Rubber nanocomposites: preparation, properties and applications
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Singapore
Wiley
2010
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXII, 705 S. Ill., graph. Darst. |
ISBN: | 9780470823453 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035186031 | ||
003 | DE-604 | ||
005 | 20131014 | ||
007 | t | ||
008 | 081128s2010 ad|| |||| 00||| eng d | ||
020 | |a 9780470823453 |9 978-0-470-82345-3 | ||
035 | |a (OCoLC)233544876 | ||
035 | |a (DE-599)GBV579288544 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-11 |a DE-91G | ||
050 | 0 | |a TA455.R8 | |
082 | 0 | |a 678/.72 |2 22 | |
084 | |a UV 9150 |0 (DE-625)146921: |2 rvk | ||
084 | |a VE 9850 |0 (DE-625)147163:253 |2 rvk | ||
084 | |a VN 5900 |0 (DE-625)147582:253 |2 rvk | ||
084 | |a ZM 5300 |0 (DE-625)157065: |2 rvk | ||
084 | |a WER 421f |2 stub | ||
084 | |a WER 670f |2 stub | ||
245 | 1 | 0 | |a Rubber nanocomposites |b preparation, properties and applications |c ed. Sabu Thomas ... |
264 | 1 | |a Singapore |b Wiley |c 2010 | |
300 | |a XXII, 705 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Nanocomposites (Materials) | |
650 | 4 | |a Rubber | |
650 | 0 | 7 | |a Nanokomposit |0 (DE-588)4768127-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Füllstoff |0 (DE-588)4155585-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gummi |0 (DE-588)4022538-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Gummi |0 (DE-588)4022538-0 |D s |
689 | 0 | 1 | |a Füllstoff |0 (DE-588)4155585-5 |D s |
689 | 0 | 2 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Gummi |0 (DE-588)4022538-0 |D s |
689 | 1 | 1 | |a Nanokomposit |0 (DE-588)4768127-5 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Thomas, Sabu |d 1960- |e Sonstige |0 (DE-588)1021317551 |4 oth | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016992719&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-016992719 |
Datensatz im Suchindex
_version_ | 1814797019744567296 |
---|---|
adam_text |
Contents
List of Contributors
xv
Preface
xix
Editor Biographies
xxi
1
Nanocomposites: State of the Art, New Challenges and Opportunities
1
Ranimol Stephen and Sabu Thomas
1.1
Introduction
1
1.2
Various Nanofillers
2
1.2.1
Layered Silicates
2
1.2.2
Nanotubes
3
1.2.3
Spherical Particles
5
1.2.4
Polyhedral Oligomeric Silsesquioxanes
6
1.2.5
Bionanofillers
7
1.3
Rubber Nanocomposites
8
1.4
Future Outlook, Challenges and Opportunities
11
References
12
2
Manufacturing Techniques of Rubber Nanocomposites
21
Jun
Ma, Li-Qun Zhang and Li Geng
2.1
Introduction
21
2.1.1
Conventional Manufacturing Techniques
22
2.1.2
Rubber Nanocomposites
22
2.1.3
Reinforcing Agent
23
2.2
Melt Compounding
25
2.2.1
Manufacturing Factors Control
25
2.2.2
Filler Surface Modification
34
2.3
Solution Blending
39
2.3.1
Manufacturing Factors Control
39
2.3.2
Preparing Exfoliated/Intercalated Nanocomposites
46
2.4
Latex Compounding
47
2.4.1
Manufacturing Factors Control
48
2.4.2
The Effect of Rubber Type
57
vi
Contents
2.5
Summary
61
Acknowledgments
61
References
61
3
Reinforcement of
Silicone
Rubbers by Sol-Gel In Situ Generated
Filler Particles
63
Liliane
Bokobza and Amadou
Lamine
Diop
3.1
Introduction
63
3.2
Synthetic Aspects
64
3.2.1
General Considerations
64
3.2.2
Adopted Protocols
65
3.3
Properties of the Hybrid Materials
71
3.3.1
State of Dispersion
71
3.3.2
Stress-Strain Curves
71
3.3.3
Low Strain Dynamic Properties
74
3.3.4
Mullins Effect
76
3.3.5
Characterization of the Polymer-Filler Interface
78
3.3.6
Thermal Properties
80
3.4
Conclusions
82
References
82
4
Interface Modification and Characterization
87
Jun Ma,
Li-Qun Zhang and Jiabin Dai
4.1
Introduction
87
4.1.1
Particle Size
87
4.1.2
Surface Activity
88
4.2
Rubber Nanocomposites Without Interface Modification
89
4.2.1
Hardness and
300%
Tensile Modulus
89
4.2.2
Tensile Strength
89
4.2.3
Tensile Strain
92
4.2.4
Tear Strength
92
4.2.5
Rebound Resilience
92
4.2.6
Processing Properties
92
4.2.7
Advantages
92
4.2.8
Disadvantages
92
4.3
Interface Modification by Nonreactive Routes
93
4.4
Interface Modification by Reactive Routes
100
4.5
Characterization of Interface Modification
104
4.5.1
Direct Methods for Interface Characterization
105
4.5.2
Indirect Methods for Interface Characterization
106
4.6
Conclusion
110
List of Abbreviations
110
Acknowledgments 111
References 111
Contents
vii
5
Natural Rubber
Green Nanocomposites 113
Alain Dufresne
5.1
Introduction
113
5.2
Preparation of Polysaccharide Nanocrystals
114
5.3
Processing of Polysaccharide Nanocrystal-Reinforced Rubber
Nanocomposites
115
5.4
Morphological Investigation
116
5.5
Swelling Behavior
118
5.5.1
Toluene Swelling Behavior
119
5.5.2
Water Swelling Behavior
127
5.5.3
Influence of the Chemical Modification of the Filler
128
5.6
Dynamic Mechanical Analysis
131
5.7
Tensile Tests
134
5.8
Successive Tensile Tests
137
5.9
Barrier Properties
143
5.10
Conclusions
143
References
144
6
Carbon Nanotube Reinforced Rubber Composites
147
R.
