Model selection and model averaging:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge Univ. Press
2008
|
Ausgabe: | 1. publ. |
Schriftenreihe: | Cambridge series in statistical and probabilistic mathematics
[27] |
Schlagworte: | |
Online-Zugang: | Contributor biographical information Publisher description Table of contents only Inhaltsverzeichnis |
Beschreibung: | Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | XVII, 312 S. graph. Darst. 26 cm |
ISBN: | 9780521852258 0521852250 |
Internformat
MARC
LEADER | 00000nam a22000002cb4500 | ||
---|---|---|---|
001 | BV035185968 | ||
003 | DE-604 | ||
005 | 20151109 | ||
007 | t| | ||
008 | 081128s2008 xxkd||| |||| 00||| eng d | ||
010 | |a 2008006507 | ||
015 | |a GBA859144 |2 dnb | ||
020 | |a 9780521852258 |9 978-0-521-85225-8 | ||
020 | |a 0521852250 |9 0-521-85225-0 | ||
035 | |a (OCoLC)199455609 | ||
035 | |a (DE-599)BVBBV035185968 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a xxk |c GB | ||
049 | |a DE-384 |a DE-91G |a DE-11 |a DE-29 |a DE-19 |a DE-824 | ||
050 | 0 | |a QA276.18 | |
082 | 0 | |a 519.5 | |
084 | |a QH 233 |0 (DE-625)141548: |2 rvk | ||
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a MAT 624f |2 stub | ||
084 | |a MAT 622f |2 stub | ||
100 | 1 | |a Claeskens, Gerda |e Verfasser |4 aut | |
245 | 1 | 0 | |a Model selection and model averaging |c Gerda Claeskens ; Nils Lid Hjort |
250 | |a 1. publ. | ||
264 | 1 | |a Cambridge |b Cambridge Univ. Press |c 2008 | |
300 | |a XVII, 312 S. |b graph. Darst. |c 26 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Cambridge series in statistical and probabilistic mathematics |v [27] | |
500 | |a Hier auch später erschienene, unveränderte Nachdrucke | ||
650 | 4 | |a Modèles mathématiques - Recherche | |
650 | 4 | |a Statistique bayésienne | |
650 | 4 | |a Statistique mathématique - Recherche | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Mathematical models |x Research | |
650 | 4 | |a Mathematical statistics |x Research | |
650 | 4 | |a Bayesian statistical decision theory | |
650 | 0 | 7 | |a Modellwahl |0 (DE-588)4304786-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistisches Modell |0 (DE-588)4121722-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bayes-Entscheidungstheorie |0 (DE-588)4144220-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Statistisches Modell |0 (DE-588)4121722-6 |D s |
689 | 0 | 1 | |a Modellwahl |0 (DE-588)4304786-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 1 | 1 | |a Bayes-Entscheidungstheorie |0 (DE-588)4144220-9 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Hjort, Nils Lid |d 1953- |e Verfasser |0 (DE-588)137124562 |4 aut | |
830 | 0 | |a Cambridge series in statistical and probabilistic mathematics |v [27] |w (DE-604)BV011442366 |9 27 | |
856 | 4 | |u http://www.loc.gov/catdir/enhancements/fy0901/2008006507-b.html |3 Contributor biographical information | |
856 | 4 | |u http://www.loc.gov/catdir/enhancements/fy0901/2008006507-d.html |3 Publisher description | |
856 | 4 | |u http://www.loc.gov/catdir/enhancements/fy0901/2008006507-t.html |3 Table of contents only | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016992656&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-016992656 |
Datensatz im Suchindex
_version_ | 1817681156724752384 |
---|---|
adam_text |
Contents
Preface page xi
A guide to notation xiv
1 Model selection: data examples and introduction 1
1.1 Introduction 1
1.2 Egyptian skull development 3
1.3 Who wrote 'The Quiet Don'? 7
1.4 Survival data on primary biliary cirrhosis 10
1.5 Low birth weight data 13
1.6 Football match prediction 15
1.7 Speedskating 17
1.8 Preview of the following chapters 19
1.9 Notes on the literature 20
2 Akaike's information criterion 22
2.1 Information criteria for balancing fit with complexity 22
2.2 Maximum likelihood and the Kullback-Leibler distance 23
2.3 AIC and the Kullback-Leibler distance 28
2.4 Examples and illustrations 32
2.5 Takeuchi's model-robust information criterion 43
2.6 Corrected AIC for linear regression and autoregressive time series 44
2.7 AIC, corrected AIC and bootstrap-AIC for generalised
linear models* 46
2.8 Behaviour of AIC for moderately misspecified models* 49
2.9 Cross-validation 51
