Micro-process engineering: a comprehensive handbook 3 System, process and plant engineering
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
2009
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXI, 335 S. Ill., graph. Darst. |
ISBN: | 9783527315505 |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV035252330 | ||
003 | DE-604 | ||
005 | 20090406 | ||
007 | t | ||
008 | 090116s2009 ad|| |||| 00||| eng d | ||
020 | |a 9783527315505 |9 978-3-527-31550-5 | ||
035 | |a (OCoLC)634687191 | ||
035 | |a (DE-599)BVBBV035252330 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-29T |a DE-92 |a DE-634 |a DE-1046 |a DE-11 | ||
084 | |a VN 7300 |0 (DE-625)147616:253 |2 rvk | ||
245 | 1 | 0 | |a Micro-process engineering |b a comprehensive handbook |n 3 |p System, process and plant engineering |c ed. by Volker Hessel ... |
264 | 1 | |a Weinheim |b Wiley-VCH |c 2009 | |
300 | |a XXI, 335 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Mikroverfahrenstechnik |0 (DE-588)7660041-5 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Mikroverfahrenstechnik |0 (DE-588)7660041-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Hessel, Volker |d 1964- |e Sonstige |0 (DE-588)128736267 |4 oth | |
773 | 0 | 8 | |w (DE-604)BV035252316 |g 3 |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017057954&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-017057954 |
Datensatz im Suchindex
_version_ | 1804138531786850304 |
---|---|
adam_text | Contents
Preface XV
About the Editors XVII
List of Contributors XIX
Part I Microreactor Systems Design and Scale-up 1
1 Structured Multi-scale Process Systems Design and Engineering - The
Role of Microreactor Technology in Chemical Process Design 3
Michael Matlosz, Laurent Falk, and Jean-Marc Commenge
1.1 Introduction 3
1.2 Multi-scale Structuring for Sustainable
Intensification/Miniaturization 6
1.2.1 Multi-scale Design that Reconciles Intensification with
Sustainability 7
1.2.2 Detailed Comparison 10
1.2.2.1 Fed-batch Reactor 10
1.2.2.2 Tubular Reactor 12
1.2.2.3 Comparison of Continuous and Fed-batch Reactors 13
1.2.2.4 A Possible Solution: Multi-scale Design 13
1.3 Multi-scale Design: Requirements and Developments 15
1.3.1 Scale-up by Modeling 16
1.3.2 Numbering-up by Replication 17
1.3.3 Structured Multi-scale Design: a New Hybrid Approach 18
1.4 Conclusion 19
References 20
2 Reaction and Process System Analysis, Miniaturization
and Intensification Strategies 23
Jean-Marc Commenge and Laurent Falk
2.1 Introduction 23
2.2 Reactor Analysis for Further Intensification 24
Micro Process Engineering, Vol. 3: System, Process and Plant Engineering
Edited by V. Hessel, A. Renken, J.C. Schouten, and J.-I. Yoshida
Copyright © 2009 WILEY-VCH Verlag GmbH Co. KGaA, Weinheim
ISBN: 978-3-527-31550-5
VI Contents
2.2.1 Analysis of the Limiting Phenomenon 24
2.2.2 The Reference Time 25
2.2.3 The Fundamental Characteristic Times 26
2.2.4 Relation Between System Efficiency and Characteristic Times 26
2.2.5 Times Grading and Scale Dependence of the Phenomena
Hierarchy 29
2.2.6 The Global Operation Time as a Result of the Couplings 31
2.2.7 Comparison of the Global Time with the Fundamental Times 32
2.2.8 Effects Related to the Control of the Phenomena Hierarchy 33
2.3 Examples 33
2.3.1 Scales of Homogeneous Chemistry 33
2.3.2 Competitive Reactions and Mass-transfer Effect 35
2.4 Miniaturization and Intensification Strategies 37
