael introductiontocontinuummechanics AT rubindavid introductiontocontinuummechanics AT kremplerhard introductiontocontinuummechanics |