Introduction to the physics and chemistry of materials:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton, Fla. [u.a.]
CRC
2009
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXV, 546 S. Ill., graph. Darst. |
ISBN: | 9781420061338 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035189143 | ||
003 | DE-604 | ||
005 | 20110525 | ||
007 | t | ||
008 | 081201s2009 ad|| |||| 00||| eng d | ||
015 | |a GBA8A7816 |2 dnb | ||
020 | |a 9781420061338 |9 978-1-4200-6133-8 | ||
035 | |a (OCoLC)244056806 | ||
035 | |a (DE-599)OBVAC07080157 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-91G |a DE-20 |a DE-19 |a DE-29T |a DE-11 |a DE-M347 |a DE-384 | ||
050 | 0 | |a TA403 | |
082 | 0 | |a 620.1/1 |2 22 | |
084 | |a UP 1000 |0 (DE-625)146338: |2 rvk | ||
084 | |a UQ 8000 |0 (DE-625)146584: |2 rvk | ||
084 | |a VE 9670 |0 (DE-625)147161:253 |2 rvk | ||
084 | |a ZM 3000 |0 (DE-625)157020: |2 rvk | ||
084 | |a WER 001f |2 stub | ||
100 | 1 | |a Naumann, Robert J. |e Verfasser |0 (DE-588)137288735 |4 aut | |
245 | 1 | 0 | |a Introduction to the physics and chemistry of materials |c Robert J. Naumann |
246 | 1 | 3 | |a Physics and chemistry of materials |
264 | 1 | |a Boca Raton, Fla. [u.a.] |b CRC |c 2009 | |
300 | |a XXV, 546 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Matériaux - Propriétés | |
650 | 4 | |a Physique de l'état solide | |
650 | 4 | |a Science des matériaux | |
650 | 4 | |a Solid state chemistry | |
650 | 4 | |a Solid state physics | |
650 | 4 | |a Materials | |
650 | 0 | 7 | |a Festkörperphysik |0 (DE-588)4016921-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Werkstoff |0 (DE-588)4065579-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Festkörperchemie |0 (DE-588)4129288-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Werkstoff |0 (DE-588)4065579-9 |D s |
689 | 0 | 1 | |a Festkörperphysik |0 (DE-588)4016921-2 |D s |
689 | 0 | 2 | |a Festkörperchemie |0 (DE-588)4129288-1 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m OEBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016995785&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016995785 |
Datensatz im Suchindex
_version_ | 1804138366481989632 |
---|---|
adam_text | * * * * * * * * * * ******** ***** * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * **** * * * * * *** * * * * * * * * * * ********* * * * ****
***** * * * * * * * * * * * * * * * * * * * * * * * * * * * **** * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * **** * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * ****** * * * * * * * * * * ******
* * * * * * * * * * * * ****** * * * * * * * * * * * * * * * * * *
****** * * * * * * * * * * * * ****** * * * * * * * * * * * **** * * * *
* * * * * * * * * * * * * * * * * * * ******** * * * ****** * * * * * *
* * * * * * * * * * * * * * * * * * * ****** * * * * * * * * * * * *
****** * * * * * * * * * * * * * * * * * * * ****** * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * ****** * * * * * * * * *
* * * * * * * * * * * ****** * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * **** ****** * * * * * * * * * * * **** ****** * * * * *
* * * * * * * * * * **** ****** * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * **** ******* * * * * * * * * * * **** *** **** * *
* * * * * * * *******
******************************************************************************
********************** **** ******* * * * * * * * * * * * * * * * * * *
* * **** ******* * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * **** **** * * * * * *** * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * **** * * * * *
* * * * * * * * **** * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * **** * * * * * * * * * * * * * * * * * * * * * * *
* * * * **** ****** * * * * * * * * * * * * * * * * * * * **** ****** *
* * * * * * * * * * * * * **** **** * * * * ********
******************************************************************************
***************************************** **** ****** * * * * * * * * *
* * * * * * * * * * * * * **** ****** * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * **** **** * * * * * * * * * * * * * * *
* * * * * * * * * * * **** ****** * * * * * * * * * * * * * * * ****
**** ****** * * * * * * * * * * * * * * **** * * * * * * * * * * * * * *
* * * * **** **** * * * * * * * * * * * * * * * * * * * * * * * * * * *
**** **** * * * * * * * * * * * * * * * **** V VI CONTENTS 2.5.1 PAULI
EXCLUSION PRINCIPLE 27* 2.5.2 THEORETICAL BASIS FOR THE PERIODIC TABLE
27* 2.6 SUMMARY 30* BIBLIOGRAPHY 30* PROBLEMS 31* CHAPTER 3 CHEMICAL
BONDING 33* 3.1 WHAT HOLDS STUFF TOGETHER? 33* 3.2 IONIC BONDING 33*
3.2.1 ELECTRONEGATIVITY AND ELECTRON AFFINITY 34* 3.2.2 COULOMB
POTENTIAL 34* 3.2.3 MADELUNG CONSTANT 35* 3.2.4 LATTICE ENERGY 36* 3.2.5
BORN-HABER CYCLE 36* 3.3 COVALENT BOND 38* 3.3.1 HEITLER-LONDON
THEORY 38* 3.3.2 LCAO APPROACH 40* 3.3.3 SIGMA AND PI BONDS 40* 3.3.4
S-P BONDS 42* 3.3.5 HYBRIDIZATION 42* 3.4 METALLIC BOND 44* 3.4.1 SIMPLE
METALS 45* 3.4.2 WHY NO METALLIC HYDROGEN? 46* 3.4.3 TRANSITION METALS
47* 3.5 ATOMIC AND IONIC RADII 48* 3.6 SECONDARY BONDING 49* 3.6.1
ELECTRIC DIPOLE 50* 3.6.2 HYDROGEN BOND 50* 3.6.3 VAN DER WAALS BOND 51*
3.6.4 LENNARD-JONES 6-12 POTENTIAL 51* 3.6.5 LATTICE SUMS 53* 3.7 OTHER
POTENTIAL FUNCTIONS 53* 3.7.1 BOM-MAYER POTENTIAL 53* 3.7.2 MIE
POTENTIAL 54* 3.7.3 BUCKINGHAM POTENTIAL. 55* 3.7.4 MORSE POTENTIAL 55*
3.8 SUMMARY 56* APPENDIX: MADELUNG SUMMATION 57* BIBLIOGRAPHY 59*
PROBLEMS 59* CHAPTER 4 CRYSTALS AND CRYSTALLOGRAPHY 61* 4.1 WHAT ARE
CRYSTALS? 61* 4.1.1 UNIT CELL 62* 4.1.2 CRYSTAL LATTICE AND THE
TRANSLATION GROUP 62* 4.1.3 CRYSTALLOGRAPHIC DIRECTIONS 63* 4.1.4 MILLER
INDICES 64* 4.1.5 INTERPLANAR SPACING 66* 4.1.6 MILLER-BRAVAIS NOTATION
67* 4.2 CRYSTAL SYSTEMS AND SYMMETRY 69* 4.2.1 POINT SYMMETRY OPERATIONS
69* CONTENTS VII 4.2.2 BASIC CRYSTAL SYSTEMS 69* 4.2.2.1 TRICLINIC
SYSTEM 69* 4.2.2.2 MONOCLINIC SYSTEM 70* 4.2.2.3 TRIGONAL SYSTEM 70*
4.2.2.4 ORTHORHOMBIC SYSTEM 71* 4.2.2.5 TETRAGONAL SYSTEM 72* 4.2.2.6
HEXAGONAL SYSTEM 72* 4.2.2.7 CUBIC SYSTEM 72* 4.2.3 RESTRICTED SYMMETRY
72* 4.2.4 BRAVAIS LATTICES 73* 4.2.5 HEXAGONAL CLOSE-PACKED LATTICE 75*
4.2.6 SPACE GROUPS 75* 4.3 STRUCTURAL RELATIONSHIPS 76* 4.3.1 DENSITY
AND PACKING CALCULATIONS 77* 4.3.1.1 ATOMIC DENSITY 77* 4.3.1.2 MASS
DENSITY 77* 4.3.1.3 ATOMIC PACKING FACTOR 78* 4.3.1.4 PLANAR DENSITY 78*
4.3.1.5 PLANAR FRACTION 79* 4.3.1.6 LINEAR DENSITIES 80* 4.3.1.7 LINEAR
FRACTION 80* 4.4 INTERSTICES 80* 4.4.1 INTERSTITIAL SITES IN THE SIMPLE
CUBIC LATTICE 80* 4.4.2 INTERSTITIAL SITES IN THE FACE-CENTERED CUBIC
LATTICE 81* 4.4.3 INTERSTITIAL SITES IN THE BODY-CENTERED CUBIC LATTICE
81* 4.4.4 INTERSTITIAL SITES IN THE HEXAGONAL CLOSE-PACKED LATTICE 82*
4.4.5 COMPARISON OF INTERSTITIAL SITES IN THE METALLIC LATTICES 82* 4.5
QUASICRYSTALS 83* 4.6 SUMMARY 84* BIBLIOGRAPHY 86* PROBLEMS 86* CHAPTER
5 THE STRUCTURE OF MATTER 89* 5.1 STRUCTURE OF METALS 89* 5.1.1
FACE-CENTERED CUBIC VERSUS HEXAGONAL CLOSE-PACKED STRUCTURES 89* 5.1.2
DOUBLE CLOSE-PACK STRUCTURES 91* 5.1.3 BODY-CENTERED CUBIC STRUCTURES
91* 5.1.4 WHAT DETERMINES WHICH STRUCTURE A METAL WILL HAVE? 91* 5.2
INTERMETALLIC COMPOUNDS 92* 5.2.1 STRUKTURBERICHT AND PEARSON NOTATION
93* 5.2.2 NIAI INTERMETALLIC PHASES 93* 5.2.3 LAVES PHASES 94* 5.2.4 MAX
PHASES 94* 5.2.5 INTERSTITIAL COMPOUNDS 94* 5.2.6 A15 SUPERCONDUCTORS
95* 5.3 IONIC COMPOUNDS 95* 5.3.1 CESIUM CHLORIDE STRUCTURE (82) 96*
5.3.2 ROCK SALT OR SODIUM CHLORIDE STRUCTURE (81) 96* 5.3.3 FLUORITE
STRUCTURE (CL) 97* 5.3.4 PEROVSKITE STRUCTURE (E2 1) 98* 5.3.5 SPINE!
