Geometry of chemical graphs: polycycles and two-faced maps
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge Univ. Press
2008
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
119 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | X, 306 S. Ill., graph. Darst. |
ISBN: | 9780521873079 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV035186364 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 081128s2008 ad|| |||| 00||| eng d | ||
020 | |a 9780521873079 |9 978-0-521-87307-9 | ||
035 | |a (OCoLC)254725660 | ||
035 | |a (DE-599)BVBBV035186364 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-11 | ||
082 | 0 | |a 541.220151 | |
084 | |a SK 890 |0 (DE-625)143267: |2 rvk | ||
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Deza, Michel |d 1939- |e Verfasser |0 (DE-588)118064495 |4 aut | |
245 | 1 | 0 | |a Geometry of chemical graphs |b polycycles and two-faced maps |c Michel Deza ; Mathieu Dutour Sikirić |
264 | 1 | |a Cambridge |b Cambridge Univ. Press |c 2008 | |
300 | |a X, 306 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Encyclopedia of mathematics and its applications |v 119 | |
650 | 4 | |a Chemical models - Mathematics | |
650 | 4 | |a Graphentheoretisches Modell | |
650 | 4 | |a Molecules - Models | |
650 | 4 | |a Molekül | |
650 | 7 | |a Chemie - Geometrie |2 idsbb | |
650 | 7 | |a Geometrie - Chemie |2 idsbb | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Chemical models |x Mathematics | |
650 | 4 | |a Molecules |x Models | |
700 | 1 | |a Dutour Sikirić, Mathieu |e Verfasser |4 aut | |
830 | 0 | |a Encyclopedia of mathematics and its applications |v 119 |w (DE-604)BV000903719 |9 119 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016993046&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016993046 |
Datensatz im Suchindex
_version_ | 1804138362238402560 |
---|---|
adam_text | GEOMETRY OF CHEMICAL GRAPHS: POLY CYCLES AND TWO-FACED MAPS MICHEL DEZA
ECOLE NORMALE SUPERIEURE, PARIS, MATHIEU DUTOUR SIKIRIC RUDJER BOSKOVIC
INSTITUTE, ZAGREB CAMBRIDGE 7 UNIVERSITY CONTENTS PREFACE , PAGE, IX
INTRODUCTION 1 1.1 GRAPHS * **.* 1 1.2 TOPOLOGICAL NOTIONS 2 1.3
REPRESENTATION OF MAPS 9 1.4 SYMMETRY GROUPS OF MAPS 12 1.5 TYPES OF
REGULARITY OF MAPS . 1 8 1.6 OPERATIONS ON MAPS , 21 TWO-FACED MAPS 24
2.1 THE GOLDBERG-GOXETER CONSTRUCTION 28 2.2 DESCRIPTION OF THE CLASSES
31 2.3 COMPUTER GENERATION OF THE CLASSES , 36 FULLERENES AS TILINGS OF
SURFACES 38 3.1 CLASSIFICATION OF FINITE FULLERENES ;* . ; ,I 38 3.2
TOROIDAL AND KLEIN BOTTLE FULLERENES , , : . ;. 39 3.3 PROJECTIVE
FULLERENES * : * ; 41 3.4 PLANE 3-FULLERENES 0 ;I 42 POLYCYCLES . * .
