Bergman Kernels and symplectic reduction:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Paris
2008
|
Schriftenreihe: | Astérisque
318 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | VIII, 154 S. |
ISBN: | 9782856292556 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV035209939 | ||
003 | DE-604 | ||
005 | 20090113 | ||
007 | t | ||
008 | 081211s2008 |||| 00||| eng d | ||
020 | |a 9782856292556 |9 978-285629-255-6 | ||
035 | |a (OCoLC)297127521 | ||
035 | |a (DE-599)BVBBV035209939 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-824 |a DE-29T |a DE-384 |a DE-83 |a DE-11 |a DE-188 |a DE-355 | ||
050 | 0 | |a QA331 | |
084 | |a SI 832 |0 (DE-625)143196: |2 rvk | ||
084 | |a 32A25 |2 msc | ||
100 | 1 | |a Ma, Xiaonan |e Verfasser |4 aut | |
245 | 1 | 0 | |a Bergman Kernels and symplectic reduction |c Xiaonan Ma ; Weiping Zhang |
264 | 1 | |a Paris |c 2008 | |
300 | |a VIII, 154 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Astérisque |v 318 | |
650 | 7 | |a Análise global |2 larpcal | |
650 | 4 | |a Bergman kernel functions | |
650 | 4 | |a Index theory (Mathematics) | |
650 | 4 | |a Symplectic manifolds | |
650 | 4 | |a Variational inequalities (Mathematics) | |
650 | 0 | 7 | |a Bergman-Kernfunktion |0 (DE-588)4236138-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symplektische Mannigfaltigkeit |0 (DE-588)4290704-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dirac-Operator |0 (DE-588)4150118-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Bergman-Kernfunktion |0 (DE-588)4236138-2 |D s |
689 | 0 | 1 | |a Symplektische Mannigfaltigkeit |0 (DE-588)4290704-4 |D s |
689 | 0 | 2 | |a Dirac-Operator |0 (DE-588)4150118-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Zhang, Weiping |e Verfasser |4 aut | |
830 | 0 | |a Astérisque |v 318 |w (DE-604)BV002579439 |9 318 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017016177&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-017016177 |
Datensatz im Suchindex
_version_ | 1804138467568910336 |
---|---|
adam_text | Titel: Bergman Kernels and symplectic reduction
Autor: Ma, Xiaonan
Jahr: 2008
CONTENTS
0. Introduction ..............................................................................................................................1
1. Connections and Laplacians
associated to a principal bundle ................................................................................15
1.1. Connections associated to a principal bundle ........................................................15
1.2. Curvatures and Laplacians associated to a principal bundle ..........................17
2. G-invariant Bergman kernels ......................................................................21
2.1. Casimir operator ................................................................................................................22
2.2. Spinc Dirac operator ........................................................................................................23
2.3. G-invariant Bergman kernel ..........................................................................................25
2.4. Localization of the problem and proof of Theorem 0.1 ......................................27
2.5. Induced operator on U/G ..............................................................................................32
2.6. Rescaling and a Taylor expansion of the operator 4 £p4 -1 ............................33
2.7. Uniform estimate on the G-invariant Bergman kernel ......................................41
2.8. Evaluation of Jr?u ..............................................................................................................53
2.9. Proof of Theorem 0.2 ........................................................................................................54
3. Evaluation of ..................................................................................................................57
3.1. Spectrum of _^2° ..................................................................................................................^
3.2. Evaluation of P^: a proof of (0.12) and (0.13) ..................................................60
3.3. A formula for 0 ................................................................................................................62
3.4. Example (CP1,2 lofs) ......................................................................................................67
4. Applications ..............................................................................................................................71
4.1. Orbifold case ........................................................................................................................71
4.2. tf-weight Bergman kernel on AT ....................................................................................74
4.3. Averaging the Bergman kernel; a direct proof of (0.15) and (0.16) ............76
4.4. Berezin-Toeplitz quantization ......................................................................................79
4.5. Toeplitz operators on Xq ..............................................................................................85
4.6. Generalization to non-compact manifolds ..............................................................90
viii CONTENTS
4.7. Relation 011 the Bergman kernel on Xc ................................. 92
5. Computing the coefficient $1 ............................................ 95
5.1. The second fundamental form of P ...................................... 96
5.2. The operators 0 , O2 in (2.102) ......................................... 98
5.3. Computation of the coefficient .......................................112
5.4. Final computations: the proof of Theorem 0.6 ..........................122
5.5. Coefficient I i: general case .............................................124
6. The coefficient P^(0, 0) ..................................................127
6.1. The terms ^li3, ii;4 ...............................................127
6.2. The term ^ii2 ...........................................................132
6.3. Proof of Theorem 0.7 ....................................................145
7. Bergman kernel and
geometric quantization ...................................................147