2A.I Miniaturization without Hierarchy Change 38
2.4.2 Miniaturization with Hierarchy Change 40
2.4.3 Other Intensification Strategies 41
References 42
3 Principles and Guidelines for Selection of Microstructured Devices
for Mixing and Reaction 43
Ciinter Tekautz, Barbara Zechner, Lukas E. Wiesegger, and Dirk Kirschneck
3.1 Introduction 43
3.2 liquid-liquid Reactions 44
3.2.1 Introductory Remarks 44
3.2.2 Classification of Microreactors - Phase-contacting Principles 44
3.2.3 Criteria for Reactor Selection 45
3.2.3.1 Process Parameters (Temperature, Pressure, Throughput) 45
3.2.3.2 Mixing Performance 46
3.2.3.3 Residence Time Distribution 47
3.2.3.4 Ability for Scale-up or Scale-out 48
3.2.3.5 Usability 49
3.2.3.6 Reactor Material 49
3.2.4 liquid-Solid Reactions 50
3.3 Gas-Liquid Reactions 51
3.3.1 Introductory Remarks 51
3.3.2 Classification of Microreactors - Phase-contacting Principles 51
3.3.2.1 Continuous-Continuous Phase (Type A) 51
3.3.2.2 Disperse-Continuous Phase (Type B) 52
3.3.3 Criteria for Reactor Selection 53
3.3.3.1 Process Parameters (Temperature, Pressure, Throughput) 53
3.3.3.2 Reaction and Fluid Properties 54
3.3.3.3 Reactor Material 54
3.3.3.4 Affordability, Reliability and Sustainability 55
3.3.3.5 Ability for Scale-up or Scale-out 56
3.3.4 Microreactors for Gas-liquid Contacting 56
Contents VII
3.4 Catalytic Gas-phase Reactions 58
3.4.1 Introductory Remarks 58
3.4.2 Classification of Microreactors - Phase-contacting Principles 60
3.4.2.1 Packed-bed Microreactors 60
3.4.2.2 Catalytic Wall Microreactors 61
3.4.2.3 Catalytic Bed Microreactors 61
3.4.3 Criteria for Reactor Selection 61
3.4.3.1 Reactor Material 64
3.4.3.2 Control of Critical Parameters 64
3.4.3.3 Pressure Drop 65
3.4.3.4 Reactor Handling 65
3.4.3.5 Residence Time 65
3.4.3.6 Catalyst Deposition and Characterization 65
3.4.4 Purchasable Microreactors 66
References 67
4 Catalyst Development, Screening and Optimization 75
Andri C. van Veen, Yirk Schuurman, and Claude Mirodatos
4.1 Introduction 75
4.1.1 Impact of Fuel Nature 75
4.1.2 General Features of Coatings 77
4.1.3 On-board Systems Integration and Requirements 77
4.1.4 Laboratory-scale Requirements 78
4.2 Catalyst Developments: Requirements and Implemented Techniques for
Microstructure Coating 79
4.2.1 Specificity of Characterization Tools for Coated Catalysts 79
4.2.2 Coating Stability and Adhesion: State of the Art 80
4.2.2.1 State of the Art in Durable Coating Techniques from a Catalyst
Designer s Viewpoint 80
4.2.3 Characterization of Coating Adhesion 82
4.2.4 Deposition Techniques 82
4.2.4.1 Washcoating 82
4.2.4.2 Sol-Gel and CVD Methods 85
4.2.5 Other Requirements for Coating Optimization 87
4.3 Catalyst Screening in MSRs and Optimization from Reaction
Modeling 88
4.3.1 Catalyst Performance Testing in MSRs 88
4.3.1.1 Examples of Reforming in M S Rs 88
4.3.1.2 Examples of CO Clean-up in MSRs 89
4.3.2 Microstructured Reactors as Kinetic Devices 90
4.3.2.1 Criteria for Proper Reactor Operation 90
4.3.2.2 Existing links Between Kinetics and Catalyst Preparation
in MSRs? 93
4.4 Conclusions and Perspectives 94
References 96
VIII Contents
Part II Sensing, Analysis, and Control 99
5 Microtechnology and Process Analytics 101
Melvin V. Koch and Ray W. Chrisman
5.1 Introduction 101
5.2 Information Sharing in the Process Analytics Field 104
5.3 Characterization Needs for Microsystems 106
5.4 Sampling Specifics for Microscale Systems 108