Verdejo,
M.A. Lopez-Manchado,
L
Valentini
and
J.M.
Kenny
6.1
Introduction
147
6.2
Functionalized Carbon Nanotubes
148
6.3
Elastomeric Nanocomposites
152
6.3.1
Natural Rubber
152
6.3.2
Styrene-Butadiene Rubber
155
6.3.3 Polyurethane
Rubber
157
6.3.4
Silicone
Rubber
160
6.4
Outlook
161
References
162
7
Rubber/Clay Nanocomposites: Preparation, Properties and Applications
169
K.G.
Gatos
and
J.
Karger-Kocsis
7.1
Introduction
169
7.2
Clays and Their Organophilic Modification
170
7.3
Preparation of Rubber/Clay Nanocomposites
171
7.3.1
Solution Intercalation
173
7.3.2
Latex Route
173
7.3.3
Melt Compounding
174
7.4
Properties of Rubber/Clay Nanocomposites
176
7.4.1
Crosslinking
176
7.4.2
Mechanical Performance
179
7.4.3
Barrier Properties
184
7.4.4
Fire Resistance
186
7.4.5
Others
187
_
^
_
Contents
7.5
Applications
189
7.6
Outlook
189
Acknowledgments
190
References
190
Cellulosic Fibril-Rubber Nanocomposites
197
Maya Jacob John and Sabu Thomas
8.1
Introduction
197
8.2
Cellulose
198
8.3
Cellulosic Nanoreinforcements
199
8.3.1
Cellulosic Microfibrils
199
8.4
Studies on Cellulosic/Latex Nanocomposites
204
8.5
Conclusions
207
References
207
Nanofillers In Rubber-Rubber Blends
209
Rosamma Alex
9.1
Introduction
209
9.2
Types of Nanofillers
209
9.2.1
Spherical Fillers
210
9.2.2
Tubular Fillers
210
9.2.3
Layered Clays
211
9.3
Role of Nanofillers in Reinforcement
213
9.3.1
Particle Size
213
9.3.2
Rubber-Filler Interaction
215
9.3.3
Filler-Filler Interactions
216
9.3.4
Shape and Structure of Filler
216
9.3.5
Filler Reinforcement with Reference to Concentration and Cure
217
9.4
Methods to Enhance Polymer-Filler Interaction and Reinforcement
218
9.4.1
Micromechanical Interlocking
218
9.4.2
Physical and Chemical Interactions
-
Modification of Nanofillers
218
9.5
Role of Nanofiller as Compatibilizer
220
9.6
Structure Compatibility Concept of NR-Based Latex Blends
222
9.6.1
Forms of NR Suitable for Blend Nanocomposites
222
9.6.2
Important Synthetic Latices used in Blend Nanocomposites
224
9.7
Solubility Parameter and Mixing of Latices
225
9.7.1
Particle Size and Molecular Weight
225
9.7.2
Nonrubber
Solids and Total Solids Content
226
9.8
Preparation of Nanocomposites
226
9.8.1
Solution Blending
226
9.8.2
Latex Stage Compounding
226
9.8.3
Melt Intercalation
229
9.9
Rubber Blend Nanocomposites Based on Skim NR Latex and Fresh
NR Latex: Preparation, Characterization and Mechanical Properties
229
Contents
9.10
Advantages of Nanocomposites and Application of Rubber
Nanocomposites
2
í
1
References
2
\ą
10
Thermoplastic
Polyurethane
Nanocomposites
239
S.K. Smart, G.A. Edwards and
DJ.
Martin
10.1
Introduction
239
10.2
Market
240
10.2.1
Styrene
Block Copolymers
24-0
10.2.2
Thermoplastic Olefins
240
10.2.3
Thermoplastic Vulcanizates
240
10.2.4
Copolyester Elastomers
240
10.2.5
Thermoplastic Polyurethanes
241
10.3
TPU Chemistry, Morphology and Properties
241
10.4
TPU Nanocomposites
242
10.5
Layered Silicate/TPU Nanocomposites
243
10.6
Carbon Nanotube/TPU Nanocomposites
247
10.7
Future Perspectives
250
References
250
11
Microscope Evaluation of the Morphology of Rubber Nanocomposites
255
Hiroaki Miyagawa
11.1
Introduction
255
11.2
Optical Microscopy
256
11.3
Scanning Electron Microscopy
25
Q
11.3.1
Micrographs with Secondary Electron
259
11.3.2
Energy Dispersive
Х
-Ray Spectroscopy (EDX)
262
11.3.3
Electron Probe Microanalysis
263
11.3.4
Х
-Ray Ultramicroscopy
264
11.4
Transmission Electron Microscopy
265
11.4.1
Sample Preparation for
ТЕМ
Observations
266
11.4.2
Bright-Field
ТЕМ
Micrographs
268
11.4.3
Scanning Transmission Electron Microscopy and EDX
27 2
11.4.4
Electron Spectroscopy Imaging in Transmission Electron
Microscopy
273
11.4.5 3-D
Transmission Electron Microtomography
274
11.5
Scanning Probe Microscopy
276
11.5.1
Atomic Force Microscopy
277
11.5.2
Other AFM-Related Techniques
28
1
11.6
Summary
285
References
285
12
Mechanical Properties of Rubber Nanocomposites:
How, Why
.
and Then?
291
L. Chazeau, C.
Gauthier
and J.M.
Chenal
12.1
Introduction
291
12.2
Typical Mechanical Behavior of Rubber Nanocomposites
292
Contents
12.2.1
The Fillers and Their Main Characteristics
292
12.2.2
Filler Reinforcement (Modulus Increase)
295
12.2.3
Mechanical Behavior at Small Strain: the Payne Effect
297
12.2.4
Mechanical Behavior at Larger Strains
299
12.2.5
Aging, Fatigue and Ultimate Properties
300
12.2.6
Conclusion
304
12.3
How to Explain Reinforcement in Rubber Nanocomposite?