2.10 Outlier-robust methods 55
2.11 Notes on the literature 64
Exercises 66
vn
viii Contents
3 The Bayesian information criterion 70
3.1 Examples and illustrations of the BIC 70
3.2 Derivation of the BIC 78
3.3 Who wrote'The Quiet Don'? 82
3.4 The BIC and AIC for hazard regression models 85
3.5 The deviance information criterion 90
3.6 Minimum description length 94
3.7 Notes on the literature 96
Exercises 97
4 A comparison of some selection methods 99
4.1 Comparing selectors: consistency, efficiency and parsimony 99
4.2 Prototype example: choosing between two normal models 102
4.3 Strong consistency and the Hannan-Quinn criterion 106
4.4 Mallows's Cp and its outlier-robust versions 107
4.5 Efficiency of a criterion 108
4.6 Efficient order selection in an autoregressive process and the FPE 110
4.7 Efficient selection of regression variables 111
4.8 Rates of convergence* 112
4.9 Taking the best of both worlds?* 113
4.10 Notes on the literature 114
Exercises 115
5 Bigger is not always better 117
5.1 Some concrete examples 117
5.2 Large-sample framework for the problem 119
5.3 A precise tolerance limit 124
5.4 Tolerance regions around parametric models 126
5.5 Computing tolerance thresholds and radii 128
5.6 How the 5000-m time influences the 10,000-m time 130
5.7 Large-sample calculus for AIC 137
5.8 Notes on the literature 140
Exercises 140
6 The focussed information criterion 145
6.1 Estimators and notation in submodels 145
6.2 The focussed information criterion, FIC 146
6.3 Limit distributions and mean squared errors in submodels 148
6.4 A bias-modified FIC 150
6.5 Calculation of the FIC 153
6.6 Illustrations and applications 154
6.7 Exact mean squared error calculations for linear regression* 172
Contents ix
6.8 The FIC for Cox proportional hazard regression models 174
6.9 Average-FIC 179
6.10 A Bayesian focussed information criterion* 183
6.11 Notes on the literature 188
Exercises 189
7 Frequentist and Bayesian model averaging 192
7.1 Estimators-post-selection 192
7.2 Smooth AIC, smooth BIC and smooth FIC weights 193
7.3 Distribution of model average estimators 195
7.4 What goes wrong when we ignore model selection? 199
7.5 Better confidence intervals 206
7.6 Shrinkage, ridge estimation and thresholding 211
7.7 Bayesian model averaging 216
7.8 A frequentist view of Bayesian model averaging* 220
7.9 Bayesian model selection with canonical normal priors* 223
7.10 Notes on the literature 224
Exercises 225
8 Lack-of-fit and goodness-of-fit tests 227
8.1 The principle of order selection 227
8.2 Asymptotic distribution of the order selection test 229
8.3 The probability of overfitting* 232
8.4 Score-based tests 236
8.5 Two or more covariates 238
8.6 Neyman's smooth tests and generalisations 240
8.7 A comparison between AIC and the BIC for model testing* 242
8.8 Goodness-of-fit monitoring processes for regression models* 243
8.9 Notes on the literature 245
Exercises 246
9 Model selection and averaging schemes in action 248
9.1 AIC and BIC selection for Egyptian skull development data 248
9.2 Low birthweight data: FIC plots and FIC selection per stratum 252
9.3 Survival data on PBC: FIC plots and FIC selection 256
9.4 Speedskating data: averaging over covariance structure models 259
Exercises 266
10 Further topics 269
10.1 Model selection in mixed models 269
10.2 Boundary parameters 273
10.3 Finite-sample corrections* 281
Contents
10.4 Model selection with missing data 282
10.5 When p and q grow with n 284
10.6 Notes on the literature 285
Overview of data examples 287
References 293
Author index 306
Subject index 310 |
adam_txt |
Contents
Preface page xi
A guide to notation xiv
1 Model selection: data examples and introduction 1
1.1 Introduction 1
1.2 Egyptian skull development 3
1.3 Who wrote 'The Quiet Don'? 7
1.4 Survival data on primary biliary cirrhosis 10
1.5 Low birth weight data 13
1.6 Football match prediction 15
1.7 Speedskating 17
1.8 Preview of the following chapters 19
1.9 Notes on the literature 20
2 Akaike's information criterion 22
2.1 Information criteria for balancing fit with complexity 22
2.2 Maximum likelihood and the Kullback-Leibler distance 23
2.3 AIC and the Kullback-Leibler distance 28
2.4 Examples and illustrations 32