5.5 Advantages of Using Microscale Systems for Process Development 110
5.6 Overview of Chemometrics in Process Analytics 110
5.7 New Sampling and Sensor Initiative 112
5.8 Various New Analytical Approaches that are Suited to Microscale
Systems 113
5.9 Conclusion 118
References 119
6 Optical In-line Spectroscopy in Microchemical Processes 121
Wolfgang Ferstl
6.1 Introduction 121
6.2 Optical Spectroscopy in Microchemical Processes 122
6.2.1 Spectroscopic Methods 122
6.2.2 Integration of Spectroscopic Techniques into a Microchemical
Process 124
6.3 Data Generation Using Optical In-line Spectroscopy 125
6.3.1 Non-concentration-based Information 125
6.3.2 In-line Quantification in Microchemical Processes 126
6.3.2.1 Classical (Univariate) Quantification 128
6.3.2.2 Multivariate Quantification of Complex Reaction Mixtures 130
6.4 Conclusions 133
References 133
7 On-line Monitoring of Reaction Kinetics in Microreactors Using
Mass Spectrometry and Micro-NMR Spectroscopy 135
Jacob Bart and Han Cardeniers
7.1 Introduction 135
7.2 On-line Monitoring by Micro-NMR Spectroscopy 136
7.2.1 Introduction 136
7.2.2 NMR Sensitivity 137
7.2.3 Spectral Resolution 137
7.2.3.1 Probe-induced line Broadening 137
7.2.3.2 Sample-induced Line Broadening 138
7.2.4 Approaches to High-resolution Micro-NMR 138
7.2.4.1 Solenoids 138
7.2.4.2 Planar Microcoils 139
7.2.5 On-line NMR Monitoring 140
Contents IX
7.2.5.1 Flow Effects 142
7.2.5.2 NMR Detection of Capillary Separations: LC-NMR 142
7.2.5.3 NMR Detection of Capillary Separations: CE-NMR 143
7.2.5.4 Reaction Kinetics 143
7.2.5.5 Protein Folding Kinetics 146
7.3 Monitoring of Reaction Kinetics Using MS 147
7.3.1 Introduction 147
7.3.2 Gas-phase Reactions in Microreactors Studied by MS 149
7.3.3 Liquid-phase Reactions Using an Electrospray Interface to MS 151
7.3.4 liquid-phase Reactions Studied by MALDI-MS 153
7 A Conclusions and Outlook 155
References 156
8 Automation and Control of Microprocess Systems 159
Thomas Bayer and OlafStange
8.1 Introduction 159
8.2 Automation in Laboratories 160
8.2.1 Example: HiTec Zang LAB-manager and LAB-box 160
8.2.2 Example: Siemens SIMATIC PCS7 LAB 163
8.3 Automation in Production 165
8.4 Special Requirements for Automation in Microprocess
Technology 167
8.5 Process Instrumentation for Microprocess Technology 168
8.5.1 Temperature Measurement 168
8.5.2 Pressure Measurement 168
8.5.3 Flow Measurement 169
8.6 On-line Analysis for Microprocess Technology 170
8.6.1 pH Measurement 171
8.6.2 Spectroscopic Methods 171
8.6.3 Gas Chromatography (GC) 171
8.7 Automation of Microprocess Systems for Process Development
and Production 173
8.7.1 MikroSyn from Mikroglas 174
8.7.2 Modular Microreaction System from Ehrfeld Mikrotechnik
BTS 175
8.7.3 SIPROCESS from Siemens 177
8.8 Conclusion 178
Further Reading 179
Part III Microreactor Plants: Case Studies 181
9 Industrial Microreactor Process Development up to Production 183
Volker Hesse/, Patrick Lob, and Hotger Lowe
9.1 Mission Statement from Industry on Impact and Hurdles 183
X Contents
9.2 Screening Studies in Laboratory 185
9.2.1 Peptide Synthesis 185
9.2.2 Hantzsch Synthesis 187
9.2.3 Knorr Synthesis 188
9.2.4 Enamine Synthesis 189
9.2.5 Aldol Reaction 190
9.2.6 Wittig Reaction 190
9.2.7 Polyethylene Formation 191
9.2.8 Diastereoselective Alkylation 192
9.2.9 Multistep Synthesis of a Radiolabeled Imaging Probe 193
9.3 Process Development at Laboratory Scale 195