304
12.3.1
Filler Morphology and Filler-Filler Interactions
305
12.3.2
Filler-Matrix Interactions
307
12.3.3
Indirect Influence of Fillers on Matrix Crosslinking
311
12.3.4
Influence of Fillers on Rubber Crystallization
312
12.3.5
Conclusion
-316
12.4
Modeling Attempts
316
12.4.1
Polymer Network Contribution: Modeling Rubber Behavior
316
12.4.2
Filler Contribution: How to Describe the Composite Effect?
318
12.4.3
Account for the Filler-Filler and Filler-Matrix Interactions
321
12.4.4
Conclusion
323
12.5
General Conclusions
323
References
324
13
Nonlinear Viscoelastic Behavior of Rubbery Bionanocomposites
331
Alireza S. Sarvestani and Esmaiel Jabbari
13.1
Introduction
3 31
13.2
Rubbery Bionanocomposites
333
13.2.1
Biofiber-Natural Rubber Composites
333
13.2.2
Hydrogel Nanocomposites
334
13.3
Nonlinear Viscoelasticity of Hydrogel Nanocomposites
335
13.3.1
Filler-Gel
Interfacial
Structure
337
13.3.2
Dynamics of the Adsorbed Layer
338
13.3.3
Macroscopic Properties
341
13.3.4
Model Predictions
342
13.4
Conclusions
345
Acknowledgments
345
References
346
14
Rheological Behavior of Rubber Nanocomposites
353
Philippe Cassagnau and Claire
Barres
14.1
Introduction
353
14.2
Linear Viscoelasticity
355
14.2.1
General Trends
355
14.2.2
Percolation Threshold
357
14.2.3
Equilibrium Shear Modulus
361
14.3
Payne Effect
353
14.3.1
The Limit of Linearity
365
14.3.2
Thixotropy and Recovery
367
14.4
Flow Properties of Rubber Nanocomposites
368
14.4.1
Shear Viscosity
З69
14.4.2
Rubber Nanocomposites Based on Nanoclays
376
14.4.3
Extensional Viscosity
378
Contents
14.4.4
Yield Stress
382
14.4.5
Wall Slip
383
14.4.6
Extrudate Swell
384
14.5
Conclusions
384
References
385
15
Electron Spin Resonance in Studying Nanocomposite Rubber Materials
391
S.
Valić
15.1
An Approach to the Study of Polymer Systems
391
15.1.1
Introduction
391
15.1.2
Theoretical Background
393
15.2
ESR
-
Spin Probe Study of Nanocomposite Rubber Materials
397
15.3
Summary
403
References
404
16
Studies on Solid-State NMR and Surface Energetics of Silicas
for Improving Filler-Elastomer Interactions in Nanocomposites
407
Soo-Jin Park and Byung-Joo Kim
16.1
Introduction
407
16.2
Surface Modification of Silicas
408
16.2.1
Thermal Treatment
408
16.2.2
Silane Coupling Method
409
16.2.3
Direct Fluorination
409
16.3
Solid-State NMR Analyses of Silicas
409
16.3.1
Thermally Treated Silicas
409
16.3.2
Silane-Treated Silicas
409
16.3.3 Fluorinated
Silicas
411
16.4
Surface Energetics of Silicas
411
16.5
Other Surface Analyses of Modified Silicas
413
16.5.1
Thermally Treated Silicas
413
16.5.2 Fluorinated
Silicas
414
16.6
Mechanical
Interfacial
Properties of the Compounds
417
16.6.1
Thermally Treated Silicas
417
16.6.2
Silane-Treated Silicas
419
16.6.3 Fluorinated
Silicas
422
16.7
Conclusions
422
References
423
17
Wide-Angle X-ray Diffraction and Small-Angle X-ray
Scattering Studies of Rubber Nanocomposites
425
Valerio Causin
17.1
Introduction
425
17.2
WAXD: An Overview
426
17.3
SAXS: An Overview
427
17.4
Lamellar Fillers
429
17.5
Nonlamellar Fillers
445
17.5.1
Carbon Black
445
xii
Contents
17.5.2
Carbon Nanotubes
451
17.5.3
Silica
454
17.5.4
Polyhedral Oligomeric Silsesquioxane
460
17.5.5
Rubber as a Filler or Compatibilizer in Nanocomposites
464
17.6
Characterization of the Matrix in Polymer-Based Nanocomposites
464
17.6.1
Strain-Induced Crystallization
464
17.6.2
Thermoplastic Elastomers
472
References
486
18
Barrier Properties of Rubber Nanocomposites
499
Changwoon
Nah
and M. Abdul
Kader
18.1
Introduction
499
18.2
Theoretical Consideration
501
18.2.1
Fundamental Permeation Theories
501
18.2.2
Diffusion through Polymer Membrane Filled with Paniculate
and Layered Fillers
503
18.3
Experimental Studies
510
18.4
Applications
520
18.5
Conclusions
522
Acknowledgments
523
References
523
19
Rubber/Graphite Nanocomposites
527
Guohua Chen and Weifeng Zhao
19.1
Introduction and Background
527
19.2
Graphite and its Nanostructure
529
19.2.1
Basic Issues on Graphite
529
19.2.2
Graphite Intercalation Compounds
530
19.2.3
Expanded Graphite
533
19.2.4
Graphite Nanosheets
535
19.2.5
Graphene and Graphite Oxide
537
19.3
Rubber/Graphite Nanocomposites
538
19.3.1
Preparation, Processing and Characterization
539
19.3.2
Properties and Applications
540
19.4
Future Outlook
546
Acknowledgments
546
References
546
20
Aging and Degradation Behavior of Rubber Nanocomposites
551
Suneel Kumar Srivastava and Himadri Acharya
20.1
Introduction
551
20.2
Types of Fillers Used in Rubber Nanocomposites
552
20.2.1
Clay Minerals
552
20.2.2
Layered Double Hydroxide
553
20.2.3
Carbon Nanotubes and Other Inorganic Nanofillers
554
20.3
Aging of Rubber Nanocomposites
554
20.3.1
Natural Rubber
555
Contents
x¡¡¡
20.3.2
Ethylene Propylene
Diene Terpolymer 559
20.3.3
Styrene
Butadiene
Rubber
559
20.3.4
Nitrile
Butadiene
Rubber
561
20.3.5
Hydrogenated Nitrile
Butadiene
Rubber
561
20.3.6
Silicone
Rubber
563
20.4
Degradation of
Rubber Nanocomposites
563
20.4.1
Natural
Rubber
563
20.4.2
Ethylene Vinyl
Acetate
566
20.4.3
Ethylene Propylene
Diene
Terpolymer
568
20.4.4
Acrylonitrile
Butadiene
Rubber
579
20.4.5
Hydrogenated Nitrile
Butadiene
Rubber
581
20.4.6
Styrene
Butadiene
Rubber
582
20.4.7
Silicone
Rubber
583
20.4.8
Butyl
Rubber
587
20.5
Summary
588
References
588
21
Positron Annihilation Lifetime Spectroscopy (PALS)
and Nanoindentation
(N1) 595
Dariusz
M.
