Waves in metamaterials:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxford
Oxford University Press
2009
|
Ausgabe: | 1. publ. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | XVI, 385 S. Ill., graph. Darst. |
ISBN: | 9780199215331 9780198705017 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035183647 | ||
003 | DE-604 | ||
005 | 20160831 | ||
007 | t | ||
008 | 081127s2009 ad|| |||| 00||| eng d | ||
015 | |a GBA8A4957 |2 dnb | ||
020 | |a 9780199215331 |9 978-0-19-921533-1 | ||
020 | |a 9780198705017 |9 978-0-19-870501-7 | ||
035 | |a (OCoLC)245558989 | ||
035 | |a (DE-599)BVBBV035183647 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-29T |a DE-83 |a DE-11 |a DE-91G |a DE-898 |a DE-20 | ||
050 | 0 | |a TK7871.15.M48 | |
082 | 0 | |a 620.1/1897 |2 22 | |
084 | |a UH 3000 |0 (DE-625)145643: |2 rvk | ||
084 | |a UP 3600 |0 (DE-625)146385: |2 rvk | ||
084 | |a UQ 8000 |0 (DE-625)146584: |2 rvk | ||
084 | |a ZN 3400 |0 (DE-625)157307: |2 rvk | ||
084 | |a PHY 766f |2 stub | ||
084 | |a PHY 390f |2 stub | ||
084 | |a ELT 075f |2 stub | ||
100 | 1 | |a Solymar, Laszlo |d 1930- |e Verfasser |0 (DE-588)142249246 |4 aut | |
245 | 1 | 0 | |a Waves in metamaterials |c L. Solymar ; E. Shamonina |
250 | |a 1. publ. | ||
264 | 1 | |a Oxford |b Oxford University Press |c 2009 | |
300 | |a XVI, 385 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Hier auch später erschienene, unveränderte Nachdrucke | ||
650 | 4 | |a Metamaterials | |
650 | 4 | |a Electromagnetism | |
650 | 4 | |a Electromagnetism | |
650 | 4 | |a Metamaterials | |
650 | 0 | 7 | |a Elektromagnetische Eigenschaft |0 (DE-588)4624011-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Metamaterial |0 (DE-588)7547278-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Metamaterial |0 (DE-588)7547278-8 |D s |
689 | 0 | 1 | |a Elektromagnetische Eigenschaft |0 (DE-588)4624011-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Shamonina, E. |d 1970- |e Verfasser |0 (DE-588)121050084 |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016990363&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016990363 |
Datensatz im Suchindex
_version_ | 1804138358019981312 |
---|---|
adam_text | Contents
Basic
concepts
and basic equations
1
1.1
Introduction
1
1.2
Newton s equation and electrical conductivity
2
1.3
Maxwell s equations, fields and potentials
3
1.4
The wave equation and boundary conditions
4
1.5
Hollow metal waveguides
6
1.6
Refraction at a boundary: Snell s law
and the
Ewald
circle construction
8
1.7
Fermat
s
principle
11
1.8
The optical path and lens design
12
1.9
The effective
ε
in the presence of a current
14
1.10
Surface waves
14
1.11
Plane wave incident upon a slab
16
1.12
Dipoles
17
1.13
Poynting vector
18
1.14
Radiation resistance
18
1.15
Permittivity and permeability tensors
19
1.16
Polarizability
20
1.17
Working with tensors
21
1.18
Dispersion: forward and backward waves
21
1.19
Mutual impedance and mutual inductance
23
1.20
Kinetic inductance
24
1.21
Four-poles: impedance and chain matrices
25
1.22
Transmission line equations
26
1.23
Waves on four-poles
28
1.24
Scattering coefficients
30
1.25
Fourier transform and the transfer function
31
A bird s-eye view of metamaterials
35
2.1
Introduction
35
2.2
Natural and artificial materials
35
2.3
Determination of the effective permittivity/dielectric
constant in a natural material
40
2.4
Effective plasma frequency of a wire medium
42
2.5
Resonant elements for metamaterials
44
2.6
Loading the transmission line
45
2.6.1
By resonant magnetic elements in the form
of LC circuits
46
2.6.2
By metallic rods
48
2.6.3
By a combination of resonant magnetic
elements and metallic rods
49
2.7
Polarizability of a current-carrying resonant loop:
radiation damping
50
2.8
Effective permeability
52
2.9
Dispersion equation of magnetoinductive waves
derived in terms of
dipole
interactions
55
2.10
Backward waves and negative refraction
56
2.11
Negative-index materials
58
2.11.1
Do they exist?
58
2.11.2
Terminology
59
2.11.3
Negative-index lenses
60
2.11.4
The flat-lens family
61
2.11.5
Experimental results and numerical simulations
63
2.11.6
Derivation of material parameters
from reflection and transmission coefficients
65
2.12
The perfect lens
66
2.12.1
Does it exist?
66
2.12.2
The ideal situation,
εΓ
= —1
and
μτ
= —1 67
2.12.3
The periodic solution
69
2.12.4
The electrostatic limit: does it exist?