AND INVERSE SPINEL STRUCTURE (H1 1) 98* 5.3.6 STRUCTURES WITH SMALL
CATION-TO-ANION RATIOS 99* VIII CONTENTS 5.4 COVALENT STRUCTURES 100*
5.4.1 DIAMOND STRUCTURE (A4) 100* 5.4.2 SPHALERITE OR ZINC BLENDE (B3)
100* 5.4.3 HEXAGONAL DIAMOND 101* 5.4.4 WURTZITE (B4) 102* 5.4.5
GRAPHITE (W9) 102* 5.4.6 FULLERENES, FULLERITES, AND FULLERIDES 103*
5.4.7 CARBON NANOTUBES 104* 5.4.8 OTHER HEXAGONAL RING STRUCTURES 105*
5.4.9 QUARTZ 107* 5.4.10 OTHER SILICATE STRUCTURES 108* 5.4.11 ZEOLITES
108* 5.4.12 ELECTRON-DEFICIENT SOLIDS 109* 5.5 STRUCTURE OF GLASS 109*
5.6 STRUCTURE OF POLYMERS 111* 5.6.1 POLYMERIZATION PROCESSES 111* 5.6.2
LINEAR POLYMERS 111* 5.6.3 BRANCHED POLYMERS 114* 5.6.4 NET POLYMERS
114* 5.6.5 ZIEGLER-NATTA CATALYSTS AND STEREOISOMERISM 114* 5.6.6
GEOMETRICAL ISOMERISM 115* 5.6.7 VULCANIZATION 116* 5.7 SUMMARY 116*
BIBLIOGRAPHY 119* PAPERS DEALING WITH METHODS FOR COMPUTING LATTICE
ENERGIES 119* OTHER REFERENCES INVOLVING STRUCTURES 119* FOR MORE
INFORMATION ON INTERMETALLIC COMPOUNDS 119* BOOKS AND PAPERS ON
FULLERENES 119* PROBLEMS 119* CHAPTER 6 RECIPROCAL LATTICE AND X-RAY
DIFFRACTION 121* 6.1 RECIPROCAL LATTICE 121* 6.1.1 FOURIER EXPANSION OF
THE ELECTRON DENSITY 121* 6.1.2 RECIPROCAL LATTICE VECTOR 122* 6.1.3
LATTICE TYPES IN RECIPROCAL SPACE 123* 6.1.3.1 SIMPLE CUBIC DIRECT
LATTICE 123* 6.1.3.2 BODY-CENTERED CUBIC DIRECT LATTICE 123* 6.1.3.3
FACE-CENTERED CUBIC DIRECT LATTICE 124* 6.2 DIFFRACTION CONDITIONS 125*
6.2.1 LAUE CONDITIONS 125* 6.2.2 EWALD CONSTRUCTION 126* 6.2.3 BRILLOUIN
ZONES 128* 6.3 DIFFRACTION INTENSITY 129* 6.3.1 ATOMIC FORM FACTOR 130*
6.3.2 STRUCTURE FACTOR 131* 6.4 METHODS AND USES OF X-RAY DIFFRACTION
133* 6.4.1 DEBYE-SCHERRER OR POWDER METHOD 133* 6.4.2 LAUE METHOD 134*
6.4.3 ROCKING CURVES 134* CONTENTS IX 6.4.4 ROTATING CRYSTAL METHOD 135*
6.4.5 OBTAINING STRUCTURE FROM X-RAY DIFFRACTION DATA 136* 6.4.5.1 PHASE
PROBLEM 136* 6.4.5.2 DIRECT METHOD 136* 6.4.5.3 ISOMORPHOUS SUBSTITUTION
137* 6.5 SUMMARY 137* BIBLIOGRAPHY 138* PROBLEMS 139* CHAPTER 7 THEORY
OF ELASTICITY 141* 7.1 ELASTIC COEFFICIENTS 141* 7.1.1 STRESS TENSOR
141* 7.1.2 STRAIN TENSOR 141* 7.1.3 ELASTIC COEFFICIENT TENSOR 142* 7.2
PROPERTIES OF CRYSTALS WITH CUBIC SYMMETRY 143* 7.2.1 SHEAR MODULUS 143*
7.2.2 BULK MODULUS 144* 7.2.3 YOUNG S MODULUS 144* 7.2.4 POISSON S RATIO
144* 7.3 MEASUREMENT OF ELASTIC COEFFICIENTS 144* 7.4 BOND
ENERGY-ELASTIC COEFFICIENTS RELATIONSHIPS 145* 7.4.1 BULK MODULUS 145*
7.4.2 ELASTIC COEFFICIENTS 146* 7.4.3 THERMAL EXPANSION 146* 7.4.4 MIE
POTENTIAL 148* 7.4.5 IONICALLY BONDED SYSTEMS 148* 7.4.6 SIMPLE METALS
150* 7.4.7 TRANSITION METALS 150* 7.5 THEORETICAL STRENGTH 152* 7.5.1
COHESIVE MODELS 152* 7.5.2 SHEAR MODELS 153* 7.6 SUMMARY 154*
BIBLIOGRAPHY 155* PROBLEMS 155* CHAPTER 8 DEFECTS IN CRYSTALS 157*
8.1 WHAT ARE DEFECTS? 157* 8.2 POINT DEFECTS 157* 8.2.1 VACANCY DEFECTS
157* 8.2.2 FRENKEL AND SCHOTTKY DEFECTS 159* 8.2.3 IMPURITY DEFECTS 160*
8.2.4 NONSTOICHIOMETRIC COMPOUNDS 160* 8.3 LINE OR ONE-DIMENSIONAL
DEFECTS 160* 8.3.1 SLIP IN METALLIC CRYSTALS 160* 8.3.2 RESOLVED SHEAR
STRESS 160* 8.3.3 EDGE DISLOCATIONS 161* 8.3.4 BURGERS VECTOR 162* 8.3.5
SCREW DISLOCATIONS 162* 8.3.6 MIXED DISLOCATIONS 162* 8.3.7 OBSERVING
DISLOCATIONS 164* X CONTENTS 8.3.8 CREATING DISLOCATIONS : 164* 8.3.9
SCREW LOCATIONS AND CRYSTAL GROWTH 164* 8.4 TWO-DIMENSIONAL OR PLANAR
DEFECTS 165* 8.4.1 INTERFACIAL ENERGY 165* 8.4.2 ESTIMATING SURFACE
ENERGY FOR IONIC SOLIDS 166* 8.4.3 GRAIN BOUNDARIES 167* 8.4.4 TILT AND
TWIST BOUNDARIES 167* 8.4.5 STACKING FAULTS 167* 8.4.6 TWINNING 168* 8.5
VOLUME OR THREE-DIMENSIONAL DEFECTS 168* 8.6 DIFFUSION 169* 8.6.1
DIFFUSION COEFFICIENT 169* 8.6.2 KIRKENDALL EFFECT 169* 8.6.3 FICK S
LAWS 170* 8.6.4 EXAMPLE PROBLEM 170* 8.6.5 USEFUL APPROXIMATION 171*
8.6.6 EXPANSIONS FOR THE ERROR FUNCTION 172* 8.7 SUMMARY 172*
BIBLIOGRAPHY 173* PROBLEMS 173* CHAPTER 9 MECHANICAL PROPERTIES OF
MATERIALS 175* 9.1 STRESS-STRAIN RELATIONSHIPS 175* 9.1.1 TENSILE TEST
175* 9.1.2 TENSILE
STRENGTH.....................................................................................................
177* 9.1.3 TRUE STRESS AND TRUE STRAIN 178* 9.1.4 BEND TEST 178* 9.1.5
HARDNESS TESTING 178* 9.2 RELATIONSHIP BETWEEN LATTICE TYPE AND
DUCTILITY 179* 9.2.1 SLIP SYSTEMS IN METALS 179* 9.2.2 SLIP SYSTEMS IN
IONICALLY BONDED CERAMICS 179* 9.3 STRENGTHENING MECHANISMS 180* 9.3.1
WORK HARDENING 181* 9.3.2 GRAIN REFINING 181* 9.3.3 SOLID SOLUTION
HARDENING 181* 9.3.4 PRECIPITATION HARDENING 181* 9.3.5 DISPERSION
HARDENING 181* 9.3.6 AMORPHOUS STRUCTURE 182* 9.4 CREEP 182* 9.5
FRACTURE MECHANICS 183* 9.5.1 STRESS CONCENTRATION 183* 9.5.2 GRIFFITH S
THEORY OF BRITTLE FRACTURE 184* 9.5.3 OROWAN-GRIFFITH THEORY 185* 9.5.4
FRACTURE TOUGHNESS 186* 9.5.5 DUCTILE-TO-BRITTLE TRANSFORMATION 187*
9.5.6 TOUGHENING METHODS 187* 9.5.7 FATIGUE 188* 9.6 MECHANICAL
PROPERTIES OF POLYMERS 189* 9.6.1 SEMICRYSTALLINE POLYMERS 189* 9.6.2
ELASTOMERS 190* CONTENTS XI 9.6.3 VISCOELASTIC BEHAVIOR 190* 9.6.4
VISCOELASTIC RELAXATION MODULUS 191* 9.7 SUMMARY 192* BIBLIOGRAPHY 193*
PROBLEMS 193* CHAPTER 10 COMPOSITES 195* 10.1 HISTORY OF COMPOSITES 195*
10.2 TYPES OF COMPOSITES 197* 10.2.1 LAMINATED COMPOSITES 197* 10.2.1.1
SANDWICH PANELS 197* 10.2.1.2 METAL-METAL LAMINATES 198* 10.2.1.3
METAL-GRAPHITE LAMINATES 198* 10.2.1.4 CERAMIC/METAL LAMINATES 198*
10.2.2 PARTICLE-REINFORCED COMPOSITES 198* 10.2.2.1 SMALL PARTICLE
COMPOSITES 199* 10.2.2.2 LARGE PARTICLE COMPOSITES 199* 10.2.3
FIBER-REINFORCED COMPOSITES 200* 10.2.3.1* FIBER-REINFORCED METAL MATRIX
COMPOSITES 201 10.2.3.2* FIBER-REINFORCED CERAMIC MATRIX COMPOSITES 202
10.2.3.3* CARBON-CARBON COMPOSITES 202 10.2.3.4* POLYMER MATRIX
COMPOSITES 203 10.3 MODELING THE PERFORMANCE OF COMPOSITES 204* 10.3.1
RULE OF MIXTURES 204* 10.3.2 CRITICAL FIBER LENGTH 205* 10.3.3
CONTINUOUS ALIGNED FIBER-REINFORCED COMPOSITES 206* 10.3.4 DISCONTINUOUS
FIBERS 207* 10.4 SUMMARY 207* BIBLIOGRAPHY 208* PROBLEMS 208* CHAPTER 11
PHASE EQUILIBRIA IN SINGLE COMPONENT SYSTEMS 209* 11.1 DEFINITION OF A
PHASE 209* 11.2 SOLIDIFICATION OF PURE SYSTEMS 209* 11.2.1 GIBBS PHASE
RULE 209* 11.2.2 ENTHALPY OF FUSION 210* 11.2.3 ENTROPY OF FUSION 210*
11.2.4 GIBBS FREE ENERGY 210* 11.2.5 FIRST- AND SECOND-ORDER PHASE
TRANSITIONS 213* 11.3 SOLIDIFICATION PROCESS 213* 11.3.1 UNDERCOOLING
213* 11.3.2 RECALESCENCE 213* 11.3.3 EFFECT OF PRESSURE ON MELTING
POINT... 214* 11.3.4 EFFECT OF CURVATURE ON MELTING POINT... 214* 11.4
CLASSICAL HOMOGENEOUS NUCLEATION THEORY 216* 11.4.1 NUCLEATION BARRIER
216* 11.4.2 NUCLEATION RATE 217* 11.5 HETEROGENEOUS NUCLEATION 220* 11.6
RECENT DEVELOPMENTS IN UNDERCOOLING EXPERIMENTS 221* 11.7 SUMMARY 222*
XII CONTENTS BIBLIOGRAPHY 223* PROBLEMS 223* CHAPTER 12 PHASE EQUILIBRIA
IN MULTICOMPONENT SYSTEMS 225* 12.1 GIBBS PHASE RULE 225* 12.2 ENTROPY
OF MIXING 225* 12.3 HEAT OF MIXING 226* 12.4 FREE ENERGY , 227* 12.4.1
MISCIBILITY 228* 12.4.2 METHOD OF TANGENTS 229* 12.4.3 LEVER RULE 229*
12.4.4 CHEMICAL POTENTIAL 230* 12.4.5 CONSTRUCTING A PHASE DIAGRAM FROM
FREE ENERGY CURVES 231* 12.4.6 SPINODAL DECOMPOSITION 231* 12.5 PHASE
DIAGRAM FOR IDEAL (ISOMORPHIC) SYSTEMS 232* 12.5.1 SOLID SOLUTIONS AND
THE HUME-ROTHERTY CRITERIA 232* 12.5.2 SEGREGATION OR PARTITION
COEFFICIENT 233* 12.5.3 EQUILIBRIUM SOLIDIFICATION 234* 12.5.4
NONEQUILIBRIUM SOLIDIFICATION-CORING 236* 12.5.5 ORDER-DISORDER
TRANSITIONS 236* 12.6 NONIDEAL SYSTEMS 236* 12.6.1 INTERMEDIATE PHASES
237* 12.6.2 EUTECTIC AND EUTECTOID SYSTEMS 239* 12.6.3 FORMATION OF THE
MICROSTRUCTURE IN EUTECTICS 243* 12.6.4 THE HUNT-JACKSON THEORY OF
LAMELLA SPACING 244* 12.6.5 SOLIDIFICATION OF OFF-EUTECTIC SYSTEMS 245*
12.6.6 PERITECTIC AND PERITECTOID SYSTEMS 246* 12.6.7 MONOTECTIC AND