Bieliński
and
Ludomir Ślusarski
21.1
Introduction
595
21.2
Positron Annihilation Lifetime
Spectroscopy
597
21.2.1
Introduction
597
21.2.2
Application of PALS to Study Rubber Morphology
599
21.2.3
Final Remarks
618
21.3
Nanoindentation
621
21.3.1
Introduction
621
21.3.2
Application of Nanoindentation to Study Rubber Morphology
623
21.3.3
Application of Nanotribology to Study Rubber Morphology
624
21.3.4
Final Remarks
626
References
627
22
Thermoelasticity and Stress Relaxation Behavior of Synthetic Rubber/
Organoclay
Nanocomposites
631
K.M.
Sukhyy, E.G. Privalko, V.P. Privalko andM.V. Burmistr
22.1
Introduction
631
22.2
Experimental
632
22.2.1
Materials
632
22.2.2
Methods
633
22.3
Polychloroprene/Organoclay Nanocomposites
633
22.3.1
Structural Characterization of Unstretched Samples
633
22.3.2
Thermoelastic Behavior
634
22.3.3
Stress Relaxation
638
22.3.4
Conclusions
642
22.4
Styrene-co-Butadiene Rubber/Organoclay Nanocomposites
642
22.4.1
Structural Characterization of Unstretched Samples
642
22.4.2
Thermoelastic Behavior
643
22.4.3
Stress Relaxation
645
22.4.4
Conclusions
648
References
648
xiv Contents
23
Theoretical Modeling and Simulation of Rubber Nanocomposites
651
Jan Kalfus and Josef
Janear
23.1
Introduction
651
23.2
Brief Theory of Conformation Statistics and Chain Dynamics
653
23.3
Basic Aspects of Rubber Elasticity
657
23.4
Mechanisms of Nanocomposite Reinforcement
659
23.5
Chains at Rubber-Filler Interfaces
664
23.5.1
Structural Aspects
664
23.5.2
Dynamical Aspects
666
23.6
Structural Peculiarities of Rubbery Nanocomposites
668
23.7
Concluding Remarks
672
Acknowledgments
672
References
672
24
Application of Rubber Nanocomposites
675
Mirosława
El Fray and Lloyd A. Goettler
24.1
Introduction
675
24.1.1
Rubbery Matrices
676
24.1.2
Nanofillers
676
24.2
Rubber Nanocomposites in Tire Engineering Applications
682
24.2.1
Tread
682
24.2.2
Innerliner
684
24.2.3
Other
687
24.3
Rubber Nanocomposite Membranes
687
24.4
Applications of Rubber Nanocomposites in Sporting Goods
689
24.5
Advanced Nanocomposites for Airspace Applications
690
24.6
Nanorubbers in Medicine and Healthcare
691
24.7
Conclusions
693
References
693
Index
697 |
adam_txt |
Contents
List of Contributors
xv
Preface
xix
Editor Biographies
xxi
1
Nanocomposites: State of the Art, New Challenges and Opportunities
1
Ranimol Stephen and Sabu Thomas
1.1
Introduction
1
1.2
Various Nanofillers
2
1.2.1
Layered Silicates
2
1.2.2
Nanotubes
3
1.2.3
Spherical Particles
5
1.2.4
Polyhedral Oligomeric Silsesquioxanes
6
1.2.5
Bionanofillers
7
1.3
Rubber Nanocomposites
8
1.4
Future Outlook, Challenges and Opportunities
11
References
12
2
Manufacturing Techniques of Rubber Nanocomposites
21
Jun
Ma, Li-Qun Zhang and Li Geng
2.1
Introduction
21
2.1.1
Conventional Manufacturing Techniques
22
2.1.2
Rubber Nanocomposites
22
2.1.3
Reinforcing Agent
23
2.2
Melt Compounding
25
2.2.1
Manufacturing Factors Control
25
2.2.2
Filler Surface Modification
34
2.3
Solution Blending
39
2.3.1
Manufacturing Factors Control
39
2.3.2
Preparing Exfoliated/Intercalated Nanocomposites
46
2.4
Latex Compounding
47
2.4.1
Manufacturing Factors Control
48
2.4.2
The Effect of Rubber Type
57
vi
Contents
2.5
Summary
61
Acknowledgments
61
References
61
3
Reinforcement of
Silicone
Rubbers by Sol-Gel In Situ Generated
Filler Particles
63
Liliane
Bokobza and Amadou
Lamine
Diop
3.1
Introduction
63
3.2
Synthetic Aspects
64
3.2.1
General Considerations
64
3.2.2
Adopted Protocols
65
3.3
Properties of the Hybrid Materials
71
3.3.1
State of Dispersion
71
3.3.2
Stress-Strain Curves
71
3.3.3
Low Strain Dynamic Properties
74
3.3.4
Mullins Effect
76
3.3.5
Characterization of the Polymer-Filler Interface
78
3.3.6
Thermal Properties
80
3.4
Conclusions
82
References
82
4
Interface Modification and Characterization
87
Jun Ma,
Li-Qun Zhang and Jiabin Dai
4.1
Introduction
87
4.1.1
Particle Size
87
4.1.2