2.5 Takeuchi's model-robust information criterion 43
2.6 Corrected AIC for linear regression and autoregressive time series 44
2.7 AIC, corrected AIC and bootstrap-AIC for generalised
linear models* 46
2.8 Behaviour of AIC for moderately misspecified models* 49
2.9 Cross-validation 51
2.10 Outlier-robust methods 55
2.11 Notes on the literature 64
Exercises 66
vn
viii Contents
3 The Bayesian information criterion 70
3.1 Examples and illustrations of the BIC 70
3.2 Derivation of the BIC 78
3.3 Who wrote'The Quiet Don'? 82
3.4 The BIC and AIC for hazard regression models 85
3.5 The deviance information criterion 90
3.6 Minimum description length 94
3.7 Notes on the literature 96
Exercises 97
4 A comparison of some selection methods 99
4.1 Comparing selectors: consistency, efficiency and parsimony 99
4.2 Prototype example: choosing between two normal models 102
4.3 Strong consistency and the Hannan-Quinn criterion 106
4.4 Mallows's Cp and its outlier-robust versions 107
4.5 Efficiency of a criterion 108
4.6 Efficient order selection in an autoregressive process and the FPE 110
4.7 Efficient selection of regression variables 111
4.8 Rates of convergence* 112
4.9 Taking the best of both worlds?* 113
4.10 Notes on the literature 114
Exercises 115
5 Bigger is not always better 117
5.1 Some concrete examples 117
5.2 Large-sample framework for the problem 119
5.3 A precise tolerance limit 124
5.4 Tolerance regions around parametric models 126
5.5 Computing tolerance thresholds and radii 128
5.6 How the 5000-m time influences the 10,000-m time 130
5.7 Large-sample calculus for AIC 137
5.8 Notes on the literature 140
Exercises 140
6 The focussed information criterion 145
6.1 Estimators and notation in submodels 145
6.2 The focussed information criterion, FIC 146
6.3 Limit distributions and mean squared errors in submodels 148
6.4 A bias-modified FIC 150
6.5 Calculation of the FIC 153
6.6 Illustrations and applications 154
6.7 Exact mean squared error calculations for linear regression* 172
Contents ix
6.8 The FIC for Cox proportional hazard regression models 174
6.9 Average-FIC 179
6.10 A Bayesian focussed information criterion* 183
6.11 Notes on the literature 188
Exercises 189
7 Frequentist and Bayesian model averaging 192
7.1 Estimators-post-selection 192
7.2 Smooth AIC, smooth BIC and smooth FIC weights 193
7.3 Distribution of model average estimators 195
7.4 What goes wrong when we ignore model selection? 199
7.5 Better confidence intervals 206
7.6 Shrinkage, ridge estimation and thresholding 211
7.7 Bayesian model averaging 216
7.8 A frequentist view of Bayesian model averaging* 220
7.9 Bayesian model selection with canonical normal priors* 223
7.10 Notes on the literature 224
Exercises 225
8 Lack-of-fit and goodness-of-fit tests 227
8.1 The principle of order selection 227
8.2 Asymptotic distribution of the order selection test 229
8.3 The probability of overfitting* 232
8.4 Score-based tests 236
8.5 Two or more covariates 238
8.6 Neyman's smooth tests and generalisations 240
8.7 A comparison between AIC and the BIC for model testing* 242
8.8 Goodness-of-fit monitoring processes for regression models* 243
8.9 Notes on the literature 245
Exercises 246
9 Model selection and averaging schemes in action 248
9.1 AIC and BIC selection for Egyptian skull development data 248
9.2 Low birthweight data: FIC plots and FIC selection per stratum 252
9.3 Survival data on PBC: FIC plots and FIC selection 256
9.4 Speedskating data: averaging over covariance structure models 259
Exercises 266
10 Further topics 269
10.1 Model selection in mixed models 269
10.2 Boundary parameters 273
10.3 Finite-sample corrections* 281
Contents
10.4 Model selection with missing data 282
10.5 When p and q grow with n 284
10.6 Notes on the literature 285
Overview of data examples 287
References 293
Author index 306
Subject index 310 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Claeskens, Gerda Hjort, Nils Lid 1953- |
author_GND | (DE-588)137124562 |
author_facet | Claeskens, Gerda Hjort, Nils Lid 1953- |
author_role | aut aut |
author_sort | Claeskens, Gerda |
author_variant | g c gc n l h nl nlh |
building | Verbundindex |
bvnumber | BV035185968 |
callnumber-first | Q - Science |
callnumber-label | QA276 |