; 43 4.1 (R, G)-POLYCYCLES , . . ; . : 43 4.2 EXAMPLES . ;I .* . * 45
4.3 CELL-HOMOMORPHISM AND STRUCTURE OF (R, ^)-POLYCYCLES 48 4.4 ANGLES
AND CURVATURE L 51 4.5 POLYCYCLES ON SURFACES 53 POLYCYCLES WITH GIVEN
BOUNDARY , * . 56 5.1 THE PROBLEM OF UNIQUENESS OF (R, ^)-FILLINGS
,*-.** * . 56 5.2 (R, 3)-FILLING ALGORITHMS A 61 VI CONTENTS 6
SYMMETRIES OF POLYCYCLES . . . 64 6.1 AUTOMORPHISM GROUP OF (R,
G)-POLYCYCLES 64 6.2 ISOHEDRAL AND ISOGONAL (R, G)-POLYCYCLES ., 65
6.3 ISOHEDRAL AND ISOGONAL (R, Q) GEN -POLYCYCLES 71 7 ELEMENTARY
POLYCYCLES 73 7.1 DECOMPOSITION OF POLYCYCLES 73 7.2 PARABOLIC AND
HYPERBOLIC ELEMENTARY (/?, Q) GEN -POLYCYCLES 76 7.3 KERNEL-ELEMENTARY
POLYCYCLES 79 7.4 CLASSIFICATION OF ELEMENTARY ({2, 3,4, 5}, 3) GEN
-POLYCYCLES 83 7.5 CLASSIFICATION OF ELEMENTARY ({2, 3}, 4) GEN
-POLYCYCLES 89 7.6 CLASSIFICATION OF ELEMENTARY ({2, 3}, 5) GOT
-POLYCYCLES 90 7.7 APPENDIX 1: 204 SPORADIC ELEMENTARY ({2, 3, 4, 5},
3)-POLYCYCLES 93 7.8 APPENDIX 2: 57 SPORADIC ELEMENTARY ({2, 3},
5)-POLYCYCLES 102 8 APPLICATIONS OF ELEMENTARY DECOMPOSITIONS TO (R,
^)-POLYCYCLES 107 8.1 EXTREMAL POLYCYCLES 108 8.2 NON-EXTENSIBLE
POLYCYCLES 116 8.3 2-EMBEDDABLE POLYCYCLES , .121 9 STRICTLY
FACE-REGULAR SPHERES AND TORI 125 9.1 STRICTLY FACE-REGULAR SPHERES 126
9.2 NON-POLYHEDRAL STRICTLY FACE-REGULAR ([A, B], &)-SPHERES , 136 9.3
STRICTLY FACE-REGULAR ({A, 6],FC)-PLANES 143 10 PARABOLIC WEAKLY
FACE-REGULAR SPHERES 168 10.1 FACE-REGULAR ({2, 6}, 3)-SPHERES 168 10.2
FACE-REGULAR ({3, 6}, 3)-SPHERES * 169 10.3 FACE-REGULAR ({4, 6},
3)-SPHERES 169 10.4 FACE-REGULAR ({5, 6}, 3)-SPHERES (FULLERENES) R 170
10.5 FACE-REGULAR ({3,4}, 4)-SPHERES 177 10.6 FACE-REGULAR ({2,3},
6)-SPHERES . ; 179 11 GENERAL PROPERTIES OF 3-VALENT FACE-REGULAR MAPS
. 181 11.1 GENERAL ({A, FC},3)-MAPS 184 11.2 REMAINING QUESTIONS 186
12 SPHERES AND TORI THAT AREAI?, 187 12.1 MAPSARO . . * , 187 12.2 MAPS
4R : 189 12.3 MAPS 4FL 2 * * 195 12.4 MAPS5R 2 ; * * * 203
12.5 MAPS57? 3 *** ** 204 CONTENTS VII 13 FRANK-KASPER SPHERES AND TORI
218 13.1 EULER FORMULA FOR ({A, B], 3)-MAPS BR 0 218 13.2 THE MAJOR
SKELETON, ELEMENTARY POLYCYCLES, AND CLASSIFICATION RESULTS 219 14
SPHERES AND TORI THAT ARE BRI 225 14.1 EULER FORMULA FOR ({A, B],
3)-MZPS BR 225 14.2 ELEMENTARY POLYCYCLES 229 15 SPHERES AND TORI THAT
ARE BRI 234 15.1 ({A, B], 3)-MAPS BR 2 234 15.2 ({5,B},3)-TORIBR 2 237
15.3 ({A, B], 3)-SPHERES WITH A CYCLE OF B-GONS 239 16 SPHERES AND TORI
THAT ARE BRJ 246 16.1 CLASSIFICATION OF ({4, B], 3)-MAPS BR 3 246 16.2
({5,B},3)-MAPSBR 3 252 17 SPHERES AND TORI THAT ARE BR 4 256 17.1 ({4,
B], 3)-MAPS BR 4 256 17.2 ({5,B},3)-MAPSBR 4 270 18 SPHERES AND TORI
THAT ARE BRJ FOR J 5 274 18.1 MAPS/? 5 274 18.2 MAPS6TF 6 281 19
ICOSAHEDRAL FULLEROIDS 284 19.1 CONSTRUCTION OF/-FULLEROIDS AND INFINITE
SERIES 285 19.2 RESTRICTIONS ON THE P-VECTORS 288 19.3 FROM THE P-
VECTORS TO THE STRUCTURES . 291 REFERENCES 295 INDEX 304
|
adam_txt |
GEOMETRY OF CHEMICAL GRAPHS: POLY CYCLES AND TWO-FACED MAPS MICHEL DEZA
ECOLE NORMALE SUPERIEURE, PARIS, MATHIEU DUTOUR SIKIRIC RUDJER BOSKOVIC
INSTITUTE, ZAGREB CAMBRIDGE' 7 UNIVERSITY CONTENTS PREFACE , " PAGE, IX