Surface Activity
88
4.2
Rubber Nanocomposites Without Interface Modification
89
4.2.1
Hardness and
300%
Tensile Modulus
89
4.2.2
Tensile Strength
89
4.2.3
Tensile Strain
92
4.2.4
Tear Strength
92
4.2.5
Rebound Resilience
92
4.2.6
Processing Properties
92
4.2.7
Advantages
92
4.2.8
Disadvantages
92
4.3
Interface Modification by Nonreactive Routes
93
4.4
Interface Modification by Reactive Routes
100
4.5
Characterization of Interface Modification
104
4.5.1
Direct Methods for Interface Characterization
105
4.5.2
Indirect Methods for Interface Characterization
106
4.6
Conclusion
110
List of Abbreviations
110
Acknowledgments 111
References 111
Contents
vii
5
Natural Rubber
Green Nanocomposites 113
Alain Dufresne
5.1
Introduction
113
5.2
Preparation of Polysaccharide Nanocrystals
114
5.3
Processing of Polysaccharide Nanocrystal-Reinforced Rubber
Nanocomposites
115
5.4
Morphological Investigation
116
5.5
Swelling Behavior
118
5.5.1
Toluene Swelling Behavior
119
5.5.2
Water Swelling Behavior
127
5.5.3
Influence of the Chemical Modification of the Filler
128
5.6
Dynamic Mechanical Analysis
131
5.7
Tensile Tests
134
5.8
Successive Tensile Tests
137
5.9
Barrier Properties
143
5.10
Conclusions
143
References
144
6
Carbon Nanotube Reinforced Rubber Composites
147
R.
Verdejo,
M.A. Lopez-Manchado,
L
Valentini
and
J.M.
Kenny
6.1
Introduction
147
6.2
Functionalized Carbon Nanotubes
148
6.3
Elastomeric Nanocomposites
152
6.3.1
Natural Rubber
152
6.3.2
Styrene-Butadiene Rubber
155
6.3.3 Polyurethane
Rubber
157
6.3.4
Silicone
Rubber
160
6.4
Outlook
161
References
162
7
Rubber/Clay Nanocomposites: Preparation, Properties and Applications
169
K.G.
Gatos
and
J.
Karger-Kocsis
7.1
Introduction
169
7.2
Clays and Their Organophilic Modification
170
7.3
Preparation of Rubber/Clay Nanocomposites
171
7.3.1
Solution Intercalation
173
7.3.2
Latex Route
173
7.3.3
Melt Compounding
174
7.4
Properties of Rubber/Clay Nanocomposites
176
7.4.1
Crosslinking
176
7.4.2
Mechanical Performance
179
7.4.3
Barrier Properties
184
7.4.4
Fire Resistance
186
7.4.5
Others
187
_
^
_
Contents
7.5
Applications
189
7.6
Outlook
189
Acknowledgments
190
References
190
Cellulosic Fibril-Rubber Nanocomposites
197
Maya Jacob John and Sabu Thomas
8.1
Introduction
197
8.2
Cellulose
198
8.3
Cellulosic Nanoreinforcements
199
8.3.1
Cellulosic Microfibrils
199
8.4
Studies on Cellulosic/Latex Nanocomposites
204
8.5
Conclusions
207
References
207
Nanofillers In Rubber-Rubber Blends
209
Rosamma Alex
9.1
Introduction
209
9.2
Types of Nanofillers
209
9.2.1
Spherical Fillers
210
9.2.2
Tubular Fillers
210
9.2.3
Layered Clays
211
9.3
Role of Nanofillers in Reinforcement
213
9.3.1
Particle Size
213
9.3.2
Rubber-Filler Interaction
215
9.3.3
Filler-Filler Interactions
216
9.3.4
Shape and Structure of Filler
216
9.3.5
Filler Reinforcement with Reference to Concentration and Cure
217
9.4
Methods to Enhance Polymer-Filler Interaction and Reinforcement
218
9.4.1
Micromechanical Interlocking
218
9.4.2
Physical and Chemical Interactions
-
Modification of Nanofillers
218
9.5
Role of Nanofiller as Compatibilizer
220
9.6
Structure Compatibility Concept of NR-Based Latex Blends
222
9.6.1
Forms of NR Suitable for Blend Nanocomposites
222
9.6.2
Important Synthetic Latices used in Blend Nanocomposites
224
9.7
Solubility Parameter and Mixing of Latices
225
9.7.1
Particle Size and Molecular Weight
225
9.7.2
Nonrubber
Solids and Total Solids Content
226
9.8
Preparation of Nanocomposites
226
9.8.1
Solution Blending
226
9.8.2
Latex Stage Compounding
226
9.8.3
Melt Intercalation
229
9.9
Rubber Blend Nanocomposites Based on Skim NR Latex and Fresh
NR Latex: Preparation, Characterization and Mechanical Properties
229
Contents
9.10
Advantages of Nanocomposites and Application of Rubber
Nanocomposites
2
í
1
References
2
\ą
10
Thermoplastic
Polyurethane
Nanocomposites
239
S.K. Smart, G.A. Edwards and
DJ.