callnumber-raw | QA276.18 |
callnumber-search | QA276.18 |
callnumber-sort | QA 3276.18 |
callnumber-subject | QA - Mathematics |
classification_rvk | QH 233 SK 820 |
classification_tum | MAT 624f MAT 622f |
ctrlnum | (OCoLC)199455609 (DE-599)BVBBV035185968 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000002cb4500</leader><controlfield tag="001">BV035185968</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20151109</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">081128s2008 xxkd||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2008006507</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA859144</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521852258</subfield><subfield code="9">978-0-521-85225-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521852250</subfield><subfield code="9">0-521-85225-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)199455609</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035185968</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-824</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA276.18</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 233</subfield><subfield code="0">(DE-625)141548:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 624f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 622f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Claeskens, Gerda</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Model selection and model averaging</subfield><subfield code="c">Gerda Claeskens ; Nils Lid Hjort</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 312 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">26 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge series in statistical and probabilistic mathematics</subfield><subfield code="v">[27]</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modèles mathématiques - Recherche</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistique bayésienne</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistique mathématique - Recherche</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield><subfield code="x">Research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics</subfield><subfield code="x">Research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian statistical decision theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modellwahl</subfield><subfield code="0">(DE-588)4304786-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistisches Modell</subfield><subfield code="0">(DE-588)4121722-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bayes-Entscheidungstheorie</subfield><subfield code="0">(DE-588)4144220-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Statistisches Modell</subfield><subfield code="0">(DE-588)4121722-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Modellwahl</subfield><subfield code="0">(DE-588)4304786-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Bayes-Entscheidungstheorie</subfield><subfield code="0">(DE-588)4144220-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hjort, Nils Lid</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)137124562</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge series in statistical and probabilistic mathematics</subfield><subfield code="v">[27]</subfield><subfield code="w">(DE-604)BV011442366</subfield><subfield code="9">27</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0901/2008006507-b.html</subfield><subfield code="3">Contributor biographical information</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0901/2008006507-d.html</subfield><subfield code="3">Publisher description</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0901/2008006507-t.html</subfield><subfield code="3">Table of contents only</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016992656&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016992656</subfield></datafield></record></collection> |
id | DE-604.BV035185968 |
illustrated | Illustrated |
index_date | 2024-07-02T22:59:40Z |
indexdate | 2024-12-06T09:03:54Z |
institution | BVB |
isbn | 9780521852258 0521852250 |
language | English |
lccn | 2008006507 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016992656 |
oclc_num | 199455609 |