MONOTECTOID SYSTEMS 247* 12.6.8 MIXED VALENCE SYSTEMS 248* 12.7 SUMMARY
250* BIBLIOGRAPHY 252* PROBLEMS 253* CHAPTER 13 ALLOY SOLIDIFICATION
255* 13.1 SOLIDIFICATION OF MULTICOMPONENT SYSTEMS 255* 13.2 DIRECTIONAL
SOLIDIFICATION 255* 13.2.1 BRIDGMAN GROWTH 256* 13.2.2 MACROSEGREGATION
257* 13.2.3 COMPLETE MIXING, THE SCHEIL EQUATION 258* 13.2.4 NO
CONVECTIVE MIXING, STEADY-STATE SOLIDIFICATION 258* 13.2.5 INITIAL
TRANSIENT 259* 13.2.6 PLANE FRONT SOLIDIFICATION, CONSTITUTIONAL
UNDERCOOLING 260* 13.2.7 PARTICLE/SOLIDIFICATION FRONT INTERACTIONS 262*
13.3 ZONE MELTING 262* 13.3.1 TRAVELING ZONE METHOD 262* 13.3.2 FLOATING
ZONE CRYSTAL GROWTH 263* 13.3.3 ZONE REFINING/PURIFICATION 264* 13.4
CZOCHRALSKI METHOD OF CRYSTAL GROWTH 265* 13.5 DENDRITE FORMATION 266*
13.6 CASTING 266* 13.6.1 CONTINUOUS CASTING 266* 13.6.2 FOUNDRY CASTING
267* CONTENTS XIII 13.7 SINTERING 267* 13.7.1 SINTERING PROCESS 267*
13.7.2 HOT ISOSTATIC PRESSING 268* 13.7.3 LIQUID-PHASE SINTERING 268*
13.8 VAPOR DEPOSITION 268* 13.8.1 PHYSICAL VAPOR DEPOSITION 268* 13.8.2
CHEMICAL VAPOR DEPOSITION 270* 13.9 SUMMARY 270* BIBLIOGRAPHY 271*
PROBLEMS 271* CHAPTER 14 TRANSFORMATION KINETICS 273* 14.1 THE A VRAMI
EQUATION 273* 14.2 ISOTHERMAL TIME-TEMPERATURE-TRANSFORMATIONS 274*
14.2.1 AUSTENITIC TO FERRITIC TRANSFORMATION 274* 14.2.2 MARTENSITIC
TRANSFORMATION 276* 14.2.3 SPHERODIZING 277* 14.2.4 TEMPERING 277*
14.2.5 ANNEALING 277* 14.2.6 HARDENABILITY 278* 14.3 COARSENING AND
RIPENING 279* 14.4 PRECIPITATION OR AGE HARDENING 279* 14.5
HEAT-TREATABLE ALLOY SYSTEMS 281* 14.5.1 CARBON STEELS 281* 14.5.2
STAINLESS STEELS 281* 14.5.3 MARAGING STEELS 282* 14.5.4
TRANSFORMATION-INDUCED PLASTICITY STEELS 282* 14.5.5 CAST IRONS 282*
14.5.6 ALUMINUM ALLOYS 283* 14.5.7 TITANIUM ALLOYS 283* 14.5.8 SHAPE
MEMORY ALLOYS 284* 14.5.9 SUPERALLOYS 284* 14.6 GLASS FORMATION 285*
14.6.1 CRYSTALLINE GROWTH RATE 286* 14.6.2 VISCOSITY-DIFFUSIVITY
RELATIONSHIPS 286* 14.6.3 GLASS TRANSITION TEMPERATURE 287* 14.6.4
TIME-TEMPERATURE-TRANSFORMATION DIAGRAMS 288* 14.6.5 GLASS-FORMING
SYSTEMS 290* 14.6.6 METALLIC GLASSES 291* 14.7 SUMMARY 293* BIBLIOGRAPHY
294* PROBLEMS 294* CHAPTER 15 DISTRIBUTION FUNCTIONS 297* 15.1
SPECIFYING THE STATE OF A SYSTEM 297* 15.2 BOSE-EINSTEIN STATISTICS 298*
15.2.1 MAXWELL-BOLTZMANN STATISTICS 300* 15.2.2 PLANCK DISTRIBUTION
FUNCTION 301* 15.3 FERMI-DIRAC STATISTICS 301* 15.4 CHEMICAL POTENTIAL
AND FERMI ENERGY 303* 15.5 SUMMARY 304* XIV* CONTENTS APPENDIX* 306*
A.15.1 DERIVATION OF THE IDENTITIES* 306* A.15.2 ENTROPY OF AN IDEAL
GAS* 307* A.15.3 PLANCK THEORY OF BLACK BODY RADIATION 308* BIBLIOGRAPHY
309* PROBLEMS 309* CHAPTER 16 LATTICE VIBRATIONS AND PHONONS* 311* 16.1
VIBRATIONS IN A LINEAR HOMOGENEOUS MEDIUM* 311* 16.2 WAVES ON A CHAIN OF
LIKE ATOMS* 312* 16.2.1* BRAGG REFLECTIONS AT THE FIRST BRILLOUIN ZONE
313* 16.2.2* NORMAL MODES IN A LINEAR CHAIN OF ATOMS 314* 16.3 MOTION OF
ATOMS IN A DIATOMIC CHAIN* 314* 16.3.1* LIMITING CASES 316* 16.3.2*
ENERGY GAP AT THE FIRST BRILLOUIN ZONE 316* 16.3.3* PHYSICAL
INTERPRETATION 316* 16.3.4* NORMAL MODES IN A DIATOMIC CHAIN 317* 16.4
TESTS OF THE MODEL* 318* 16.4.1* RELATING THE FORCE CONSTANT TO THE
ELASTIC* COEFFICIENTS 318* 16.4.2* COMPARISON WITH OBSERVED DATA 319*
16.5 APPLICATIONS* 319* 16.6 SUMMARY 319* BIBLIOGRAPHY 320* PROBLEM 320*
CHAPTER 17 THERMAL PROPERTIES OF SOLIDS* 321* 17.1 LATTICE HEAT
CAPACITY* 321* 17.1.1* CLASSICAL APPROACH 321* 17.1.2* DULONG-PETIT
CLASSICAL LIMIT 323* 17.2 DEBYE MODEL* 323* 17.2.1* CRITIQUE OF THE
DEBYE MODEL... 325* 17.3 ELECTRONIC HEAT CAPACITY* 326* 17.4 THERMAL
CONDUCTIVITY* 327* 17.4.1* IDEAL GAS MODEL 327* 17.4.2* LATTICE THERMAL
CONDUCTIVITY 329* 17.4.3* ELECTRON THERMAL CONDUCTIVITY 331* 17.5
THERMAL EXPANSION* 331* 17.6 COUPLED TRANSPORT EFFECTS* 332* 17.6.1*
DUFOUR AND SORET-LUDWIG EFFECTS 332* 17.6.2* ELECTROTRANSPORT 333*
17.6.3* SEEBECK AND PELTIER EFFECTS 333* 17.7 APPLICATIONS* 334* 17.7.1*
THERMOCOUPLES 334* 17.7.2* THERMOELECTRIC GENERATORS 335* 17.7.3*
THERMOELECTRIC COOLING 336* 17.8 SUMMARY* 336* BIBLIOGRAPHY 337*
PROBLEMS 338* CONTENTS XV CHAPTER 18 FREE ELECTRONS IN METALS 339* 18.1
DRUDE THEORY OF FREE ELECTRONS IN METALS 339* 18.1.1 ELECTRICAL
CONDUCTION 339* 18.1.2 CLASSICAL ELECTRON DYNAMICS 341* 18.2
MATTHIESSEN S RULE 343* 18.2.1 EFFECT OF IMPURITIES AND DEFECTS 343*
18.2.2 TEMPERATURE DEPENDENCE OF RESISTIVITY 344* 18.2.3 GRIINEISEN
MODEL OF RESISTIVITY 344* 18.3 PROBLEMS WITH THE CLASSICAL FREE ELECTRON
GAS THEORY 345* 18.3.1 TEMPERATURE DEPENDENCE 345* 18.3.2 MEAN FREE PATH
CONSIDERATIONS 345* 18.3.3 ELECTRONIC HEAT CAPACITY AND PARAMAGNETISM
346* 18.4 QUANTUM THEORY OF FREE ELECTRONS 346* 18.5 HALL EFFECT 348*
18.6 WIEDEMANN-FRANZ RATIO 350* 18.7 CONDUCTIVE POLYMERS 350* 18.7.1
CHARGE CONJUGATION 351* 18.8 SUMMARY 351* BIBLIOGRAPHY 353* PROBLEM 353*
CHAPTER 19 BAND THEORY OF METALS 355* 19.1 NEARLY FREE ELECTRON MODEL.
355* 19.1.1 WAVEFUNCTIONS FOR TRAVELING ELECTRONS 355* 19.1.2 ENERGY GAP
AT THE BRILLOUIN ZONE 357* 19.2 BINARY PHASE DIAGRAMS FOR MIXED VALENCY
METALS 358* 19.3 BAND STRUCTURE IN METALS 360* 19.3.1 THE BLOCH THEOREM
AND THE REDUCED BAND SCHEME 360* 19.3.2 EFFECTIVE ELECTRON MASS 361*
19.3.3 HOLES 362* 19.3.4 CYCLOTRON RESONANCE 362* 19.3.5 BAND STRUCTURE
IN REAL SYSTEMS 363* 19.4 CONDUCTIVITY AND THE FERMI SURFACE 364* 19.5
TIGHT BINDING APPROXIMATION 366* 19.5.1 CONDUCTIVITY IN DIVALENT METALS
369* 19.6 EXPERIMENTAL METHODS 370* 19.6.1 PHOTOELECTRIC EFFECT. 370*
19.6.2 PHOTOELECTRON SPECTROSCOPY 371* 19.6.3 X-RAY SPECTROSCOPY 371*
19.6.4 THERMIONIC EMISSION 371* 19.7 SUMMARY 372* APPENDIX 373* A.19.1
PROOF THAT A WAVE FUNCTION DISPLACED BY G IS UNCHANGED 373* BIBLIOGRAPHY
374* PROBLEMS 374* CHAPTER 20 SEMICONDUCTORS 375* 20.1 THE GROUP TV
SYSTEMS 375* 20.1.1 THE CHEMICAL PICTURE 375* 20.1.2 THE BANDGAP ENERGY
376* XVI CONTENTS 20.1.3 THE ENERGY BAND PICTURE 377* 20.1.4 AMORPHOUS
SEMICONDUCTORS 377* 20.2 INTRINSIC SEMICONDUCTORS 378* 20.2.1 FERMI
LEVEL IN INTRINSIC SEMICONDUCTORS 378* 20.2.2 ELECTRON-HOLE PRODUCT 379*
20.2.3 ENERGY BAND STRUCTURE 381* 20.2.4 EFFECTIVE ELECTRON AND HOLE
MASSES 383* 20.3 EXTRINSIC SEMICONDUCTORS 383* 20.3.1 CARRIER
CONCENTRATIONS 384* 20.3.2 FERMI LEVELS IN EXTRINSIC SEMICONDUCTORS 385*
20.4 HALL COEFFICIENT FOR BOTH ELECTRONS AND HOLES 387* 20.5
CONDUCTIVITY OF SEMICONDUCTORS 388* 20.6 OPTICAL PROPERTIES 389* 20.6.1
ABSORPTION EDGE FOR DIRECT BANDGAP SEMICONDUCTORS 390* 20.6.2 ABSORPTION
EDGE FOR INDIRECT BANDGAP SEMICONDUCTORS 390* 20.6.3 EXCITONS 390*
20.6.4 PHOTOCONDUCTIVE DETECTORS 391* 20.7 SEMICONDUCTING POLYMERS 391*
20.7.1 ENERGY LEVELS OF CONFINED ELECTRONS 392* 20.8 SUMMARY 392*
BIBLIOGRAPHY 394* PROBLEMS 394* CHAPTER 21 THEORY AND APPLICATIONS OF
JUNCTIONS 397* 21.1 THE P-N JUNCTION 397* 21.1.1 ANALYSIS 398* 21.1.2
WIDTH OF THE DEPLETION LAYER 400* 21.1.3 BIASING THE JUNCTION 401*
21.1.4 CURRENT FLOW 403* 21.1.5 ZENER EFFECT 404* 21.1.6 SCHOTTKY DIODES
404* 21.1.7 OHMIC CONTACTS 405* 21.2 APPLICATIONS OF DIODES 406* 21.2.1
DIODE AS A RECTIFIER 407* 21.2.2 DIODES AS DEMODULATORS IN AM RADIOS
408* 21.2.3 APPLICATIONS IN LOGIC CIRCUITS AND ROMS 408* 21.3 TUNNEL
DIODE AND NEGATIVE RESISTANCE 409* 21.3.1 THE GUNN EFFECT 409* 21.4
LIGHT-EMITTING DIODES 411* 21.4.1 DEVELOPMENT OF LIGHT-EMITTING DIODES
411* 21.4.2 OLED AND PLEDS 412* 21.4.3 SOLID-STATE LASERS 413* 21.5
PHOTODIODE 413* 21.5.1 SOLAR CELLS 414* 21.6 SUMMARY 416* BIBLIOGRAPHY
417* PROBLEMS 417* CHAPTER 22 TRANSISTORS, QUANTUM WELLS, AND
SUPERLATTICES 419* 22.1 TRANSISTOR THEORY AND APPLICATIONS 419* 22.1.1
BIPOLAR JUNCTION TRANSISTOR (BJT) 419* 22.1.2 COMMON BASE AMPLIFIER 420*
CONTENTS* XVLL 22.1.3* COMMON EMITTER AMPLIFIER 421* 22.1.4* BASIC
FLIP-FLOP CIRCUIT 421* 22.1.5* DIFFERENCES BETWEEN BJTS AND VACUUM TUBES