Martin
10.1
Introduction
239
10.2
Market
240
10.2.1
Styrene
Block Copolymers
24-0
10.2.2
Thermoplastic Olefins
240
10.2.3
Thermoplastic Vulcanizates
240
10.2.4
Copolyester Elastomers
240
10.2.5
Thermoplastic Polyurethanes
241
10.3
TPU Chemistry, Morphology and Properties
241
10.4
TPU Nanocomposites
242
10.5
Layered Silicate/TPU Nanocomposites
243
10.6
Carbon Nanotube/TPU Nanocomposites
247
10.7
Future Perspectives
250
References
250
11
Microscope Evaluation of the Morphology of Rubber Nanocomposites
255
Hiroaki Miyagawa
11.1
Introduction
255
11.2
Optical Microscopy
256
11.3
Scanning Electron Microscopy
25
Q
11.3.1
Micrographs with Secondary Electron
259
11.3.2
Energy Dispersive
Х
-Ray Spectroscopy (EDX)
262
11.3.3
Electron Probe Microanalysis
263
11.3.4
Х
-Ray Ultramicroscopy
264
11.4
Transmission Electron Microscopy
265
11.4.1
Sample Preparation for
ТЕМ
Observations
266
11.4.2
Bright-Field
ТЕМ
Micrographs
268
11.4.3
Scanning Transmission Electron Microscopy and EDX
27 2
11.4.4
Electron Spectroscopy Imaging in Transmission Electron
Microscopy
273
11.4.5 3-D
Transmission Electron Microtomography
274
11.5
Scanning Probe Microscopy
276
11.5.1
Atomic Force Microscopy
277
11.5.2
Other AFM-Related Techniques
28
1
11.6
Summary
285
References
285
12
Mechanical Properties of Rubber Nanocomposites:
How, Why
.
and Then?
291
L. Chazeau, C.
Gauthier
and J.M.
Chenal
12.1
Introduction
291
12.2
Typical Mechanical Behavior of Rubber Nanocomposites
292
Contents
12.2.1
The Fillers and Their Main Characteristics
292
12.2.2
Filler Reinforcement (Modulus Increase)
295
12.2.3
Mechanical Behavior at Small Strain: the Payne Effect
297
12.2.4
Mechanical Behavior at Larger Strains
299
12.2.5
Aging, Fatigue and Ultimate Properties
300
12.2.6
Conclusion
304
12.3
How to Explain Reinforcement in Rubber Nanocomposite?
304
12.3.1
Filler Morphology and Filler-Filler Interactions
305
12.3.2
Filler-Matrix Interactions
307
12.3.3
Indirect Influence of Fillers on Matrix Crosslinking
311
12.3.4
Influence of Fillers on Rubber Crystallization
312
12.3.5
Conclusion
-316
12.4
Modeling Attempts
316
12.4.1
Polymer Network Contribution: Modeling Rubber Behavior
316
12.4.2
Filler Contribution: How to Describe the Composite Effect?
318
12.4.3
Account for the Filler-Filler and Filler-Matrix Interactions
321
12.4.4
Conclusion
323
12.5
General Conclusions
323
References
324
13
Nonlinear Viscoelastic Behavior of Rubbery Bionanocomposites
331
Alireza S. Sarvestani and Esmaiel Jabbari
13.1
Introduction
3 31
13.2
Rubbery Bionanocomposites
333
13.2.1
Biofiber-Natural Rubber Composites
333
13.2.2
Hydrogel Nanocomposites
334
13.3
Nonlinear Viscoelasticity of Hydrogel Nanocomposites
335
13.3.1
Filler-Gel
Interfacial
Structure
337
13.3.2
Dynamics of the Adsorbed Layer
338
13.3.3
Macroscopic Properties
341
13.3.4
Model Predictions
342
13.4
Conclusions
345
Acknowledgments
345
References
346
14
Rheological Behavior of Rubber Nanocomposites
353
Philippe Cassagnau and Claire
Barres
14.1
Introduction
353
14.2
Linear Viscoelasticity
355
14.2.1
General Trends
355
14.2.2
Percolation Threshold
357
14.2.3
Equilibrium Shear Modulus
361
14.3
Payne Effect
353
14.3.1
The Limit of Linearity
365
14.3.2
Thixotropy and Recovery
367
14.4
Flow Properties of Rubber Nanocomposites
368
14.4.1
Shear Viscosity
З69
14.4.2
Rubber Nanocomposites Based on Nanoclays
376
14.4.3
Extensional Viscosity
378
Contents
14.4.4
Yield Stress
382
14.4.5
Wall Slip
383
14.4.6
Extrudate Swell
384
14.5
Conclusions
384
References
385
15
Electron Spin Resonance in Studying Nanocomposite Rubber Materials
391
S.