INTRODUCTION 1 1.1 GRAPHS * **.* 1 1.2 TOPOLOGICAL NOTIONS ' 2 1.3
REPRESENTATION OF MAPS 9 1.4 SYMMETRY GROUPS OF MAPS 12 1.5 TYPES OF
REGULARITY OF MAPS . 1 8 1.6 OPERATIONS ON MAPS , 21 TWO-FACED MAPS 24
2.1 THE GOLDBERG-GOXETER CONSTRUCTION 28 2.2 DESCRIPTION OF THE CLASSES
31 2.3 COMPUTER GENERATION OF THE CLASSES , 36 FULLERENES AS TILINGS OF
SURFACES 38 3.1 CLASSIFICATION OF FINITE FULLERENES ;* . ; ,I 38 3.2
TOROIDAL AND KLEIN BOTTLE FULLERENES , , : . ;. 39 3.3 PROJECTIVE
FULLERENES * : ' * ; 41 3.4 PLANE 3-FULLERENES 0 ;I 42 POLYCYCLES . * .
; 43 4.1 (R, G)-POLYCYCLES , . . ; . : 43 4.2 EXAMPLES . ;I .* . * 45
4.3 CELL-HOMOMORPHISM AND STRUCTURE OF (R, ^)-POLYCYCLES 48 4.4 ANGLES
AND CURVATURE L ' 51 4.5 POLYCYCLES ON SURFACES 53 POLYCYCLES WITH GIVEN
BOUNDARY ' , * . 56 5.1 THE PROBLEM OF UNIQUENESS OF (R, ^)-FILLINGS
,*-.** * . 56 5.2 (R, 3)-FILLING ALGORITHMS A ' 61 VI CONTENTS 6
SYMMETRIES OF POLYCYCLES . . . 64 6.1 AUTOMORPHISM GROUP OF (R,
G)-POLYCYCLES " ' 64 6.2 ISOHEDRAL AND ISOGONAL (R, G)-POLYCYCLES ., 65
6.3 ISOHEDRAL AND ISOGONAL (R, Q) GEN -POLYCYCLES 71 7 ELEMENTARY
POLYCYCLES 73 7.1 DECOMPOSITION OF POLYCYCLES 73 7.2 PARABOLIC AND
HYPERBOLIC ELEMENTARY (/?, Q) GEN -POLYCYCLES 76 7.3 KERNEL-ELEMENTARY
POLYCYCLES 79 7.4 CLASSIFICATION OF ELEMENTARY ({2, 3,4, 5}, 3) GEN
-POLYCYCLES 83 7.5 CLASSIFICATION OF ELEMENTARY ({2, 3}, 4) GEN
-POLYCYCLES 89 7.6 CLASSIFICATION OF ELEMENTARY ({2, 3}, 5) GOT
-POLYCYCLES 90 7.7 APPENDIX 1: 204 SPORADIC ELEMENTARY ({2, 3, 4, 5},
3)-POLYCYCLES 93 7.8 APPENDIX 2: 57 SPORADIC ELEMENTARY ({2, 3},
5)-POLYCYCLES 102 8 APPLICATIONS OF ELEMENTARY DECOMPOSITIONS TO (R,
^)-POLYCYCLES 107 8.1 EXTREMAL POLYCYCLES 108 8.2 NON-EXTENSIBLE
POLYCYCLES 116 8.3 2-EMBEDDABLE POLYCYCLES , .121 9 STRICTLY
FACE-REGULAR SPHERES AND TORI 125 9.1 STRICTLY FACE-REGULAR SPHERES 126
9.2 NON-POLYHEDRAL STRICTLY FACE-REGULAR ([A, B], &)-SPHERES , 136 9.3
STRICTLY FACE-REGULAR ({A, 6],FC)-PLANES 143 10 PARABOLIC WEAKLY
FACE-REGULAR SPHERES 168 10.1 FACE-REGULAR ({2, 6}, 3)-SPHERES 168 10.2
FACE-REGULAR ({3, 6}, 3)-SPHERES * 169 10.3 FACE-REGULAR ({4, 6},
3)-SPHERES 169 10.4 FACE-REGULAR ({5, 6}, 3)-SPHERES (FULLERENES) R 170
10.5 FACE-REGULAR ({3,4}, 4)-SPHERES 177 10.6 FACE-REGULAR ({2,3},
6)-SPHERES . ; 179 11 GENERAL PROPERTIES OF 3-VALENT FACE-REGULAR MAPS
'". 181 11.1 GENERAL ({A, FC},3)-MAPS 184 11.2 REMAINING QUESTIONS 186
12 SPHERES AND TORI THAT AREAI?, 187 12.1 MAPSARO '.'.'*', 187 12.2 MAPS
4R : ' ' ''' 189 12.3 MAPS 4FL 2 * ' * 195 12.4 MAPS5R 2 ; * * *' 203
12.5 MAPS57? 3 *** ** 204 CONTENTS VII 13 FRANK-KASPER SPHERES AND TORI
218 13.1 EULER FORMULA FOR ({A, B], 3)-MAPS BR 0 218 13.2 THE MAJOR
SKELETON, ELEMENTARY POLYCYCLES, AND CLASSIFICATION RESULTS 219 14
SPHERES AND TORI THAT ARE BRI 225 14.1 EULER FORMULA FOR ({A, B],
3)-MZPS BR\ 225 14.2 ELEMENTARY POLYCYCLES 229 15 SPHERES AND TORI THAT
ARE BRI 234 15.1 ({A, B], 3)-MAPS BR 2 234 15.2 ({5,B},3)-TORIBR 2 237
15.3 ({A, B], 3)-SPHERES WITH A CYCLE OF B-GONS 239 16 SPHERES AND TORI
THAT ARE BRJ 246 16.1 CLASSIFICATION OF ({4, B], 3)-MAPS BR 3 246 16.2