422* 22.2 FIELD EFFECT TRANSISTORS* 423* 22.2.1* ENHANCEMENT-TYPE FETS
423* 22.2.2* DEPLETION-TYPE FETS 423* 22.2.3* COMPLIMENTARY METAL OXIDE*
SEMICONDUCTORS 424* 22.2.4* JUNCTION FIELD EFFECT TRANSISTORS 424* 22.3
RANDOM ACCESS MEMORY* 425* 22.3.1 STATIC RANDOM ACCESS MEMORY* 425*
22.3.2 DYNAMIC RANDOM ACCESS MEMORY* 425* 22.3.3 FLASH MEMORY* 425* 22.4
CHARGE COUPLED DEVICES* 425* 22.5 MOORE S LAW* 426* 22.6
HETEROJUNCTIONS* 428* 22.6.1 MODULATION DOPING* 428* 22.6.2 HIGH
ELECTRON MOBILITY TRANSISTOR.* 429* 22.6.3 DOUBLE HETEROJUNCTION LASERS*
430* 22.7 SUPERLATTICES* 430* 22.7.1* RESONANCE TUNNELING DIODES 431*
22.7.2* NIPI STRUCTURES 431* 22.7.3* QUANTUM WELL CASCADE LASERS 432*
22.8 QUANTUM WIRES AND QUANTUM DOTS* 433* 22.9 SUMMARY 434* BIBLIOGRAPHY
435* CHAPTER 23 DIELECTRICS AND THE DIELECTRIC FUNCTION* 437* 23.1
CONDUCTIVITY OF DIELECTRICS* 437* 23.1.1* ELECTRONIC CONDUCTION 437*
23.1.2* IONIC CONDUCTION 437* 23.1.3* FAST ION CONDUCTORS 438* 23.1.4*
DIELECTRIC BREAKDOWN 438* 23.2 POLARIZATION IN DIELECTRICS* 439* 23.2.1
CAPACITORS* 439* 23.3 DIELECTRIC FUNCTION* 440* 23.3.1* ELECTRONIC
POLARIZATION 440* 23.3.2* IONIC POLARIZATION 442* 23.3.3* LYDDANE,
SACHS, TELLER (LST) RELATIONSHIP 444* 23.3.4* POLARIZATION IN POLAR
LIQUIDS 444* 23.3.5* POLARIZATION IN THE DIPOLAR SOLID 445* 23.3.6*
DIPOLAR MATERIALS IN AN ALTERNATING FIELD 446* 23.3.7* DIELECTRIC LOSSES
447* 23.3.8* CLAUSIUS-MOSSOTTI EQUATION 447* 23.3.9* CORRECTIONS FOR
LOCAL FIELDS 449* 23.3.10* TOTAL DIELECTRIC FUNCTION 450* 23.4
FERROELECTRICS* 451* 23.4.1* TYPES OF FERROELECTRIC MATERIALS 452*
23.4.2* BATI03 SYSTEM 453* 23.4.3* THEORIES OF FERROELECTRICS 455* XVIII
CONTENTS 23.4.4 ANTIFERROELECTRICS 455* 23.4.5 PIEZOELECTRICS 456* 23.5
APPLICATIONS 457* 23.5.1 APPLICATIONS OF FERROELECTRICS 457* 23.5.2
APPLICATIONS OF PYROELECTRICS 457* 23.5.3 APPLICATIONS OF PIEZOELECTRICS
457* 23.5.4 ELECTRETS 458* 23.6 SUMMARY 458* APPENDIX: INTERNAL FIELD
CORRECTION FOR IONIC DIELECTRIC FUNCTION 459* BIBLIOGRAPHY 460*
PROBLEMS 460* CHAPTER 24 OPTICAL PROPERTIES OF MATERIALS 463* 24.1
REVIEW OF ELECTRICITY AND MAGNETISM 463* 24.1.1 MAXWELL S EQUATIONS 463*
24.1.2 WAVE EQUATION 464* 24.1.3 INDEX OF REFRACTION 465* 24.1.4
REFLECTION AND TRANSMISSION OF ELECTROMAGNETIC WAVES 465* 24.1.5 COMPLEX
INDEX OF REFRACTION 466* 24.1.6 ABSORPTION OF ELECTROMAGNETIC RADIATION
467* 24.2 OPTICAL PROPERTIES OF DIELECTRIC MATERIALS 467* 24.2.1 VISIBLE
AND NEAR-ULTRAVIOLET 468* 24.2.2 INFRARED ABSORPTION 470* 24.2.3
PHONON-PHOTON COUPLING 472* 24.2.4 DIPOLAR ABSORPTION 474* 24.2.5 OTHER
ABSORPTION PHENOMENA 475* 24.2.5.1 INHERENT ABSORPTION 475* 24.2.5.2
OPTICAL SCATTERING 475* 24.2.5.3 COLOR CENTERS 475* 24.2.5.4 IMPURITY
ABSORPTION 476* 24.2.5.5 EXCITONS 476* 24.2.6 HEAVY METAL GLASSES 476*
24.2.7 BIREFRINGENCE 477* 24.2.8 NONLINEAR OPTICAL EFFECTS 477* 24.2.9
RAMAN SCATTERING 477* 24.3 OPTICAL PROPERTIES OF CONDUCTIVE MEDIA 478*
24.3.1 CONDUCTIVITY AT HIGH FREQUENCIES 478* 24.3.2 MODIFICATION OF
DIELECTRIC FUNCTION TO ACCOUNT FOR CONDUCTIVITY 479* 24.3.3 PLASMA
FREQUENCY 479* 24.3.4 OPTICAL CONSTANTS 480* 24.3.5 LOW FREQUENCY CASE
481* 24.3.6 HIGH FREQUENCY CASE 482* 24.3.7 REFLECTANCE SPECTRA OF REAL
METALS 482* 24.3.8 INTERBAND TRANSITIONS IN METALS 484* 24.3.9
SEMICONDUCTORS 485* 24.3.10 PLASMAS 486* 24.3.11 DISPERSION RELATION
488* 24.4 SUMMARY 489* BIBLIOGRAPHY 490* PROBLEMS 490* CONTENTS XIX
CHAPTER 25 MAGNETISM AND MAGNETIC MATERIALS 493* 25.1 BASIC
RELATIONSHIPS 493* 25.1.1 TYPES OF MAGNETISM 493* 25.2 ORIGIN OF
MAGNETISM 494* 25.2.1 BOHR MAGNETON 494* 25.2.2 NET MAGNETIC MOMENT 495*
25.2.3 HUND S RULES 496* 25.3 DIAMAGNETISM 496* 25.3.1 LANGEVIN
DIAMAGNETISM (CLASSICAL APPROACH) 496* 25.3.2 LARMOR DIAMAGNETISM
(QUANTUM APPROACH) 497* 25.4 PARAMAGNETISM 498* 25.4.1 LANGEVIN
PARAMAGNETISM (CLASSICAL APPROACH) 498* 25.4.2 PARAMAGNETISM (QUANTUM
APPROACH) 499* 25.4.3 EFFECTIVE MAGNETIC MOMENT.. 499* 25.4.4
PARAMAGNETISM OF CONDUCTION ELECTRONS (PAULI PARAMAGNETISM) 500* 25.5
FERROMAGNETISM 500* 25.5.1 CURIE-WEISS THEORY (CLASSICAL APPROACH) 500*
25.5.2 HEISENBERG EXCHANGE THEORY (QUANTUM APPROACH) 502* 25.5.3
ANTIFERROMAGNETISM 503* 25.5.4 FERRIMAGNETISM 503* 25.6 MAGNETIC DOMAINS
504* 25.7 MAGNETIC HYSTERESIS 505* 25.8 MAGNETIC MATERIALS 505* 25.8.1
HARD MAGNETIC MATERIALS 505* 25.8.2 SOFT MAGNETIC MATERIALS 507* 25.8.3
FERRIMAGNETIC MATERIALS 507* 25.8.4 MAGNETOSTRICTIVE MATERIALS 507* 25.9
MAGNETIC INFORMATION STORAGE TECHNOLOGY 508* 25.9.1 MAGNETO-OPTIC
EFFECTS 508* 25.9.1.1 FARADAY ROTATION 508* 25.9.1.2 MAGNETO-OPTIC KERR
EFFECT 509* 25.9.2 MAGNETORESISTANCE 509* 25.9.2.1 ORDINARY AND
ANISOTROPIC MAGNETORESISTANCE 509* 25.9.2.2 GIANT MAGNETORESISTANCE 509*
25.9.2.3 COLOSSAL MAGNETORESISTANCE 510* 25.9.3 MAGNETOELECTRONICS
(SPINTRONICS) 510* 25.10 SUMMARY 510* BIBLIOGRAPHY 511* PROBLEMS 512*
CHAPTER 26 SUPERCONDUCTIVITY 513* 26.1 HISTORICAL PERSPECTIVE 513* 26.2
BASIC PROPERTIES OF SUPERCONDUCTORS 514* 26.2.1 ISOTOPE EFFECT 514*
26.2.2 PERSISTENT SUPERCURRENTS AND PERFECT DIAMAGNETISM 515* 26.2.3
MEISSNER EFFECT 515* 26.2.4 ELECTRONIC HEAT CAPACITY 515* 26.2.5 OPTICAL
PROPERTIES 516* 26.2.6 THERMAL CONDUCTIVITY 516* 26.3 BCS THEORY 516* XX
CONTENTS 26.4 THERMODYNAMICS OF SUPERCONDUCTIVITY 517* 26.4.1 FREE
ENERGY OF THE SUPERCONDUCTING STATE 517* 26.4.2 HEAT CAPACITY FROM BCS
THEORY 518* 26.4.3 THERMODYNAMICALLY CONSISTENT BCS MODEL 518* 26.5
LONDON EQUATIONS 522* 26.5.1 PENETRATION DEPTH 522* 26.6 COHERENCE
LENGTH 523* 26.7 TYPE-I AND TYPE-II SUPERCONDUCTORS 524* 26.8 FLUX
QUANTIZATION 525* 26.9 CRITICAL CURRENTS 525* 26.9.1 CRITICAL CURRENT
RELATED TO THE BINDING ENERGY OF A COOPER PAIR 525* 26.9.2 CRITICAL
CURRENT RELATED TO MAGNETIC FIELD 526* 26.9.3 CRITICAL FIELDS IN TYPE-II
SUPERCONDUCTORS 526* 26.10 HIGH TEMPERATURE SUPERCONDUCTORS 528* 26.11
RECENT ADVANCES IN SUPERCONDUCTIVITY 529* 26.12 APPLICATIONS 529*
26.12.1 JOSEPHSON EFFECT 530* 26.12.2 DC JOSEPHSON EFFECT 530* 26.12.3
AC JOSEPHSON EFFECT 531* 26.12.4 SUPERCONDUCTING QUANTUM INTERFERENCE
DETECTORS 531* 26.13 SUMMARY 532* BIBLIOGRAPHY 533* PROBLEMS 534* INDEX
535*
|
adam_txt |
* * * * * * * * * * ******** ***** * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * **** * * * * * *** * * * * * * * * * * ********* * * * ****
***** * * * * * * * * * * * * * * * * * * * * * * * * * * * **** * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * **** * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * ****** * * * * * * * * * * ******
* * * * * * * * * * * * ****** * * * * * * * * * * * * * * * * * *
****** * * * * * * * * * * * * ****** * * * * * * * * * * * **** * * * *
* * * * * * * * * * * * * * * * * * * ******** * * * ****** * * * * * *
* * * * * * * * * * * * * * * * * * * ****** * * * * * * * * * * * *
****** * * * * * * * * * * * * * * * * * * * ****** * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * ****** * * * * * * * * *
* * * * * * * * * * * ****** * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * **** ****** * * * * * * * * * * * **** ****** * * * * *
* * * * * * * * * * **** ****** * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * **** ******* * * * * * * * * * * **** *** **** * *
* * * * * * * *******
******************************************************************************
********************** **** ******* * * * * * * * * * * * * * * * * * *
* * **** ******* * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * **** **** * * * * * *** * * * *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * **** * * * * *
* * * * * * * * **** * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * **** * * * * * * * * * * * * * * * * * * * * * * *
* * * * **** ****** * * * * * * * * * * * * * * * * * * * **** ****** *
* * * * * * * * * * * * * **** **** * * * * ********