9.3.1 Nitration of Substituted Benzene Derivatives 195
9.3.2 Phenyl Boronic Acid Synthesis 196
9.3.3 Azo Pigment Yellow 12 Manufacture 198
9.3.4 Desymmetrization of Thioureas 198
9.3.5 Vitamin Precursor Synthesis 200
9.3.6 Ester Hydrolysis to Produce an Alcohol 200
9.3.7 Synthesis of Methylenecyclopentane 201
9.3.8 Condensation of 2-Trimethylsilylethanol 201
9.3.9 (S)-2-Acetyl Tetrahydrofuran Synthesis 201
9.3.10 Synthesis of Intermediate for Quinolone Antibiotic Drug 202
9.3.11 Domino Cycloadditions in Parallel Fashion 203
9.3.12 Ciprofloxazin Multistep Synthesis 205
9.3.13 Methyl Carbamate Synthesis 205
9.3.14 Newman-Kuart Rearrangement 206
9.3.15 Ring-expansion Reaction of N-Boc-4-piperidone 207
9.3.16 Grignard and Organolithium Reagents 208
9.4 Pilots Plants and Production 210
9.4.1 Hydrogen Peroxide Synthesis 210
9.4.2 Diverse Case Studies at Lonza 212
9.4.3 Polyacrylate Formation 214
9.4.4 Butyl lithium-based Alkylation Reactions 215
9.4.5 German Project Cluster 2005 217
9.4.6 Development for OLED Materials Production 218
9.4.7 Development for liquid/liquid and Gas/Liquid Fine Chemicals
Production 218
9.4.8 Development of Pharmaceutical Intermediates Production by
Ozonolysis and Halogenation 219
9.4.9 Industrial Photochemistry 222
9.4.10 Development of Ionic Liquid Production 223
9.4.11 Japanese Project Cluster 2002 223
9.4.12 Pilot Plant for MMA Manufacture 224
9.4.13 Grignard Exchange Reaction 225
9.4.14 Halogen-Lithium Exchange Pilot Plant 226
9.4.15 Swern-Moffat Oxidation Pilot Plant 228
Contents XI
9.4.16 Yellow Nano Pigment Plant 229
9.4.17 Polycondensation 229
9.4.18 Friedel-Crafts Alkylation 231
9.4.19 H2O2 Based Oxidation to 2-Methyl-l,4-naphthoquinone 232
9.4.20 Direct Fluorination of Ethyl 3-Oxobutanoate 233
9.4.21 Propene Oxide Formation 234
9.4.22 Diverse Industrial Pilot-oriented Involvements 236
9.4.23 Production of Polymer Intermediates 237
9.4.24 Synthesis of Diazo Pigments 238
9.4.25 Nitroglycerine Production 240
9.4.26 Fine Chemical Production Process 241
9.4.27 Grignard-based Enolate Formation 242
9.5 Challenges and Concerns 243
References 244
10 Microreactor Plant for the Large-scale Production of a Fine Chemical
Intermediate: a Technical Case Study 249
P. Poechlauer, M. Vorbach, M. Kotthaus, S. Braune, R. Reintjens,
F. Mascarello, and C. Kwant
10.1 Introduction 249
10.2 Problem Description 250
10.3 Solution Methodology 251
10.4 Experimental 251
10.5 Results of Laboratory-scale Development 252
10.6 Design 252
10.7 Operation 254
10.8 Conclusion and Outlook 254
11 Development and Scale-up of a Microreactor Pilot Plant Using the
Concept of Numbering-up 255
Shigenori Togashi
11.1 Introduction 255
11.2 Microreactor Unit 256
11.2.1 Configuration 256
11.2.2 Chemical Performance Evaluation 256
11.3 Pilot Plant 258
11.3.1 Numbering-up 258
11.3.2 Flow Performance Evaluation 260
11.3.3 Chemical Performance Evaluation 260
11.4 Conclusion 261
References 261
12 Microstructures as a Tool for Production in the Tons per Hour Scale 263
Dirk Kirschneck and Ciinter Tekautz
12.1 Introduction 263
XII Contents
12.1.1 Driving Forces for Using Microstructures 263
12.1.2 Important Impacts on the Development Process 264
12.1.3 Small-scale Production Solutions 265
12.1.4 Multi-purpose or Dedicated for Small Volumes 266
12.1.5 Microstructures as a Production-scale Solution 267
12.2 Production-scale Case Study 268
12.2.1 The Batch Process 268
12.2.2 Basic Feasibility 268
12.2.3 StarLam Concept 269