Valić
15.1
An Approach to the Study of Polymer Systems
391
15.1.1
Introduction
391
15.1.2
Theoretical Background
393
15.2
ESR
-
Spin Probe Study of Nanocomposite Rubber Materials
397
15.3
Summary
403
References
404
16
Studies on Solid-State NMR and Surface Energetics of Silicas
for Improving Filler-Elastomer Interactions in Nanocomposites
407
Soo-Jin Park and Byung-Joo Kim
16.1
Introduction
407
16.2
Surface Modification of Silicas
408
16.2.1
Thermal Treatment
408
16.2.2
Silane Coupling Method
409
16.2.3
Direct Fluorination
409
16.3
Solid-State NMR Analyses of Silicas
409
16.3.1
Thermally Treated Silicas
409
16.3.2
Silane-Treated Silicas
409
16.3.3 Fluorinated
Silicas
411
16.4
Surface Energetics of Silicas
411
16.5
Other Surface Analyses of Modified Silicas
413
16.5.1
Thermally Treated Silicas
413
16.5.2 Fluorinated
Silicas
414
16.6
Mechanical
Interfacial
Properties of the Compounds
417
16.6.1
Thermally Treated Silicas
417
16.6.2
Silane-Treated Silicas
419
16.6.3 Fluorinated
Silicas
422
16.7
Conclusions
422
References
423
17
Wide-Angle X-ray Diffraction and Small-Angle X-ray
Scattering Studies of Rubber Nanocomposites
425
Valerio Causin
17.1
Introduction
425
17.2
WAXD: An Overview
426
17.3
SAXS: An Overview
427
17.4
Lamellar Fillers
429
17.5
Nonlamellar Fillers
445
17.5.1
Carbon Black
445
xii
Contents
17.5.2
Carbon Nanotubes
451
17.5.3
Silica
454
17.5.4
Polyhedral Oligomeric Silsesquioxane
460
17.5.5
Rubber as a Filler or Compatibilizer in Nanocomposites
464
17.6
Characterization of the Matrix in Polymer-Based Nanocomposites
464
17.6.1
Strain-Induced Crystallization
464
17.6.2
Thermoplastic Elastomers
472
References
486
18
Barrier Properties of Rubber Nanocomposites
499
Changwoon
Nah
and M. Abdul
Kader
18.1
Introduction
499
18.2
Theoretical Consideration
501
18.2.1
Fundamental Permeation Theories
501
18.2.2
Diffusion through Polymer Membrane Filled with Paniculate
and Layered Fillers
503
18.3
Experimental Studies
510
18.4
Applications
520
18.5
Conclusions
522
Acknowledgments
523
References
523
19
Rubber/Graphite Nanocomposites
527
Guohua Chen and Weifeng Zhao
19.1
Introduction and Background
527
19.2
Graphite and its Nanostructure
529
19.2.1
Basic Issues on Graphite
529
19.2.2
Graphite Intercalation Compounds
530
19.2.3
Expanded Graphite
533
19.2.4
Graphite Nanosheets
535
19.2.5
Graphene and Graphite Oxide
537
19.3
Rubber/Graphite Nanocomposites
538
19.3.1
Preparation, Processing and Characterization
539
19.3.2
Properties and Applications
540
19.4
Future Outlook
546
Acknowledgments
546
References
546
20
Aging and Degradation Behavior of Rubber Nanocomposites
551
Suneel Kumar Srivastava and Himadri Acharya
20.1
Introduction
551
20.2
Types of Fillers Used in Rubber Nanocomposites
552
20.2.1
Clay Minerals
552
20.2.2
Layered Double Hydroxide
553
20.2.3
Carbon Nanotubes and Other Inorganic Nanofillers
554
20.3
Aging of Rubber Nanocomposites
554
20.3.1
Natural Rubber
555
Contents
x¡¡¡
20.3.2
Ethylene Propylene
Diene Terpolymer 559
20.3.3
Styrene
Butadiene
Rubber
559
20.3.4
Nitrile
Butadiene
Rubber
561
20.3.5
Hydrogenated Nitrile
Butadiene
Rubber
561
20.3.6
Silicone
Rubber
563
20.4
Degradation of
Rubber Nanocomposites
563
20.4.1
Natural
Rubber
563
20.4.2
Ethylene Vinyl
Acetate
566
20.4.3
Ethylene Propylene
Diene
Terpolymer
568
20.4.4
Acrylonitrile
Butadiene
Rubber
579
20.4.5
Hydrogenated Nitrile
Butadiene
Rubber
581
20.4.6
Styrene
Butadiene
Rubber
582
20.4.7
Silicone
Rubber
583
20.4.8
Butyl
Rubber
587
20.5
Summary
588
References
588
21
Positron Annihilation Lifetime Spectroscopy (PALS)
and Nanoindentation
(N1) 595
Dariusz
M.
Bieliński
and
Ludomir Ślusarski
21.1
Introduction
595
21.2
Positron Annihilation Lifetime
Spectroscopy
597
21.2.1
Introduction
597
21.2.2
Application of PALS to Study Rubber Morphology
599
21.2.3
Final Remarks
618
21.3
Nanoindentation
621
21.3.1
Introduction
621
21.3.2
Application of Nanoindentation to Study Rubber Morphology
623
21.3.3
Application of Nanotribology to Study Rubber Morphology
624
21.3.4
Final Remarks
626
References
627
22
Thermoelasticity and Stress Relaxation Behavior of Synthetic Rubber/
Organoclay
Nanocomposites
631
K.M.