******************************************************************************
***************************************** **** ****** * * * * * * * * *
* * * * * * * * * * * * * **** ****** * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * **** **** * * * * * * * * * * * * * * *
* * * * * * * * * * * **** ****** * * * * * * * * * * * * * * * ****
**** ****** * * * * * * * * * * * * * * **** * * * * * * * * * * * * * *
* * * * **** **** * * * * * * * * * * * * * * * * * * * * * * * * * * *
**** **** * * * * * * * * * * * * * * * **** V VI CONTENTS 2.5.1 PAULI
EXCLUSION PRINCIPLE 27* 2.5.2 THEORETICAL BASIS FOR THE PERIODIC TABLE
27* 2.6 SUMMARY 30* BIBLIOGRAPHY 30* PROBLEMS 31* CHAPTER 3 CHEMICAL
BONDING 33* 3.1 WHAT HOLDS STUFF TOGETHER? 33* 3.2 IONIC BONDING 33*
3.2.1 ELECTRONEGATIVITY AND ELECTRON AFFINITY 34* 3.2.2 COULOMB
POTENTIAL 34* 3.2.3 MADELUNG CONSTANT 35* 3.2.4 LATTICE ENERGY 36* 3.2.5
BORN-HABER CYCLE 36* 3.3 COVALENT BOND '" 38* 3.3.1 HEITLER-LONDON
THEORY 38* 3.3.2 LCAO APPROACH 40* 3.3.3 SIGMA AND PI BONDS 40* 3.3.4
S-P BONDS 42* 3.3.5 HYBRIDIZATION 42* 3.4 METALLIC BOND 44* 3.4.1 SIMPLE
METALS 45* 3.4.2 WHY NO METALLIC HYDROGEN? 46* 3.4.3 TRANSITION METALS
47* 3.5 ATOMIC AND IONIC RADII 48* 3.6 SECONDARY BONDING 49* 3.6.1
ELECTRIC DIPOLE 50* 3.6.2 HYDROGEN BOND 50* 3.6.3 VAN DER WAALS BOND 51*
3.6.4 LENNARD-JONES 6-12 POTENTIAL 51* 3.6.5 LATTICE SUMS 53* 3.7 OTHER
POTENTIAL FUNCTIONS 53* 3.7.1 BOM-MAYER POTENTIAL 53* 3.7.2 MIE
POTENTIAL 54* 3.7.3 BUCKINGHAM POTENTIAL. 55* 3.7.4 MORSE POTENTIAL 55*
3.8 SUMMARY 56* APPENDIX: MADELUNG SUMMATION 57* BIBLIOGRAPHY 59*
PROBLEMS 59* CHAPTER 4 CRYSTALS AND CRYSTALLOGRAPHY 61* 4.1 WHAT ARE
CRYSTALS? 61* 4.1.1 UNIT CELL 62* 4.1.2 CRYSTAL LATTICE AND THE
TRANSLATION GROUP 62* 4.1.3 CRYSTALLOGRAPHIC DIRECTIONS 63* 4.1.4 MILLER
INDICES 64* 4.1.5 INTERPLANAR SPACING 66* 4.1.6 MILLER-BRAVAIS NOTATION
67* 4.2 CRYSTAL SYSTEMS AND SYMMETRY 69* 4.2.1 POINT SYMMETRY OPERATIONS
69* CONTENTS VII 4.2.2 BASIC CRYSTAL SYSTEMS 69* 4.2.2.1 TRICLINIC
SYSTEM 69* 4.2.2.2 MONOCLINIC SYSTEM 70* 4.2.2.3 TRIGONAL SYSTEM 70*
4.2.2.4 ORTHORHOMBIC SYSTEM 71* 4.2.2.5 TETRAGONAL SYSTEM 72* 4.2.2.6
HEXAGONAL SYSTEM 72* 4.2.2.7 CUBIC SYSTEM 72* 4.2.3 RESTRICTED SYMMETRY
72* 4.2.4 BRAVAIS LATTICES 73* 4.2.5 HEXAGONAL CLOSE-PACKED LATTICE 75*
4.2.6 SPACE GROUPS 75* 4.3 STRUCTURAL RELATIONSHIPS 76* 4.3.1 DENSITY
AND PACKING CALCULATIONS 77* 4.3.1.1 ATOMIC DENSITY 77* 4.3.1.2 MASS
DENSITY 77* 4.3.1.3 ATOMIC PACKING FACTOR 78* 4.3.1.4 PLANAR DENSITY 78*
4.3.1.5 PLANAR FRACTION 79* 4.3.1.6 LINEAR DENSITIES 80* 4.3.1.7 LINEAR
FRACTION 80* 4.4 INTERSTICES 80* 4.4.1 INTERSTITIAL SITES IN THE SIMPLE
CUBIC LATTICE 80* 4.4.2 INTERSTITIAL SITES IN THE FACE-CENTERED CUBIC
LATTICE 81* 4.4.3 INTERSTITIAL SITES IN THE BODY-CENTERED CUBIC LATTICE
81* 4.4.4 INTERSTITIAL SITES IN THE HEXAGONAL CLOSE-PACKED LATTICE 82*
4.4.5 COMPARISON OF INTERSTITIAL SITES IN THE METALLIC LATTICES 82* 4.5
QUASICRYSTALS 83* 4.6 SUMMARY 84* BIBLIOGRAPHY 86* PROBLEMS 86* CHAPTER
5 THE STRUCTURE OF MATTER 89* 5.1 STRUCTURE OF METALS 89* 5.1.1
FACE-CENTERED CUBIC VERSUS HEXAGONAL CLOSE-PACKED STRUCTURES 89* 5.1.2
DOUBLE CLOSE-PACK STRUCTURES 91* 5.1.3 BODY-CENTERED CUBIC STRUCTURES
91* 5.1.4 WHAT DETERMINES WHICH STRUCTURE A METAL WILL HAVE? 91* 5.2
INTERMETALLIC COMPOUNDS 92* 5.2.1 STRUKTURBERICHT AND PEARSON NOTATION
93* 5.2.2 NIAI INTERMETALLIC PHASES 93* 5.2.3 LAVES PHASES 94* 5.2.4 MAX
PHASES 94* 5.2.5 INTERSTITIAL COMPOUNDS 94* 5.2.6 A15 SUPERCONDUCTORS
95* 5.3 IONIC COMPOUNDS 95* 5.3.1 CESIUM CHLORIDE STRUCTURE (82) 96*
5.3.2 ROCK SALT OR SODIUM CHLORIDE STRUCTURE (81) 96* 5.3.3 FLUORITE
STRUCTURE (CL) 97* 5.3.4 PEROVSKITE STRUCTURE (E2 1) 98* 5.3.5 SPINE!
AND INVERSE SPINEL STRUCTURE (H1 1) 98* 5.3.6 STRUCTURES WITH SMALL
CATION-TO-ANION RATIOS 99* VIII CONTENTS 5.4 COVALENT STRUCTURES 100*
5.4.1 DIAMOND STRUCTURE (A4) 100* 5.4.2 SPHALERITE OR ZINC BLENDE (B3)
100* 5.4.3 HEXAGONAL DIAMOND 101* 5.4.4 WURTZITE (B4) 102* 5.4.5
GRAPHITE (W9) 102* 5.4.6 FULLERENES, FULLERITES, AND FULLERIDES 103*
5.4.7 CARBON NANOTUBES 104* 5.4.8 OTHER HEXAGONAL RING STRUCTURES 105*
5.4.9 QUARTZ 107* 5.4.10 OTHER SILICATE STRUCTURES 108* 5.4.11 ZEOLITES
108* 5.4.12 ELECTRON-DEFICIENT SOLIDS 109* 5.5 STRUCTURE OF GLASS 109*
5.6 STRUCTURE OF POLYMERS 111* 5.6.1 POLYMERIZATION PROCESSES 111* 5.6.2
LINEAR POLYMERS 111* 5.6.3 BRANCHED POLYMERS 114* 5.6.4 NET POLYMERS
114* 5.6.5 ZIEGLER-NATTA CATALYSTS AND STEREOISOMERISM 114* 5.6.6
GEOMETRICAL ISOMERISM 115* 5.6.7 VULCANIZATION 116* 5.7 SUMMARY 116*
BIBLIOGRAPHY 119* PAPERS DEALING WITH METHODS FOR COMPUTING LATTICE
ENERGIES 119* OTHER REFERENCES INVOLVING STRUCTURES 119* FOR MORE
INFORMATION ON INTERMETALLIC COMPOUNDS 119* BOOKS AND PAPERS ON
FULLERENES 119* PROBLEMS 119* CHAPTER 6 RECIPROCAL LATTICE AND X-RAY
DIFFRACTION 121* 6.1 RECIPROCAL LATTICE 121* 6.1.1 FOURIER EXPANSION OF
THE ELECTRON DENSITY 121* 6.1.2 RECIPROCAL LATTICE VECTOR 122* 6.1.3
LATTICE TYPES IN RECIPROCAL SPACE 123* 6.1.3.1 SIMPLE CUBIC DIRECT
LATTICE 123* 6.1.3.2 BODY-CENTERED CUBIC DIRECT LATTICE 123* 6.1.3.3
FACE-CENTERED CUBIC DIRECT LATTICE 124* 6.2 DIFFRACTION CONDITIONS 125*
6.2.1 LAUE CONDITIONS 125* 6.2.2 EWALD CONSTRUCTION 126* 6.2.3 BRILLOUIN
ZONES 128* 6.3 DIFFRACTION INTENSITY 129* 6.3.1 ATOMIC FORM FACTOR 130*
6.3.2 STRUCTURE FACTOR 131* 6.4 METHODS AND USES OF X-RAY DIFFRACTION
133* 6.4.1 DEBYE-SCHERRER OR POWDER METHOD 133* 6.4.2 LAUE METHOD 134*
6.4.3 ROCKING CURVES 134* CONTENTS IX 6.4.4 ROTATING CRYSTAL METHOD 135*
6.4.5 OBTAINING STRUCTURE FROM X-RAY DIFFRACTION DATA 136* 6.4.5.1 PHASE
PROBLEM 136* 6.4.5.2 DIRECT METHOD 136* 6.4.5.3 ISOMORPHOUS SUBSTITUTION
137* 6.5 SUMMARY 137* BIBLIOGRAPHY 138* PROBLEMS 139* CHAPTER 7 THEORY
OF ELASTICITY 141* 7.1 ELASTIC COEFFICIENTS 141* 7.1.1 STRESS TENSOR
141* 7.1.2 STRAIN TENSOR 141* 7.1.3 ELASTIC COEFFICIENT TENSOR 142* 7.2
PROPERTIES OF CRYSTALS WITH CUBIC SYMMETRY 143* 7.2.1 SHEAR MODULUS 143*
7.2.2 BULK MODULUS 144* 7.2.3 YOUNG'S MODULUS 144* 7.2.4 POISSON'S RATIO
144* 7.3 MEASUREMENT OF ELASTIC COEFFICIENTS 144* 7.4 BOND
ENERGY-ELASTIC COEFFICIENTS RELATIONSHIPS 145* 7.4.1 BULK MODULUS 145*
7.4.2 ELASTIC COEFFICIENTS 146* 7.4.3 THERMAL EXPANSION 146* 7.4.4 MIE
POTENTIAL 148* 7.4.5 IONICALLY BONDED SYSTEMS 148* 7.4.6 SIMPLE METALS
150* 7.4.7 TRANSITION METALS 150* 7.5 THEORETICAL STRENGTH 152* 7.5.1
COHESIVE MODELS 152* 7.5.2 SHEAR MODELS 153* 7.6 SUMMARY 154*
BIBLIOGRAPHY 155* PROBLEMS '" 155* CHAPTER 8 DEFECTS IN CRYSTALS 157*
8.1 WHAT ARE DEFECTS? 157* 8.2 POINT DEFECTS 157* 8.2.1 VACANCY DEFECTS
157* 8.2.2 FRENKEL AND SCHOTTKY DEFECTS 159* 8.2.3 IMPURITY DEFECTS 160*
8.2.4 NONSTOICHIOMETRIC COMPOUNDS 160* 8.3 LINE OR ONE-DIMENSIONAL
DEFECTS 160* 8.3.1 SLIP IN METALLIC CRYSTALS 160* 8.3.2 RESOLVED SHEAR
STRESS 160* 8.3.3 EDGE DISLOCATIONS 161* 8.3.4 BURGERS VECTOR 162* 8.3.5
SCREW DISLOCATIONS 162* 8.3.6 MIXED DISLOCATIONS 162* 8.3.7 OBSERVING
DISLOCATIONS 164* X CONTENTS 8.3.8 CREATING DISLOCATIONS : 164* 8.3.9
SCREW LOCATIONS AND CRYSTAL GROWTH 164* 8.4 TWO-DIMENSIONAL OR PLANAR
DEFECTS 165* 8.4.1 INTERFACIAL ENERGY 165* 8.4.2 ESTIMATING SURFACE
ENERGY FOR IONIC SOLIDS 166* 8.4.3 GRAIN BOUNDARIES 167* 8.4.4 TILT AND
TWIST BOUNDARIES 167* 8.4.5 STACKING FAULTS 167* 8.4.6 TWINNING 168* 8.5
VOLUME OR THREE-DIMENSIONAL DEFECTS 168* 8.6 DIFFUSION 169* 8.6.1
DIFFUSION COEFFICIENT 169* 8.6.2 KIRKENDALL EFFECT 169* 8.6.3 FICK'S
LAWS 170* 8.6.4 EXAMPLE PROBLEM 170* 8.6.5 USEFUL APPROXIMATION 171*
8.6.6 EXPANSIONS FOR THE ERROR FUNCTION 172* 8.7 SUMMARY 172*
BIBLIOGRAPHY 173* PROBLEMS 173* CHAPTER 9 MECHANICAL PROPERTIES OF
MATERIALS 175* 9.1 STRESS-STRAIN RELATIONSHIPS 175* 9.1.1 TENSILE TEST
175* 9.1.2 TENSILE
STRENGTH.