12.2.4 Laboratory-scale Plant 270
12.2.5 Optimization and Integration 270
12.2.6 Summary 272
12.3 Conclusion 27i
References 274
Part IV Economics and Eco-efficiency Analyses 277
13 The Economic Potential of Microreaction Technology 279
Dana Kralisch, Ulrich Krtschil, Dominique M. Roberge, Volker Hessel,
and Dirk Schmalz
13.1 Introduction 279
13.2 Potential Evaluation of Microreaction Technology at the Stage of Process
Development 280
13.2.1 Introduction to Potential Evaluation Methodology 280
13.2.2 Reaction 281
13.2.3 Theoretical Potential 281
13.2.4 Technical Potential 282
13.2.5 Material Potential 282
13.2.6 Economic Potential 283
13.3 Current Benefits and Drawbacks of Microreaction Technology in
Commercial-Scale Production 283
13.4 Cause variables of Profitable Production
of Microstructures 287
13.4.1 Introduction 287
13.4.2 Cost Calculation Methodology 287
13.4.3 Chemical Reaction Investigated 288
13.4.4 Cost Analysis of the Existing Microchemical Process 288
13.4.5 Influence of Possible Improvements on the Manufacturing
Costs 289
13.4.6 Cost Analysis of the Aqueous Kolbe-Schmitt Synthesis
of 2,4-Dihydroxybenzoic Acid 290
13.5 Conclusion 291
13.6 Outlook 293
References 294
Contents XIII
14 Life Cycle Assessment of Microreaction Technology Versus Batch
Technology - a Case Study 295
Dana Kralisch
14.1 Introduction to Life Cycle Assessment Methodology 295
14.2 Environmentally Relevant Characteristics of Microstructured
Devices 296
14.3 The Model Reaction 297
14.4 Evaluation of Alternative Systems 297
14.4.1 Laboratory-scale Synthesis 297
14.4.2 Life Cycle Inventory on the Laboratory Scale 298
14.4.3 Selected Results of the Life Cycle Impact Assessment on the
Laboratory Scale 299
14.4.4 Industrial-scale Synthesis 302
14.4.5 Inventory Analysis on the Industrial Scale 303
14.4.6 Selected Results of the Life Cycle Impact Assessment on the
Industrial Scale 303
14.5 Conclusions 306
References 307
15 Exergy Analysis of a Micro Fuel Processing System for Hydrogen
and Electricity Production - A Case Study 309
KrzysztofJ. Ptas mski
15.1 Introduction 309
15.1.1 Need for a Fuel Processor for Hydrogen Generation 309
15.1.2 Integrated Fuel Processor-Fuel Cell (FP-FC) System 310
15.1.3 Goal 310
15.2 Thermodynamic Evaluation of FP-FC Systems 311
15.2.1 Methanol Processor Integrated with PEM Fuel Cell 311
15.2.2 Maximum Electricity Generation from Various Fuels 312
15.3 Exergetic Analysis of Integrated FP-FC Systems 314
15.3.1 Design of Methanol FP Integrated with FC 314
15.3.2 Exergy Concept 316
15.3.3 Exergy Efficiency and Exergy Losses 317
15.3.4 Optimization of the FP-FC System 319
15.4 Discussion 319
15.4.1 Exergetic Comparison Between FP-FC Systems and Alternatives 320
15.4.2 Other Criteria to Compare FP-FC Systems with Alternatives 323
15.5 Conclusion 324
References 324
Index 325
|
any_adam_object | 1 |
author_GND | (DE-588)128736267 |
building | Verbundindex |
bvnumber | BV035252330 |
classification_rvk | VN 7300 |
ctrlnum | (OCoLC)634687191 (DE-599)BVBBV035252330 |