Sukhyy, E.G. Privalko, V.P. Privalko andM.V. Burmistr
22.1
Introduction
631
22.2
Experimental
632
22.2.1
Materials
632
22.2.2
Methods
633
22.3
Polychloroprene/Organoclay Nanocomposites
633
22.3.1
Structural Characterization of Unstretched Samples
633
22.3.2
Thermoelastic Behavior
634
22.3.3
Stress Relaxation
638
22.3.4
Conclusions
642
22.4
Styrene-co-Butadiene Rubber/Organoclay Nanocomposites
642
22.4.1
Structural Characterization of Unstretched Samples
642
22.4.2
Thermoelastic Behavior
643
22.4.3
Stress Relaxation
645
22.4.4
Conclusions
648
References
648
xiv Contents
23
Theoretical Modeling and Simulation of Rubber Nanocomposites
651
Jan Kalfus and Josef
Janear
23.1
Introduction
651
23.2
Brief Theory of Conformation Statistics and Chain Dynamics
653
23.3
Basic Aspects of Rubber Elasticity
657
23.4
Mechanisms of Nanocomposite Reinforcement
659
23.5
Chains at Rubber-Filler Interfaces
664
23.5.1
Structural Aspects
664
23.5.2
Dynamical Aspects
666
23.6
Structural Peculiarities of Rubbery Nanocomposites
668
23.7
Concluding Remarks
672
Acknowledgments
672
References
672
24
Application of Rubber Nanocomposites
675
Mirosława
El Fray and Lloyd A. Goettler
24.1
Introduction
675
24.1.1
Rubbery Matrices
676
24.1.2
Nanofillers
676
24.2
Rubber Nanocomposites in Tire Engineering Applications
682
24.2.1
Tread
682
24.2.2
Innerliner
684
24.2.3
Other
687
24.3
Rubber Nanocomposite Membranes
687
24.4
Applications of Rubber Nanocomposites in Sporting Goods
689
24.5
Advanced Nanocomposites for Airspace Applications
690
24.6
Nanorubbers in Medicine and Healthcare
691
24.7
Conclusions
693
References
693
Index
697 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author_GND | (DE-588)1021317551 |
building | Verbundindex |
bvnumber | BV035186031 |
callnumber-first | T - Technology |
callnumber-label | TA455 |
callnumber-raw | TA455.R8 |
callnumber-search | TA455.R8 |
callnumber-sort | TA 3455 R8 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | UV 9150 VE 9850 VN 5900 ZM 5300 |
classification_tum | WER 421f WER 670f |
ctrlnum | (OCoLC)233544876 (DE-599)GBV579288544 |
dewey-full | 678/.72 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 678 - Elastomers and elastomer products |
dewey-raw | 678/.72 |
dewey-search | 678/.72 |
dewey-sort | 3678 272 |
dewey-tens | 670 - Manufacturing |
discipline | Chemie / Pharmazie Physik Werkstoffwissenschaften Werkstoffwissenschaften / Fertigungstechnik |
discipline_str_mv | Chemie / Pharmazie Physik Werkstoffwissenschaften Werkstoffwissenschaften / Fertigungstechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV035186031</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20131014</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081128s2010 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470823453</subfield><subfield code="9">978-0-470-82345-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)233544876</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV579288544</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA455.R8</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">678/.72</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UV 9150</subfield><subfield code="0">(DE-625)146921:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 9850</subfield><subfield code="0">(DE-625)147163:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 5900</subfield><subfield code="0">(DE-625)147582:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZM 5300</subfield><subfield code="0">(DE-625)157065:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WER 421f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WER 670f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rubber nanocomposites</subfield><subfield code="b">preparation, properties and applications</subfield><subfield code="c">ed. Sabu Thomas ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">Wiley</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 705 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanocomposites (Materials)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rubber</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanokomposit</subfield><subfield code="0">(DE-588)4768127-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Füllstoff</subfield><subfield code="0">(DE-588)4155585-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gummi</subfield><subfield code="0">(DE-588)4022538-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gummi</subfield><subfield code="0">(DE-588)4022538-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Füllstoff</subfield><subfield code="0">(DE-588)4155585-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Gummi</subfield><subfield code="0">(DE-588)4022538-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Nanokomposit</subfield><subfield code="0">(DE-588)4768127-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thomas, Sabu</subfield><subfield code="d">1960-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1021317551</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016992719&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016992719</subfield></datafield></record></collection> |
id | DE-604.BV035186031 |
illustrated | Illustrated |
index_date | 2024-07-02T22:59:42Z |
indexdate | 2024-11-04T13:01:46Z |
institution | BVB |
isbn | 9780470823453 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016992719 |
oclc_num | 233544876 |
open_access_boolean | |
owner | DE-703 DE-11 DE-91G DE-BY-TUM |
owner_facet | DE-703 DE-11 DE-91G DE-BY-TUM |
physical | XXII, 705 S. Ill., graph. Darst. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Wiley |
record_format | marc |
spelling | Rubber nanocomposites preparation, properties and applications ed. Sabu Thomas ... Singapore Wiley 2010 XXII, 705 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Nanocomposites (Materials) Rubber Nanokomposit (DE-588)4768127-5 gnd rswk-swf Nanostrukturiertes Material (DE-588)4342626-8 gnd rswk-swf Füllstoff (DE-588)4155585-5 gnd rswk-swf Gummi (DE-588)4022538-0 gnd rswk-swf Gummi (DE-588)4022538-0 s Füllstoff (DE-588)4155585-5 s Nanostrukturiertes Material (DE-588)4342626-8 s DE-604 Nanokomposit (DE-588)4768127-5 s Thomas, Sabu 1960- Sonstige (DE-588)1021317551 oth Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016992719&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Rubber nanocomposites preparation, properties and applications Nanocomposites (Materials) Rubber Nanokomposit (DE-588)4768127-5 gnd Nanostrukturiertes Material (DE-588)4342626-8 gnd Füllstoff (DE-588)4155585-5 gnd Gummi (DE-588)4022538-0 gnd |
subject_GND | (DE-588)4768127-5 (DE-588)4342626-8 (DE-588)4155585-5 (DE-588)4022538-0 |
title | Rubber nanocomposites preparation, properties and applications |
title_auth | Rubber nanocomposites preparation, properties and applications |
title_exact_search | Rubber nanocomposites preparation, properties and applications |
title_exact_search_txtP | Rubber nanocomposites preparation, properties and applications |
title_full | Rubber nanocomposites preparation, properties and applications ed. Sabu Thomas ... |
title_fullStr | Rubber nanocomposites preparation, properties and applications ed. Sabu Thomas ... |
title_full_unstemmed | Rubber nanocomposites preparation, properties and applications ed. Sabu Thomas ... |
title_short | Rubber nanocomposites |
title_sort | rubber nanocomposites preparation properties and applications |
title_sub | preparation, properties and applications |
topic | Nanocomposites (Materials) Rubber Nanokomposit (DE-588)4768127-5 gnd Nanostrukturiertes Material (DE-588)4342626-8 gnd Füllstoff (DE-588)4155585-5 gnd Gummi (DE-588)4022538-0 gnd |
topic_facet | Nanocomposites (Materials) Rubber Nanokomposit Nanostrukturiertes Material Füllstoff Gummi |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016992719&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT thomassabu rubbernanocompositespreparationpropertiesandapplications |