177* 9.1.3 TRUE STRESS AND TRUE STRAIN 178* 9.1.4 BEND TEST 178* 9.1.5
HARDNESS TESTING 178* 9.2 RELATIONSHIP BETWEEN LATTICE TYPE AND
DUCTILITY 179* 9.2.1 SLIP SYSTEMS IN METALS 179* 9.2.2 SLIP SYSTEMS IN
IONICALLY BONDED CERAMICS 179* 9.3 STRENGTHENING MECHANISMS 180* 9.3.1
WORK HARDENING 181* 9.3.2 GRAIN REFINING 181* 9.3.3 SOLID SOLUTION
HARDENING 181* 9.3.4 PRECIPITATION HARDENING 181* 9.3.5 DISPERSION
HARDENING 181* 9.3.6 AMORPHOUS STRUCTURE 182* 9.4 CREEP 182* 9.5
FRACTURE MECHANICS 183* 9.5.1 STRESS CONCENTRATION 183* 9.5.2 GRIFFITH'S
THEORY OF BRITTLE FRACTURE 184* 9.5.3 OROWAN-GRIFFITH THEORY 185* 9.5.4
FRACTURE TOUGHNESS 186* 9.5.5 DUCTILE-TO-BRITTLE TRANSFORMATION 187*
9.5.6 TOUGHENING METHODS 187* 9.5.7 FATIGUE 188* 9.6 MECHANICAL
PROPERTIES OF POLYMERS 189* 9.6.1 SEMICRYSTALLINE POLYMERS 189* 9.6.2
ELASTOMERS 190* CONTENTS XI 9.6.3 VISCOELASTIC BEHAVIOR 190* 9.6.4
VISCOELASTIC RELAXATION MODULUS 191* 9.7 SUMMARY 192* BIBLIOGRAPHY 193*
PROBLEMS 193* CHAPTER 10 COMPOSITES 195* 10.1 HISTORY OF COMPOSITES 195*
10.2 TYPES OF COMPOSITES 197* 10.2.1 LAMINATED COMPOSITES 197* 10.2.1.1
SANDWICH PANELS 197* 10.2.1.2 METAL-METAL LAMINATES 198* 10.2.1.3
METAL-GRAPHITE LAMINATES 198* 10.2.1.4 CERAMIC/METAL LAMINATES 198*
10.2.2 PARTICLE-REINFORCED COMPOSITES 198* 10.2.2.1 SMALL PARTICLE
COMPOSITES 199* 10.2.2.2 LARGE PARTICLE COMPOSITES 199* 10.2.3
FIBER-REINFORCED COMPOSITES 200* 10.2.3.1* FIBER-REINFORCED METAL MATRIX
COMPOSITES 201 10.2.3.2* FIBER-REINFORCED CERAMIC MATRIX COMPOSITES 202
10.2.3.3* CARBON-CARBON COMPOSITES 202 10.2.3.4* POLYMER MATRIX
COMPOSITES 203 10.3 MODELING THE PERFORMANCE OF COMPOSITES 204* 10.3.1
RULE OF MIXTURES 204* 10.3.2 CRITICAL FIBER LENGTH 205* 10.3.3
CONTINUOUS ALIGNED FIBER-REINFORCED COMPOSITES 206* 10.3.4 DISCONTINUOUS
FIBERS 207* 10.4 SUMMARY 207* BIBLIOGRAPHY 208* PROBLEMS 208* CHAPTER 11
PHASE EQUILIBRIA IN SINGLE COMPONENT SYSTEMS 209* 11.1 DEFINITION OF A
PHASE 209* 11.2 SOLIDIFICATION OF PURE SYSTEMS 209* 11.2.1 GIBBS PHASE
RULE 209* 11.2.2 ENTHALPY OF FUSION 210* 11.2.3 ENTROPY OF FUSION 210*
11.2.4 GIBBS FREE ENERGY 210* 11.2.5 FIRST- AND SECOND-ORDER PHASE
TRANSITIONS 213* 11.3 SOLIDIFICATION PROCESS 213* 11.3.1 UNDERCOOLING
213* 11.3.2 RECALESCENCE 213* 11.3.3 EFFECT OF PRESSURE ON MELTING
POINT. 214* 11.3.4 EFFECT OF CURVATURE ON MELTING POINT. 214* 11.4
CLASSICAL HOMOGENEOUS NUCLEATION THEORY 216* 11.4.1 NUCLEATION BARRIER
216* 11.4.2 NUCLEATION RATE 217* 11.5 HETEROGENEOUS NUCLEATION 220* 11.6
RECENT DEVELOPMENTS IN UNDERCOOLING EXPERIMENTS 221* 11.7 SUMMARY 222*
XII CONTENTS BIBLIOGRAPHY 223* PROBLEMS 223* CHAPTER 12 PHASE EQUILIBRIA
IN MULTICOMPONENT SYSTEMS 225* 12.1 GIBBS PHASE RULE 225* 12.2 ENTROPY
OF MIXING 225* 12.3 HEAT OF MIXING 226* 12.4 FREE ENERGY , 227* 12.4.1
MISCIBILITY 228* 12.4.2 METHOD OF TANGENTS 229* 12.4.3 LEVER RULE 229*
12.4.4 CHEMICAL POTENTIAL 230* 12.4.5 CONSTRUCTING A PHASE DIAGRAM FROM
FREE ENERGY CURVES 231* 12.4.6 SPINODAL DECOMPOSITION 231* 12.5 PHASE
DIAGRAM FOR IDEAL (ISOMORPHIC) SYSTEMS 232* 12.5.1 SOLID SOLUTIONS AND
THE HUME-ROTHERTY CRITERIA 232* 12.5.2 SEGREGATION OR PARTITION
COEFFICIENT 233* 12.5.3 EQUILIBRIUM SOLIDIFICATION 234* 12.5.4
NONEQUILIBRIUM SOLIDIFICATION-CORING 236* 12.5.5 ORDER-DISORDER
TRANSITIONS 236* 12.6 NONIDEAL SYSTEMS 236* 12.6.1 INTERMEDIATE PHASES
237* 12.6.2 EUTECTIC AND EUTECTOID SYSTEMS 239* 12.6.3 FORMATION OF THE
MICROSTRUCTURE IN EUTECTICS 243* 12.6.4 THE HUNT-JACKSON THEORY OF
LAMELLA SPACING 244* 12.6.5 SOLIDIFICATION OF OFF-EUTECTIC SYSTEMS 245*
12.6.6 PERITECTIC AND PERITECTOID SYSTEMS 246* 12.6.7 MONOTECTIC AND
MONOTECTOID SYSTEMS 247* 12.6.8 MIXED VALENCE SYSTEMS 248* 12.7 SUMMARY
250* BIBLIOGRAPHY 252* PROBLEMS 253* CHAPTER 13 ALLOY SOLIDIFICATION
255* 13.1 SOLIDIFICATION OF MULTICOMPONENT SYSTEMS 255* 13.2 DIRECTIONAL
SOLIDIFICATION 255* 13.2.1 BRIDGMAN GROWTH 256* 13.2.2 MACROSEGREGATION
257* 13.2.3 COMPLETE MIXING, THE SCHEIL EQUATION 258* 13.2.4 NO
CONVECTIVE MIXING, STEADY-STATE SOLIDIFICATION 258* 13.2.5 INITIAL
TRANSIENT 259* 13.2.6 PLANE FRONT SOLIDIFICATION, CONSTITUTIONAL
UNDERCOOLING 260* 13.2.7 PARTICLE/SOLIDIFICATION FRONT INTERACTIONS 262*
13.3 ZONE MELTING 262* 13.3.1 TRAVELING ZONE METHOD 262* 13.3.2 FLOATING
ZONE CRYSTAL GROWTH 263* 13.3.3 ZONE REFINING/PURIFICATION 264* 13.4
CZOCHRALSKI METHOD OF CRYSTAL GROWTH 265* 13.5 DENDRITE FORMATION 266*
13.6 CASTING 266* 13.6.1 CONTINUOUS CASTING 266* 13.6.2 FOUNDRY CASTING
267* CONTENTS XIII 13.7 SINTERING 267* 13.7.1 SINTERING PROCESS 267*
13.7.2 HOT ISOSTATIC PRESSING 268* 13.7.3 LIQUID-PHASE SINTERING 268*
13.8 VAPOR DEPOSITION 268* 13.8.1 PHYSICAL VAPOR DEPOSITION 268* 13.8.2
CHEMICAL VAPOR DEPOSITION 270* 13.9 SUMMARY 270* BIBLIOGRAPHY 271*
PROBLEMS 271* CHAPTER 14 TRANSFORMATION KINETICS 273* 14.1 THE A VRAMI
EQUATION 273* 14.2 ISOTHERMAL TIME-TEMPERATURE-TRANSFORMATIONS 274*
14.2.1 AUSTENITIC TO FERRITIC TRANSFORMATION 274* 14.2.2 MARTENSITIC
TRANSFORMATION 276* 14.2.3 SPHERODIZING 277* 14.2.4 TEMPERING 277*
14.2.5 ANNEALING 277* 14.2.6 HARDENABILITY 278* 14.3 COARSENING AND
RIPENING 279* 14.4 PRECIPITATION OR AGE HARDENING 279* 14.5
HEAT-TREATABLE ALLOY SYSTEMS 281* 14.5.1 CARBON STEELS 281* 14.5.2
STAINLESS STEELS 281* 14.5.3 MARAGING STEELS 282* 14.5.4
TRANSFORMATION-INDUCED PLASTICITY STEELS 282* 14.5.5 CAST IRONS 282*
14.5.6 ALUMINUM ALLOYS 283* 14.5.7 TITANIUM ALLOYS 283* 14.5.8 SHAPE
MEMORY ALLOYS 284* 14.5.9 SUPERALLOYS 284* 14.6 GLASS FORMATION 285*
14.6.1 CRYSTALLINE GROWTH RATE 286* 14.6.2 VISCOSITY-DIFFUSIVITY
RELATIONSHIPS 286* 14.6.3 GLASS TRANSITION TEMPERATURE 287* 14.6.4
TIME-TEMPERATURE-TRANSFORMATION DIAGRAMS 288* 14.6.5 GLASS-FORMING
SYSTEMS 290* 14.6.6 METALLIC GLASSES 291* 14.7 SUMMARY 293* BIBLIOGRAPHY
294* PROBLEMS 294* CHAPTER 15 DISTRIBUTION FUNCTIONS 297* 15.1
SPECIFYING THE STATE OF A SYSTEM 297* 15.2 BOSE-EINSTEIN STATISTICS 298*
15.2.1 MAXWELL-BOLTZMANN STATISTICS 300* 15.2.2 PLANCK DISTRIBUTION
FUNCTION 301* 15.3 FERMI-DIRAC STATISTICS 301* 15.4 CHEMICAL POTENTIAL
AND FERMI ENERGY 303* 15.5 SUMMARY 304* XIV* CONTENTS APPENDIX* 306*
A.15.1 DERIVATION OF THE IDENTITIES* 306* A.15.2 ENTROPY OF AN IDEAL
GAS* 307* A.15.3 PLANCK THEORY OF BLACK BODY RADIATION 308* BIBLIOGRAPHY
309* PROBLEMS 309* CHAPTER 16 LATTICE VIBRATIONS AND PHONONS* 311* 16.1
VIBRATIONS IN A LINEAR HOMOGENEOUS MEDIUM* 311* 16.2 WAVES ON A CHAIN OF
LIKE ATOMS* 312* 16.2.1* BRAGG REFLECTIONS AT THE FIRST BRILLOUIN ZONE
313* 16.2.2* NORMAL MODES IN A LINEAR CHAIN OF ATOMS 314* 16.3 MOTION OF
ATOMS IN A DIATOMIC CHAIN* 314* 16.3.1* LIMITING CASES 316* 16.3.2*
ENERGY GAP AT THE FIRST BRILLOUIN ZONE 316* 16.3.3* PHYSICAL
INTERPRETATION 316* 16.3.4* NORMAL MODES IN A DIATOMIC CHAIN 317* 16.4
TESTS OF THE MODEL* 318* 16.4.1* RELATING THE FORCE CONSTANT TO THE
ELASTIC* COEFFICIENTS 318* 16.4.2* COMPARISON WITH OBSERVED DATA 319*
16.5 APPLICATIONS* 319* 16.6 SUMMARY 319* BIBLIOGRAPHY 320* PROBLEM 320*
CHAPTER 17 THERMAL PROPERTIES OF SOLIDS* 321* 17.1 LATTICE HEAT
CAPACITY* 321* 17.1.1* CLASSICAL APPROACH 321* 17.1.2* DULONG-PETIT
CLASSICAL LIMIT 323* 17.2 DEBYE MODEL* 323* 17.2.1* CRITIQUE OF THE
DEBYE MODEL. 325* 17.3 ELECTRONIC HEAT CAPACITY* 326* 17.4 THERMAL
CONDUCTIVITY* 327* 17.4.1* IDEAL GAS MODEL 327* 17.4.2* LATTICE THERMAL
CONDUCTIVITY 329* 17.4.3* ELECTRON THERMAL CONDUCTIVITY 331* 17.5
THERMAL EXPANSION* 331* 17.6 COUPLED TRANSPORT EFFECTS* 332* 17.6.1*
DUFOUR AND SORET-LUDWIG EFFECTS 332* 17.6.2* ELECTROTRANSPORT 333*
17.6.3* SEEBECK AND PELTIER EFFECTS 333* 17.7 APPLICATIONS* 334* 17.7.1*
THERMOCOUPLES 334* 17.7.2* THERMOELECTRIC GENERATORS 335* 17.7.3*
THERMOELECTRIC COOLING 336* 17.8 SUMMARY* 336* BIBLIOGRAPHY 337*
PROBLEMS 338* CONTENTS XV CHAPTER 18 FREE ELECTRONS IN METALS 339* 18.1
DRUDE THEORY OF FREE ELECTRONS IN METALS 339* 18.1.1 ELECTRICAL
CONDUCTION 339* 18.1.2 CLASSICAL ELECTRON DYNAMICS 341* 18.2
MATTHIESSEN'S RULE 343* 18.2.1 EFFECT OF IMPURITIES AND DEFECTS 343*
18.2.2 TEMPERATURE DEPENDENCE OF RESISTIVITY 344* 18.2.3 GRIINEISEN
MODEL OF RESISTIVITY 344* 18.3 PROBLEMS WITH THE CLASSICAL FREE ELECTRON
GAS THEORY 345* 18.3.1 TEMPERATURE DEPENDENCE 345* 18.3.2 MEAN FREE PATH
CONSIDERATIONS 345* 18.3.3 ELECTRONIC HEAT CAPACITY AND PARAMAGNETISM
346* 18.4 QUANTUM THEORY OF FREE ELECTRONS 346* 18.5 HALL EFFECT 348*
18.6 WIEDEMANN-FRANZ RATIO 350* 18.7 CONDUCTIVE POLYMERS 350* 18.7.1
CHARGE CONJUGATION 351* 18.8 SUMMARY 351* BIBLIOGRAPHY 353* PROBLEM 353*
CHAPTER 19 BAND THEORY OF METALS 355* 19.1 NEARLY FREE ELECTRON MODEL.