open_access_boolean | |
owner | DE-384 DE-91G DE-BY-TUM DE-11 DE-29 DE-19 DE-BY-UBM DE-824 |
owner_facet | DE-384 DE-91G DE-BY-TUM DE-11 DE-29 DE-19 DE-BY-UBM DE-824 |
physical | XVII, 312 S. graph. Darst. 26 cm |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Cambridge Univ. Press |
record_format | marc |
series | Cambridge series in statistical and probabilistic mathematics |
series2 | Cambridge series in statistical and probabilistic mathematics |
spelling | Claeskens, Gerda Verfasser aut Model selection and model averaging Gerda Claeskens ; Nils Lid Hjort 1. publ. Cambridge Cambridge Univ. Press 2008 XVII, 312 S. graph. Darst. 26 cm txt rdacontent n rdamedia nc rdacarrier Cambridge series in statistical and probabilistic mathematics [27] Hier auch später erschienene, unveränderte Nachdrucke Modèles mathématiques - Recherche Statistique bayésienne Statistique mathématique - Recherche Mathematisches Modell Mathematical models Research Mathematical statistics Research Bayesian statistical decision theory Modellwahl (DE-588)4304786-5 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Statistisches Modell (DE-588)4121722-6 gnd rswk-swf Bayes-Entscheidungstheorie (DE-588)4144220-9 gnd rswk-swf Statistisches Modell (DE-588)4121722-6 s Modellwahl (DE-588)4304786-5 s DE-604 Mathematisches Modell (DE-588)4114528-8 s Bayes-Entscheidungstheorie (DE-588)4144220-9 s Hjort, Nils Lid 1953- Verfasser (DE-588)137124562 aut Cambridge series in statistical and probabilistic mathematics [27] (DE-604)BV011442366 27 http://www.loc.gov/catdir/enhancements/fy0901/2008006507-b.html Contributor biographical information http://www.loc.gov/catdir/enhancements/fy0901/2008006507-d.html Publisher description http://www.loc.gov/catdir/enhancements/fy0901/2008006507-t.html Table of contents only HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016992656&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Claeskens, Gerda Hjort, Nils Lid 1953- Model selection and model averaging Cambridge series in statistical and probabilistic mathematics Modèles mathématiques - Recherche Statistique bayésienne Statistique mathématique - Recherche Mathematisches Modell Mathematical models Research Mathematical statistics Research Bayesian statistical decision theory Modellwahl (DE-588)4304786-5 gnd Mathematisches Modell (DE-588)4114528-8 gnd Statistisches Modell (DE-588)4121722-6 gnd Bayes-Entscheidungstheorie (DE-588)4144220-9 gnd |
subject_GND | (DE-588)4304786-5 (DE-588)4114528-8 (DE-588)4121722-6 (DE-588)4144220-9 |
title | Model selection and model averaging |
title_auth | Model selection and model averaging |
title_exact_search | Model selection and model averaging |
title_exact_search_txtP | Model selection and model averaging |
title_full | Model selection and model averaging Gerda Claeskens ; Nils Lid Hjort |
title_fullStr | Model selection and model averaging Gerda Claeskens ; Nils Lid Hjort |
title_full_unstemmed | Model selection and model averaging Gerda Claeskens ; Nils Lid Hjort |
title_short | Model selection and model averaging |
title_sort | model selection and model averaging |
topic | Modèles mathématiques - Recherche Statistique bayésienne Statistique mathématique - Recherche Mathematisches Modell Mathematical models Research Mathematical statistics Research Bayesian statistical decision theory Modellwahl (DE-588)4304786-5 gnd Mathematisches Modell (DE-588)4114528-8 gnd Statistisches Modell (DE-588)4121722-6 gnd Bayes-Entscheidungstheorie (DE-588)4144220-9 gnd |
topic_facet | Modèles mathématiques - Recherche Statistique bayésienne Statistique mathématique - Recherche Mathematisches Modell Mathematical models Research Mathematical statistics Research Bayesian statistical decision theory Modellwahl Statistisches Modell Bayes-Entscheidungstheorie |
url | http://www.loc.gov/catdir/enhancements/fy0901/2008006507-b.html http://www.loc.gov/catdir/enhancements/fy0901/2008006507-d.html http://www.loc.gov/catdir/enhancements/fy0901/2008006507-t.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016992656&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV011442366 |
work_keys_str_mv | AT claeskensgerda modelselectionandmodelaveraging AT hjortnilslid modelselectionandmodelaveraging |