discipline | Chemie / Pharmazie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01400nam a2200337 cc4500</leader><controlfield tag="001">BV035252330</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090406 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090116s2009 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527315505</subfield><subfield code="9">978-3-527-31550-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)634687191</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035252330</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 7300</subfield><subfield code="0">(DE-625)147616:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Micro-process engineering</subfield><subfield code="b">a comprehensive handbook</subfield><subfield code="n">3</subfield><subfield code="p">System, process and plant engineering</subfield><subfield code="c">ed. by Volker Hessel ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 335 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mikroverfahrenstechnik</subfield><subfield code="0">(DE-588)7660041-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mikroverfahrenstechnik</subfield><subfield code="0">(DE-588)7660041-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hessel, Volker</subfield><subfield code="d">1964-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)128736267</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV035252316</subfield><subfield code="g">3</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017057954&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017057954</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV035252330 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:29:40Z |
institution | BVB |
isbn | 9783527315505 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017057954 |
oclc_num | 634687191 |
open_access_boolean | |
owner | DE-703 DE-29T DE-92 DE-634 DE-1046 DE-11 |
owner_facet | DE-703 DE-29T DE-92 DE-634 DE-1046 DE-11 |
physical | XXI, 335 S. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Micro-process engineering a comprehensive handbook 3 System, process and plant engineering ed. by Volker Hessel ... Weinheim Wiley-VCH 2009 XXI, 335 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Mikroverfahrenstechnik (DE-588)7660041-5 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Mikroverfahrenstechnik (DE-588)7660041-5 s DE-604 Hessel, Volker 1964- Sonstige (DE-588)128736267 oth (DE-604)BV035252316 3 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017057954&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Micro-process engineering a comprehensive handbook Mikroverfahrenstechnik (DE-588)7660041-5 gnd |
subject_GND | (DE-588)7660041-5 (DE-588)4143413-4 |
title | Micro-process engineering a comprehensive handbook |
title_auth | Micro-process engineering a comprehensive handbook |
title_exact_search | Micro-process engineering a comprehensive handbook |
title_full | Micro-process engineering a comprehensive handbook 3 System, process and plant engineering ed. by Volker Hessel ... |
title_fullStr | Micro-process engineering a comprehensive handbook 3 System, process and plant engineering ed. by Volker Hessel ... |
title_full_unstemmed | Micro-process engineering a comprehensive handbook 3 System, process and plant engineering ed. by Volker Hessel ... |
title_short | Micro-process engineering |
title_sort | micro process engineering a comprehensive handbook system process and plant engineering |
title_sub | a comprehensive handbook |
topic | Mikroverfahrenstechnik (DE-588)7660041-5 gnd |
topic_facet | Mikroverfahrenstechnik Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017057954&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV035252316 |
work_keys_str_mv | AT hesselvolker microprocessengineeringacomprehensivehandbook3 |