Rectifiable sets, densities and tangent measures:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Zürich
European Math. Soc.
2008
|
Schriftenreihe: | Zurich lectures in advanced mathematics
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Ausfuehrliche Beschreibung Inhaltsverzeichnis |
Beschreibung: | VI, 124 S. |
ISBN: | 9783037190449 3037190442 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035227968 | ||
003 | DE-604 | ||
007 | t | ||
008 | 081223s2008 |||| 00||| eng d | ||
016 | 7 | |a 987299212 |2 DE-101 | |
020 | |a 9783037190449 |c Pb. : EUR 26.00 (freier Pr.) |9 978-3-03719-044-9 | ||
020 | |a 3037190442 |c Pb. : EUR 26.00 (freier Pr.) |9 3-03719-044-2 | ||
024 | 3 | |a 9783037190449 | |
035 | |a (OCoLC)213436019 | ||
035 | |a (DE-599)DNB987299212 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-11 |a DE-19 |a DE-20 |a DE-83 | ||
050 | 0 | |a QA312 | |
082 | 0 | |a 515/.42 |2 22 | |
084 | |a SK 420 |0 (DE-625)143238: |2 rvk | ||
084 | |a SK 430 |0 (DE-625)143239: |2 rvk | ||
084 | |a 26B15 |2 msc | ||
084 | |a 28A75 |2 msc | ||
084 | |a 49Q15 |2 msc | ||
084 | |a 49Q20 |2 msc | ||
100 | 1 | |a De Lellis, Camillo |d 1976- |e Verfasser |0 (DE-588)122562321 |4 aut | |
245 | 1 | 0 | |a Rectifiable sets, densities and tangent measures |c Camillo de Lellis |
264 | 1 | |a Zürich |b European Math. Soc. |c 2008 | |
300 | |a VI, 124 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Zurich lectures in advanced mathematics | |
650 | 4 | |a Geometric measure theory | |
650 | 0 | 7 | |a Geometrische Maßtheorie |0 (DE-588)4125258-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Geometrische Maßtheorie |0 (DE-588)4125258-5 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=3063112&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |q text/html |u http://www.ems-ph.org/book.php?proj_nr=67 |3 Ausfuehrliche Beschreibung |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017033969&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-017033969 |
Datensatz im Suchindex
_version_ | 1805091645996138496 |
---|---|
adam_text |
Contents
1 Introduction 1
2 Notation and preliminaries 4
2.1 General notation and measures 4
2.2 Weak* convergence of measures 5
2.3 Covering theorems and differentiation of measures 9
2.4 Hausdorff measures 10
2.5 Lipschitz functions 11
2.6 The Stone-Weierstrass Theorem 12
3 Marstrand's Theorem and tangent measures 13
3.1 Tangent measures and Proposition 3.4 16
3.2 Lemma 3.7 and some easy remarks 21
3.3 Proof of Lemma 3.8 22
3.4 Proof of Corollary 3.9 25
4 Rectifiability 27
4.1 The Area Formula I: Preliminary lemmas 29
4.2 The Area Formula II 32
4.3 The Geometric Lemma and the Rectifiability Criterion 35
4.4 Proof of Theorem 4.8 37
5 The Marstrand-Mattila Rectifiability Criterion 40
5.1 Preliminaries: Purely unrectifiable sets and projections 42
5.2 The proof of the Marstrand-Mattila rectifiability criterion 47
5.3 Proof of Theorem 5.1 53
6 An overview of Preiss' proof 56
6.1 The cone {xj - x\ + x\ + xj}, 59
6.2 Part A of Preiss' strategy 63
6.3 Part B of Preiss' strategy: Three main steps 65
6.4 From the three main steps to the proof of Theorem 6.10 66
7 Moments and uniqueness of the tangent measure at infinity 70
7.1 From Proposition 7.7 to the uniqueness of the tangent measure at
infinity 74
7.2 Elementary bounds on bk,s and the expansion (7.5) 76
7.3 Proof of Proposition 7.7 79
vi Contents
8 Flat versus curved at infinity 85
8.1 The tangent measure at infinity is a cone 88
8.2 Conical uniform measures 88
8.3 Proof of Proposition 8.5 91
9 Flatness at infinity implies flatness 95
9.1 Proofs of (ii) and (iv) 99
9.2 An integral formula for tr(42)LF) 100
9.3 An intermediate inequality 103
9.4 Proof of (9.7) and conclusion 106
10 Open problems 110
AppendixA. Proof of Theorem 3.11 117
Appendix B. Gaussian integrals 122
Bibliography 125
Index 127 |
any_adam_object | 1 |
author | De Lellis, Camillo 1976- |
author_GND | (DE-588)122562321 |
author_facet | De Lellis, Camillo 1976- |
author_role | aut |
author_sort | De Lellis, Camillo 1976- |
author_variant | l c d lc lcd |
building | Verbundindex |
bvnumber | BV035227968 |
callnumber-first | Q - Science |
callnumber-label | QA312 |
callnumber-raw | QA312 |
callnumber-search | QA312 |
callnumber-sort | QA 3312 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 420 SK 430 |
ctrlnum | (OCoLC)213436019 (DE-599)DNB987299212 |
dewey-full | 515/.42 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.42 |
dewey-search | 515/.42 |