({5,B},3)-MAPSBR 3 252 17 SPHERES AND TORI THAT ARE BR 4 256 17.1 ({4,
B], 3)-MAPS BR 4 256 17.2 ({5,B},3)-MAPSBR 4 270 18 SPHERES AND TORI
THAT ARE BRJ FOR J 5 274 18.1 MAPS/? 5 274 18.2 MAPS6TF 6 281 19
ICOSAHEDRAL FULLEROIDS 284 19.1 CONSTRUCTION OF/-FULLEROIDS AND INFINITE
SERIES 285 19.2 RESTRICTIONS ON THE P-VECTORS 288 19.3 FROM THE P-
VECTORS TO THE STRUCTURES . 291 REFERENCES 295 INDEX 304 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Deza, Michel 1939- Dutour Sikirić, Mathieu |
author_GND | (DE-588)118064495 |
author_facet | Deza, Michel 1939- Dutour Sikirić, Mathieu |
author_role | aut aut |
author_sort | Deza, Michel 1939- |
author_variant | m d md s m d sm smd |
building | Verbundindex |
bvnumber | BV035186364 |
classification_rvk | SK 890 |
ctrlnum | (OCoLC)254725660 (DE-599)BVBBV035186364 |
dewey-full | 541.220151 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 541 - Physical chemistry |
dewey-raw | 541.220151 |
dewey-search | 541.220151 |
dewey-sort | 3541.220151 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie Mathematik |
discipline_str_mv | Chemie / Pharmazie Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01708nam a2200445 cb4500</leader><controlfield tag="001">BV035186364</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081128s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521873079</subfield><subfield code="9">978-0-521-87307-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)254725660</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035186364</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">541.220151</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Deza, Michel</subfield><subfield code="d">1939-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)118064495</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometry of chemical graphs</subfield><subfield code="b">polycycles and two-faced maps</subfield><subfield code="c">Michel Deza ; Mathieu Dutour Sikirić</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 306 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">119</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical models - Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graphentheoretisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecules - Models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molekül</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Chemie - Geometrie</subfield><subfield code="2">idsbb</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometrie - Chemie</subfield><subfield code="2">idsbb</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical models</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecules</subfield><subfield code="x">Models</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dutour Sikirić, Mathieu</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">119</subfield><subfield code="w">(DE-604)BV000903719</subfield><subfield code="9">119</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016993046&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016993046</subfield></datafield></record></collection> |
id | DE-604.BV035186364 |