355* 19.1.1 WAVEFUNCTIONS FOR TRAVELING ELECTRONS 355* 19.1.2 ENERGY GAP
AT THE BRILLOUIN ZONE 357* 19.2 BINARY PHASE DIAGRAMS FOR MIXED VALENCY
METALS 358* 19.3 BAND STRUCTURE IN METALS 360* 19.3.1 THE BLOCH THEOREM
AND THE REDUCED BAND SCHEME 360* 19.3.2 EFFECTIVE ELECTRON MASS 361*
19.3.3 HOLES 362* 19.3.4 CYCLOTRON RESONANCE 362* 19.3.5 BAND STRUCTURE
IN REAL SYSTEMS 363* 19.4 CONDUCTIVITY AND THE FERMI SURFACE 364* 19.5
TIGHT BINDING APPROXIMATION 366* 19.5.1 CONDUCTIVITY IN DIVALENT METALS
369* 19.6 EXPERIMENTAL METHODS 370* 19.6.1 PHOTOELECTRIC EFFECT. 370*
19.6.2 PHOTOELECTRON SPECTROSCOPY 371* 19.6.3 X-RAY SPECTROSCOPY 371*
19.6.4 THERMIONIC EMISSION 371* 19.7 SUMMARY 372* APPENDIX 373* A.19.1
PROOF THAT A WAVE FUNCTION DISPLACED BY G IS UNCHANGED 373* BIBLIOGRAPHY
374* PROBLEMS 374* CHAPTER 20 SEMICONDUCTORS 375* 20.1 THE GROUP TV
SYSTEMS 375* 20.1.1 THE CHEMICAL PICTURE 375* 20.1.2 THE BANDGAP ENERGY
376* XVI CONTENTS 20.1.3 THE ENERGY BAND PICTURE 377* 20.1.4 AMORPHOUS
SEMICONDUCTORS 377* 20.2 INTRINSIC SEMICONDUCTORS 378* 20.2.1 FERMI
LEVEL IN INTRINSIC SEMICONDUCTORS 378* 20.2.2 ELECTRON-HOLE PRODUCT 379*
20.2.3 ENERGY BAND STRUCTURE 381* 20.2.4 EFFECTIVE ELECTRON AND HOLE
MASSES 383* 20.3 EXTRINSIC SEMICONDUCTORS 383* 20.3.1 CARRIER
CONCENTRATIONS 384* 20.3.2 FERMI LEVELS IN EXTRINSIC SEMICONDUCTORS 385*
20.4 HALL COEFFICIENT FOR BOTH ELECTRONS AND HOLES 387* 20.5
CONDUCTIVITY OF SEMICONDUCTORS 388* 20.6 OPTICAL PROPERTIES 389* 20.6.1
ABSORPTION EDGE FOR DIRECT BANDGAP SEMICONDUCTORS 390* 20.6.2 ABSORPTION
EDGE FOR INDIRECT BANDGAP SEMICONDUCTORS 390* 20.6.3 EXCITONS 390*
20.6.4 PHOTOCONDUCTIVE DETECTORS 391* 20.7 SEMICONDUCTING POLYMERS 391*
20.7.1 ENERGY LEVELS OF CONFINED ELECTRONS 392* 20.8 SUMMARY 392*
BIBLIOGRAPHY 394* PROBLEMS 394* CHAPTER 21 THEORY AND APPLICATIONS OF
JUNCTIONS 397* 21.1 THE P-N JUNCTION 397* 21.1.1 ANALYSIS 398* 21.1.2
WIDTH OF THE DEPLETION LAYER 400* 21.1.3 BIASING THE JUNCTION 401*
21.1.4 CURRENT FLOW 403* 21.1.5 ZENER EFFECT 404* 21.1.6 SCHOTTKY DIODES
404* 21.1.7 OHMIC CONTACTS 405* 21.2 APPLICATIONS OF DIODES 406* 21.2.1
DIODE AS A RECTIFIER 407* 21.2.2 DIODES AS DEMODULATORS IN AM RADIOS
408* 21.2.3 APPLICATIONS IN LOGIC CIRCUITS AND ROMS 408* 21.3 TUNNEL
DIODE AND NEGATIVE RESISTANCE 409* 21.3.1 THE GUNN EFFECT 409* 21.4
LIGHT-EMITTING DIODES 411* 21.4.1 DEVELOPMENT OF LIGHT-EMITTING DIODES
411* 21.4.2 OLED AND PLEDS 412* 21.4.3 SOLID-STATE LASERS 413* 21.5
PHOTODIODE 413* 21.5.1 SOLAR CELLS 414* 21.6 SUMMARY 416* BIBLIOGRAPHY
417* PROBLEMS 417* CHAPTER 22 TRANSISTORS, QUANTUM WELLS, AND
SUPERLATTICES 419* 22.1 TRANSISTOR THEORY AND APPLICATIONS 419* 22.1.1
BIPOLAR JUNCTION TRANSISTOR (BJT) 419* 22.1.2 COMMON BASE AMPLIFIER 420*
CONTENTS* XVLL 22.1.3* COMMON EMITTER AMPLIFIER 421* 22.1.4* BASIC
FLIP-FLOP CIRCUIT 421* 22.1.5* DIFFERENCES BETWEEN BJTS AND VACUUM TUBES
422* 22.2 FIELD EFFECT TRANSISTORS* 423* 22.2.1* ENHANCEMENT-TYPE FETS
423* 22.2.2* DEPLETION-TYPE FETS 423* 22.2.3* COMPLIMENTARY METAL OXIDE*
SEMICONDUCTORS 424* 22.2.4* JUNCTION FIELD EFFECT TRANSISTORS 424* 22.3
RANDOM ACCESS MEMORY* 425* 22.3.1 STATIC RANDOM ACCESS MEMORY* 425*
22.3.2 DYNAMIC RANDOM ACCESS MEMORY* 425* 22.3.3 FLASH MEMORY* 425* 22.4
CHARGE COUPLED DEVICES* 425* 22.5 MOORE'S LAW* 426* 22.6
HETEROJUNCTIONS* 428* 22.6.1 MODULATION DOPING* 428* 22.6.2 HIGH
ELECTRON MOBILITY TRANSISTOR.* 429* 22.6.3 DOUBLE HETEROJUNCTION LASERS*
430* 22.7 SUPERLATTICES* 430* 22.7.1* RESONANCE TUNNELING DIODES 431*
22.7.2* NIPI STRUCTURES 431* 22.7.3* QUANTUM WELL CASCADE LASERS 432*
22.8 QUANTUM WIRES AND QUANTUM DOTS* 433* 22.9 SUMMARY 434* BIBLIOGRAPHY
435* CHAPTER 23 DIELECTRICS AND THE DIELECTRIC FUNCTION* 437* 23.1
CONDUCTIVITY OF DIELECTRICS* 437* 23.1.1* ELECTRONIC CONDUCTION 437*
23.1.2* IONIC CONDUCTION 437* 23.1.3* FAST ION CONDUCTORS 438* 23.1.4*
DIELECTRIC BREAKDOWN 438* 23.2 POLARIZATION IN DIELECTRICS* 439* 23.2.1
CAPACITORS* 439* 23.3 DIELECTRIC FUNCTION* 440* 23.3.1* ELECTRONIC
POLARIZATION 440* 23.3.2* IONIC POLARIZATION 442* 23.3.3* LYDDANE,
SACHS, TELLER (LST) RELATIONSHIP 444* 23.3.4* POLARIZATION IN POLAR
LIQUIDS 444* 23.3.5* POLARIZATION IN THE DIPOLAR SOLID 445* 23.3.6*
DIPOLAR MATERIALS IN AN ALTERNATING FIELD 446* 23.3.7* DIELECTRIC LOSSES
447* 23.3.8* CLAUSIUS-MOSSOTTI EQUATION 447* 23.3.9* CORRECTIONS FOR
LOCAL FIELDS 449* 23.3.10* TOTAL DIELECTRIC FUNCTION 450* 23.4
FERROELECTRICS* 451* 23.4.1* TYPES OF FERROELECTRIC MATERIALS 452*
23.4.2* BATI03 SYSTEM 453* 23.4.3* THEORIES OF FERROELECTRICS 455* XVIII
CONTENTS 23.4.4 ANTIFERROELECTRICS 455* 23.4.5 PIEZOELECTRICS 456* 23.5
APPLICATIONS 457* 23.5.1 APPLICATIONS OF FERROELECTRICS 457* 23.5.2
APPLICATIONS OF PYROELECTRICS 457* 23.5.3 APPLICATIONS OF PIEZOELECTRICS
457* 23.5.4 ELECTRETS 458* 23.6 SUMMARY 458* APPENDIX: INTERNAL FIELD
CORRECTION FOR IONIC DIELECTRIC FUNCTION 459* BIBLIOGRAPHY '" '" 460*
PROBLEMS 460* CHAPTER 24 OPTICAL PROPERTIES OF MATERIALS 463* 24.1
REVIEW OF ELECTRICITY AND MAGNETISM 463* 24.1.1 MAXWELL'S EQUATIONS 463*
24.1.2 WAVE EQUATION 464* 24.1.3 INDEX OF REFRACTION 465* 24.1.4
REFLECTION AND TRANSMISSION OF ELECTROMAGNETIC WAVES 465* 24.1.5 COMPLEX
INDEX OF REFRACTION 466* 24.1.6 ABSORPTION OF ELECTROMAGNETIC RADIATION
467* 24.2 OPTICAL PROPERTIES OF DIELECTRIC MATERIALS 467* 24.2.1 VISIBLE
AND NEAR-ULTRAVIOLET 468* 24.2.2 INFRARED ABSORPTION 470* 24.2.3
PHONON-PHOTON COUPLING 472* 24.2.4 DIPOLAR ABSORPTION 474* 24.2.5 OTHER
ABSORPTION PHENOMENA 475* 24.2.5.1 INHERENT ABSORPTION 475* 24.2.5.2
OPTICAL SCATTERING 475* 24.2.5.3 COLOR CENTERS 475* 24.2.5.4 IMPURITY
ABSORPTION 476* 24.2.5.5 EXCITONS 476* 24.2.6 HEAVY METAL GLASSES 476*
24.2.7 BIREFRINGENCE 477* 24.2.8 NONLINEAR OPTICAL EFFECTS 477* 24.2.9
RAMAN SCATTERING 477* 24.3 OPTICAL PROPERTIES OF CONDUCTIVE MEDIA 478*
24.3.1 CONDUCTIVITY AT HIGH FREQUENCIES 478* 24.3.2 MODIFICATION OF
DIELECTRIC FUNCTION TO ACCOUNT FOR CONDUCTIVITY 479* 24.3.3 PLASMA
FREQUENCY 479* 24.3.4 OPTICAL CONSTANTS 480* 24.3.5 LOW FREQUENCY CASE
481* 24.3.6 HIGH FREQUENCY CASE 482* 24.3.7 REFLECTANCE SPECTRA OF REAL
METALS 482* 24.3.8 INTERBAND TRANSITIONS IN METALS 484* 24.3.9
SEMICONDUCTORS 485* 24.3.10 PLASMAS 486* 24.3.11 DISPERSION RELATION
488* 24.4 SUMMARY 489* BIBLIOGRAPHY 490* PROBLEMS 490* CONTENTS XIX
CHAPTER 25 MAGNETISM AND MAGNETIC MATERIALS 493* 25.1 BASIC
RELATIONSHIPS 493* 25.1.1 TYPES OF MAGNETISM 493* 25.2 ORIGIN OF
MAGNETISM 494* 25.2.1 BOHR MAGNETON 494* 25.2.2 NET MAGNETIC MOMENT 495*
25.2.3 HUND'S RULES 496* 25.3 DIAMAGNETISM 496* 25.3.1 LANGEVIN
DIAMAGNETISM (CLASSICAL APPROACH) 496* 25.3.2 LARMOR DIAMAGNETISM
(QUANTUM APPROACH) 497* 25.4 PARAMAGNETISM 498* 25.4.1 LANGEVIN
PARAMAGNETISM (CLASSICAL APPROACH) 498* 25.4.2 PARAMAGNETISM (QUANTUM
APPROACH) 499* 25.4.3 EFFECTIVE MAGNETIC MOMENT. 499* 25.4.4
PARAMAGNETISM OF CONDUCTION ELECTRONS (PAULI PARAMAGNETISM) 500* 25.5
FERROMAGNETISM 500* 25.5.1 CURIE-WEISS THEORY (CLASSICAL APPROACH) 500*
25.5.2 HEISENBERG EXCHANGE THEORY (QUANTUM APPROACH) 502* 25.5.3
ANTIFERROMAGNETISM 503* 25.5.4 FERRIMAGNETISM 503* 25.6 MAGNETIC DOMAINS
504* 25.7 MAGNETIC HYSTERESIS 505* 25.8 MAGNETIC MATERIALS 505* 25.8.1
HARD MAGNETIC MATERIALS 505* 25.8.2 SOFT MAGNETIC MATERIALS 507* 25.8.3
FERRIMAGNETIC MATERIALS 507* 25.8.4 MAGNETOSTRICTIVE MATERIALS 507* 25.9
MAGNETIC INFORMATION STORAGE TECHNOLOGY 508* 25.9.1 MAGNETO-OPTIC
EFFECTS 508* 25.9.1.1 FARADAY ROTATION 508* 25.9.1.2 MAGNETO-OPTIC KERR
EFFECT 509* 25.9.2 MAGNETORESISTANCE 509* 25.9.2.1 ORDINARY AND
ANISOTROPIC MAGNETORESISTANCE 509* 25.9.2.2 GIANT MAGNETORESISTANCE 509*
25.9.2.3 COLOSSAL MAGNETORESISTANCE 510* 25.9.3 MAGNETOELECTRONICS
(SPINTRONICS) 510* 25.10 SUMMARY 510* BIBLIOGRAPHY 511* PROBLEMS 512*
CHAPTER 26 SUPERCONDUCTIVITY 513* 26.1 HISTORICAL PERSPECTIVE 513* 26.2
BASIC PROPERTIES OF SUPERCONDUCTORS 514* 26.2.1 ISOTOPE EFFECT 514*
26.2.2 PERSISTENT SUPERCURRENTS AND PERFECT DIAMAGNETISM 515* 26.2.3
MEISSNER EFFECT 515* 26.2.4 ELECTRONIC HEAT CAPACITY 515* 26.2.5 OPTICAL
PROPERTIES 516* 26.2.6 THERMAL CONDUCTIVITY 516* 26.3 BCS THEORY 516* XX