Bibliography ..................................................................149
Index ..........................................................................153
ASTfcRtSQUK 318
|
any_adam_object | 1 |
author | Ma, Xiaonan Zhang, Weiping |
author_facet | Ma, Xiaonan Zhang, Weiping |
author_role | aut aut |
author_sort | Ma, Xiaonan |
author_variant | x m xm w z wz |
building | Verbundindex |
bvnumber | BV035209939 |
callnumber-first | Q - Science |
callnumber-label | QA331 |
callnumber-raw | QA331 |
callnumber-search | QA331 |
callnumber-sort | QA 3331 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 832 |
ctrlnum | (OCoLC)297127521 (DE-599)BVBBV035209939 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01862nam a2200481 cb4500</leader><controlfield tag="001">BV035209939</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090113 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081211s2008 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9782856292556</subfield><subfield code="9">978-285629-255-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)297127521</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035209939</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA331</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 832</subfield><subfield code="0">(DE-625)143196:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">32A25</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ma, Xiaonan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bergman Kernels and symplectic reduction</subfield><subfield code="c">Xiaonan Ma ; Weiping Zhang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Paris</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VIII, 154 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Astérisque</subfield><subfield code="v">318</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Análise global</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bergman kernel functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Index theory (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symplectic manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variational inequalities (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bergman-Kernfunktion</subfield><subfield code="0">(DE-588)4236138-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symplektische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4290704-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dirac-Operator</subfield><subfield code="0">(DE-588)4150118-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bergman-Kernfunktion</subfield><subfield code="0">(DE-588)4236138-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Symplektische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4290704-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Dirac-Operator</subfield><subfield code="0">(DE-588)4150118-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Weiping</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Astérisque</subfield><subfield code="v">318</subfield><subfield code="w">(DE-604)BV002579439</subfield><subfield code="9">318</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017016177&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017016177</subfield></datafield></record></collection> |
id | DE-604.BV035209939 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T21:28:39Z |
institution | BVB |
isbn | 9782856292556 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017016177 |
oclc_num | 297127521 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-824 DE-29T DE-384 DE-83 DE-11 DE-188 DE-355 DE-BY-UBR |
owner_facet | DE-19 DE-BY-UBM DE-824 DE-29T DE-384 DE-83 DE-11 DE-188 DE-355 DE-BY-UBR |
physical | VIII, 154 S. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
record_format | marc |
series | Astérisque |
series2 | Astérisque |
spelling | Ma, Xiaonan Verfasser aut Bergman Kernels and symplectic reduction Xiaonan Ma ; Weiping Zhang Paris 2008 VIII, 154 S. txt rdacontent n rdamedia nc rdacarrier Astérisque 318 Análise global larpcal Bergman kernel functions Index theory (Mathematics) Symplectic manifolds Variational inequalities (Mathematics) Bergman-Kernfunktion (DE-588)4236138-2 gnd rswk-swf Symplektische Mannigfaltigkeit (DE-588)4290704-4 gnd rswk-swf Dirac-Operator (DE-588)4150118-4 gnd rswk-swf Bergman-Kernfunktion (DE-588)4236138-2 s Symplektische Mannigfaltigkeit (DE-588)4290704-4 s Dirac-Operator (DE-588)4150118-4 s DE-604 Zhang, Weiping Verfasser aut Astérisque 318 (DE-604)BV002579439 318 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017016177&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Ma, Xiaonan Zhang, Weiping Bergman Kernels and symplectic reduction Astérisque Análise global larpcal Bergman kernel functions Index theory (Mathematics) Symplectic manifolds Variational inequalities (Mathematics) Bergman-Kernfunktion (DE-588)4236138-2 gnd Symplektische Mannigfaltigkeit (DE-588)4290704-4 gnd Dirac-Operator (DE-588)4150118-4 gnd |
subject_GND | (DE-588)4236138-2 (DE-588)4290704-4 (DE-588)4150118-4 |
title | Bergman Kernels and symplectic reduction |
title_auth | Bergman Kernels and symplectic reduction |
title_exact_search | Bergman Kernels and symplectic reduction |
title_full | Bergman Kernels and symplectic reduction Xiaonan Ma ; Weiping Zhang |
title_fullStr | Bergman Kernels and symplectic reduction Xiaonan Ma ; Weiping Zhang |
title_full_unstemmed | Bergman Kernels and symplectic reduction Xiaonan Ma ; Weiping Zhang |
title_short | Bergman Kernels and symplectic reduction |
title_sort | bergman kernels and symplectic reduction |
topic | Análise global larpcal Bergman kernel functions Index theory (Mathematics) Symplectic manifolds Variational inequalities (Mathematics) Bergman-Kernfunktion (DE-588)4236138-2 gnd Symplektische Mannigfaltigkeit (DE-588)4290704-4 gnd Dirac-Operator (DE-588)4150118-4 gnd |
topic_facet | Análise global Bergman kernel functions Index theory (Mathematics) Symplectic manifolds Variational inequalities (Mathematics) Bergman-Kernfunktion Symplektische Mannigfaltigkeit Dirac-Operator |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017016177&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV002579439 |
work_keys_str_mv | AT maxiaonan bergmankernelsandsymplecticreduction AT zhangweiping bergmankernelsandsymplecticreduction |