illustrated | Illustrated |
index_date | 2024-07-02T22:59:52Z |
indexdate | 2024-07-09T21:26:59Z |
institution | BVB |
isbn | 9780521873079 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016993046 |
oclc_num | 254725660 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-11 |
owner_facet | DE-19 DE-BY-UBM DE-11 |
physical | X, 306 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Cambridge Univ. Press |
record_format | marc |
series | Encyclopedia of mathematics and its applications |
series2 | Encyclopedia of mathematics and its applications |
spelling | Deza, Michel 1939- Verfasser (DE-588)118064495 aut Geometry of chemical graphs polycycles and two-faced maps Michel Deza ; Mathieu Dutour Sikirić Cambridge Cambridge Univ. Press 2008 X, 306 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Encyclopedia of mathematics and its applications 119 Chemical models - Mathematics Graphentheoretisches Modell Molecules - Models Molekül Chemie - Geometrie idsbb Geometrie - Chemie idsbb Mathematik Chemical models Mathematics Molecules Models Dutour Sikirić, Mathieu Verfasser aut Encyclopedia of mathematics and its applications 119 (DE-604)BV000903719 119 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016993046&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Deza, Michel 1939- Dutour Sikirić, Mathieu Geometry of chemical graphs polycycles and two-faced maps Encyclopedia of mathematics and its applications Chemical models - Mathematics Graphentheoretisches Modell Molecules - Models Molekül Chemie - Geometrie idsbb Geometrie - Chemie idsbb Mathematik Chemical models Mathematics Molecules Models |
title | Geometry of chemical graphs polycycles and two-faced maps |
title_auth | Geometry of chemical graphs polycycles and two-faced maps |
title_exact_search | Geometry of chemical graphs polycycles and two-faced maps |
title_exact_search_txtP | Geometry of chemical graphs polycycles and two-faced maps |
title_full | Geometry of chemical graphs polycycles and two-faced maps Michel Deza ; Mathieu Dutour Sikirić |
title_fullStr | Geometry of chemical graphs polycycles and two-faced maps Michel Deza ; Mathieu Dutour Sikirić |
title_full_unstemmed | Geometry of chemical graphs polycycles and two-faced maps Michel Deza ; Mathieu Dutour Sikirić |
title_short | Geometry of chemical graphs |
title_sort | geometry of chemical graphs polycycles and two faced maps |
title_sub | polycycles and two-faced maps |
topic | Chemical models - Mathematics Graphentheoretisches Modell Molecules - Models Molekül Chemie - Geometrie idsbb Geometrie - Chemie idsbb Mathematik Chemical models Mathematics Molecules Models |
topic_facet | Chemical models - Mathematics Graphentheoretisches Modell Molecules - Models Molekül Chemie - Geometrie Geometrie - Chemie Mathematik Chemical models Mathematics Molecules Models |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016993046&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000903719 |
work_keys_str_mv | AT dezamichel geometryofchemicalgraphspolycyclesandtwofacedmaps AT dutoursikiricmathieu geometryofchemicalgraphspolycyclesandtwofacedmaps |