dewey-sort | 3515 242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV035227968</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081223s2008 |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">987299212</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783037190449</subfield><subfield code="c">Pb. : EUR 26.00 (freier Pr.)</subfield><subfield code="9">978-3-03719-044-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3037190442</subfield><subfield code="c">Pb. : EUR 26.00 (freier Pr.)</subfield><subfield code="9">3-03719-044-2</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783037190449</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)213436019</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB987299212</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA312</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.42</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 420</subfield><subfield code="0">(DE-625)143238:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 430</subfield><subfield code="0">(DE-625)143239:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">26B15</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">28A75</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">49Q15</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">49Q20</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">De Lellis, Camillo</subfield><subfield code="d">1976-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122562321</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rectifiable sets, densities and tangent measures</subfield><subfield code="c">Camillo de Lellis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Zürich</subfield><subfield code="b">European Math. Soc.</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VI, 124 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Zurich lectures in advanced mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric measure theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Maßtheorie</subfield><subfield code="0">(DE-588)4125258-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geometrische Maßtheorie</subfield><subfield code="0">(DE-588)4125258-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=3063112&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://www.ems-ph.org/book.php?proj_nr=67</subfield><subfield code="3">Ausfuehrliche Beschreibung</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017033969&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017033969</subfield></datafield></record></collection> |
id | DE-604.BV035227968 |
illustrated | Not Illustrated |
indexdate | 2024-07-20T09:58:59Z |
institution | BVB |
isbn | 9783037190449 3037190442 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017033969 |
oclc_num | 213436019 |
open_access_boolean | |
owner | DE-29T DE-11 DE-19 DE-BY-UBM DE-20 DE-83 |
owner_facet | DE-29T DE-11 DE-19 DE-BY-UBM DE-20 DE-83 |
physical | VI, 124 S. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | European Math. Soc. |
record_format | marc |
series2 | Zurich lectures in advanced mathematics |
spelling | De Lellis, Camillo 1976- Verfasser (DE-588)122562321 aut Rectifiable sets, densities and tangent measures Camillo de Lellis Zürich European Math. Soc. 2008 VI, 124 S. txt rdacontent n rdamedia nc rdacarrier Zurich lectures in advanced mathematics Geometric measure theory Geometrische Maßtheorie (DE-588)4125258-5 gnd rswk-swf Geometrische Maßtheorie (DE-588)4125258-5 s DE-604 text/html http://deposit.dnb.de/cgi-bin/dokserv?id=3063112&prov=M&dok_var=1&dok_ext=htm Inhaltstext text/html http://www.ems-ph.org/book.php?proj_nr=67 Ausfuehrliche Beschreibung HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017033969&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | De Lellis, Camillo 1976- Rectifiable sets, densities and tangent measures Geometric measure theory Geometrische Maßtheorie (DE-588)4125258-5 gnd |
subject_GND | (DE-588)4125258-5 |
title | Rectifiable sets, densities and tangent measures |
title_auth | Rectifiable sets, densities and tangent measures |
title_exact_search | Rectifiable sets, densities and tangent measures |
title_full | Rectifiable sets, densities and tangent measures Camillo de Lellis |
title_fullStr | Rectifiable sets, densities and tangent measures Camillo de Lellis |
title_full_unstemmed | Rectifiable sets, densities and tangent measures Camillo de Lellis |
title_short | Rectifiable sets, densities and tangent measures |
title_sort | rectifiable sets densities and tangent measures |
topic | Geometric measure theory Geometrische Maßtheorie (DE-588)4125258-5 gnd |
topic_facet | Geometric measure theory Geometrische Maßtheorie |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=3063112&prov=M&dok_var=1&dok_ext=htm http://www.ems-ph.org/book.php?proj_nr=67 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017033969&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT delelliscamillo rectifiablesetsdensitiesandtangentmeasures |