CONTENTS 26.4 THERMODYNAMICS OF SUPERCONDUCTIVITY 517* 26.4.1 FREE
ENERGY OF THE SUPERCONDUCTING STATE 517* 26.4.2 HEAT CAPACITY FROM BCS
THEORY 518* 26.4.3 THERMODYNAMICALLY CONSISTENT BCS MODEL 518* 26.5
LONDON EQUATIONS 522* 26.5.1 PENETRATION DEPTH 522* 26.6 COHERENCE
LENGTH 523* 26.7 TYPE-I AND TYPE-II SUPERCONDUCTORS 524* 26.8 FLUX
QUANTIZATION 525* 26.9 CRITICAL CURRENTS 525* 26.9.1 CRITICAL CURRENT
RELATED TO THE BINDING ENERGY OF A COOPER PAIR 525* 26.9.2 CRITICAL
CURRENT RELATED TO MAGNETIC FIELD 526* 26.9.3 CRITICAL FIELDS IN TYPE-II
SUPERCONDUCTORS 526* 26.10 HIGH TEMPERATURE SUPERCONDUCTORS 528* 26.11
RECENT ADVANCES IN SUPERCONDUCTIVITY 529* 26.12 APPLICATIONS 529*
26.12.1 JOSEPHSON EFFECT 530* 26.12.2 DC JOSEPHSON EFFECT 530* 26.12.3
AC JOSEPHSON EFFECT 531* 26.12.4 SUPERCONDUCTING QUANTUM INTERFERENCE
DETECTORS 531* 26.13 SUMMARY 532* BIBLIOGRAPHY 533* PROBLEMS 534* INDEX
535* |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Naumann, Robert J. |
author_GND | (DE-588)137288735 |
author_facet | Naumann, Robert J. |
author_role | aut |
author_sort | Naumann, Robert J. |
author_variant | r j n rj rjn |
building | Verbundindex |
bvnumber | BV035189143 |
callnumber-first | T - Technology |
callnumber-label | TA403 |
callnumber-raw | TA403 |
callnumber-search | TA403 |
callnumber-sort | TA 3403 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | UP 1000 UQ 8000 VE 9670 ZM 3000 |
classification_tum | WER 001f |
ctrlnum | (OCoLC)244056806 (DE-599)OBVAC07080157 |
dewey-full | 620.1/1 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1/1 |
dewey-search | 620.1/1 |
dewey-sort | 3620.1 11 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Chemie / Pharmazie Physik Werkstoffwissenschaften Werkstoffwissenschaften / Fertigungstechnik |
discipline_str_mv | Chemie / Pharmazie Physik Werkstoffwissenschaften Werkstoffwissenschaften / Fertigungstechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02019nam a2200529 c 4500</leader><controlfield tag="001">BV035189143</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110525 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081201s2009 ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA8A7816</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781420061338</subfield><subfield code="9">978-1-4200-6133-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)244056806</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)OBVAC07080157</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-384</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA403</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.1/1</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 1000</subfield><subfield code="0">(DE-625)146338:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 8000</subfield><subfield code="0">(DE-625)146584:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 9670</subfield><subfield code="0">(DE-625)147161:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZM 3000</subfield><subfield code="0">(DE-625)157020:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WER 001f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Naumann, Robert J.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)137288735</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to the physics and chemistry of materials</subfield><subfield code="c">Robert J. Naumann</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Physics and chemistry of materials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, Fla. [u.a.]</subfield><subfield code="b">CRC</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXV, 546 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matériaux - Propriétés</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physique de l'état solide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science des matériaux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solid state chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solid state physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materials</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Festkörperphysik</subfield><subfield code="0">(DE-588)4016921-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Werkstoff</subfield><subfield code="0">(DE-588)4065579-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Festkörperchemie</subfield><subfield code="0">(DE-588)4129288-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Werkstoff</subfield><subfield code="0">(DE-588)4065579-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Festkörperphysik</subfield><subfield code="0">(DE-588)4016921-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Festkörperchemie</subfield><subfield code="0">(DE-588)4129288-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">OEBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016995785&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016995785</subfield></datafield></record></collection> |
id | DE-604.BV035189143 |
illustrated | Illustrated |
index_date | 2024-07-02T23:01:05Z |
indexdate | 2024-07-09T21:27:03Z |
institution | BVB |
isbn | 9781420061338 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016995785 |
oclc_num | 244056806 |
open_access_boolean | |
owner | DE-703 DE-91G DE-BY-TUM DE-20 DE-19 DE-BY-UBM DE-29T DE-11 DE-M347 DE-384 |
owner_facet | DE-703 DE-91G DE-BY-TUM DE-20 DE-19 DE-BY-UBM DE-29T DE-11 DE-M347 DE-384 |
physical | XXV, 546 S. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | CRC |
record_format | marc |
spelling | Naumann, Robert J. Verfasser (DE-588)137288735 aut Introduction to the physics and chemistry of materials Robert J. Naumann Physics and chemistry of materials Boca Raton, Fla. [u.a.] CRC 2009 XXV, 546 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Matériaux - Propriétés Physique de l'état solide Science des matériaux Solid state chemistry Solid state physics Materials Festkörperphysik (DE-588)4016921-2 gnd rswk-swf Werkstoff (DE-588)4065579-9 gnd rswk-swf Festkörperchemie (DE-588)4129288-1 gnd rswk-swf Werkstoff (DE-588)4065579-9 s Festkörperphysik (DE-588)4016921-2 s Festkörperchemie (DE-588)4129288-1 s DE-604 OEBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016995785&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Naumann, Robert J. Introduction to the physics and chemistry of materials Matériaux - Propriétés Physique de l'état solide Science des matériaux Solid state chemistry Solid state physics Materials Festkörperphysik (DE-588)4016921-2 gnd Werkstoff (DE-588)4065579-9 gnd Festkörperchemie (DE-588)4129288-1 gnd |
subject_GND | (DE-588)4016921-2 (DE-588)4065579-9 (DE-588)4129288-1 |
title | Introduction to the physics and chemistry of materials |
title_alt | Physics and chemistry of materials |
title_auth | Introduction to the physics and chemistry of materials |
title_exact_search | Introduction to the physics and chemistry of materials |
title_exact_search_txtP | Introduction to the physics and chemistry of materials |
title_full | Introduction to the physics and chemistry of materials Robert J. Naumann |
title_fullStr | Introduction to the physics and chemistry of materials Robert J. Naumann |
title_full_unstemmed | Introduction to the physics and chemistry of materials Robert J. Naumann |
title_short | Introduction to the physics and chemistry of materials |
title_sort | introduction to the physics and chemistry of materials |
topic | Matériaux - Propriétés Physique de l'état solide Science des matériaux Solid state chemistry Solid state physics Materials Festkörperphysik (DE-588)4016921-2 gnd Werkstoff (DE-588)4065579-9 gnd Festkörperchemie (DE-588)4129288-1 gnd |
topic_facet | Matériaux - Propriétés Physique de l'état solide Science des matériaux Solid state chemistry Solid state physics Materials Festkörperphysik Werkstoff Festkörperchemie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016995785&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT naumannrobertj introductiontothephysicsandchemistryofmaterials AT naumannrobertj physicsandchemistryofmaterials |