70
2.12.5
Far field versus near field: Veselago s lens
versus Pendry s lens
70
2.13
Circuits revisited
73
Plasmon—polaritons
75
3.1
Introduction
75
3.2
Bulk polaritons. The
Drude
model
77
3.3
Surface plasmon-polaritons. Semi-infinite case,
TM polarization
79
3.3.1
Dispersion. Surface plasmon wavelength
79
3.3.2
Effect of losses. Propagation length
83
3.3.3
Penetration depth
85
3.3.4
Field distributions in the lossless case
88
3.3.5
Poynting vector: lossless and lossy
90
3.4
Surface plasmon-polaritons on a slab: TM polarization
92
3.4.1
The dispersion equation
92
3.4.2
Field distributions
97
3.4.3
Asymmetric structures
100
3.5
Metal-dielectric-metal and periodic structures
102
3.6
One-dimensional confinement: shells and stripes
103
3.7
SPP for arbitrary
є
and
μ
106
3.7.1
SPP dispersion equation for a single interface
106
3.7.2
Domains of existence of SPPs
for a single interface
108
3.7.3
SPP at a single interface to a metamaterial:
various scenarios
110
3.7.4
SPP modes for a slab of a metamaterial
116
Small resonators
119
4.1
Introduction
П9
4.2
Early designs: a historical review
120
4.3
A roll-call of resonators
126
4.4
A mathematical model and further experimental results
144
4.4.1
Distributed circuits
144
4.4.2
Results
148
4.4.3
A note on higher resonances
152
Subwavelength imaging
155
5.1
Introduction
155
5.2
The perfect lens: controversy around the concept
157
5.2.1
Battle of wits
157
5.2.2
Non-integrable fields
158
5.2.3
High spatial frequency cutoff
158
5.3
Near-perfect lens
159
5.3.1
Introduction
159
5.3.2
Field quantities in the three regions
160
5.3.3
Effect of losses: Transfer function, cutoff,
electrostatic limit
162
5.3.4
Lossless near-perfect lens with
ετ
~
— 1,
μτ
~
— 1 168
5.3.5
Near-perfect? Near-sighted!
172
5.3.6
General cutoff frequency relationships
174
5.3.7
Effect of discretization in numerical simulations
175
5.4
Negative-permittivity lens
176
5.4.1
Introduction
176
5.4.2
Dependence on thickness
176
5.4.3
Field variation in the lens
178
5.4.4
Other configurations: compression
179
5.4.5
The electrostatic approximation revisited
180
5.4.6
Experimental results
183
5.5
Multilayer
superlens
188
5.6
Magnifying multilayer
superlens
192
5.7
Misconceptions
196
Phenomena in waveguides
199
6.1
Introduction
199
6.2
Propagation in cutoff waveguides
199
6.3
Filters in coplanar and microstrip waveguides
204
6.4
Tunnelling
206
6.5
Phase shifters
208
6.6
Waveguide couplers
209
6.7
Imaging in two dimensions: transmission-line approach
210
Magnetoinductive waves I
213
7.1
Introduction
213
7.2
Dispersion relations
214
7.3
Matching the transmission line
217
7.4
Excitation
217
7.5
Eigenvectors and eigenvalues
218
7.6
Current distributions
220
7.7
Poynting vector
224
7.8
Power in a MI wave
225
7.9
Boundary reflection and transmission
225
7.10
Tailoring the dispersion characteristics:
biperiodic lines
227
7.11
Experimental results
231
7.12
Higher-order interactions
236
7.13
Coupled one-dimensional lines
238
7.14
Rotational resonance
242
7.15
Applications
243
7.15.1
Introduction
243
7.15.2
Waveguide components
244
7.15.3
Imaging
248
7.15.4
Detection of nuclear magnetic resonance
249
Magnetoinductive waves II
251
8.1
MI waves in two dimensions
251
8.1.1
Introduction
251
8.1.2
Dispersion equation, group velocity,
power density
252
8.1.3
Reflection and refraction
254
8.1.4
Excitation by a point source:
reflection and diffraction
258
8.1.5
Spatial resonances in hexagonal lattices
259
8.1.6
Imaging
265
8.2
MI waves retarded
266
8.2.1
Introduction
266
8.2.2
Dispersion equation
268
8.2.3
The nature of the dispersion equation
269
8.2.4
A 500-element line
270
8.2.5
Conclusions
276
8.3
Non-linear effects in magnetoinductive waves
277
8.3.1
Introduction
277
8.3.2
Phase matching
278
8.3.3
Theoretical formulation of amplification
for the single array
280
8.3.4
Theoretical formulation for the coupled arrays
285
8.3.5
MRI
detector
287
Seven topics in search of a chapter
289
9.1
Introduction
289
9.2
Further imaging mechanisms
290
9.2.1
Parallel sheets consisting of resonant elements
290
9.2.2
Channelling by wire structures
291
9.2.3
Imaging by photonic crystals
295
9.3
Combinations of negative-permittivity
and negative-permeability layers
296
9.4
Indefinite media
297
9.5
Gaussian beams and the Goos-Hanchen shift
299
9.6
Waves on nanoparticles
302
9.7
Refractive index close to zero
306
9.7.1
Introduction
306
9.7.2
Wavefront
conversion
307
9.7.3
Effect of low phase variation
308
9.8
Invisibility and cloaking
309
10
A historical review
315
10.1
Introduction
315
10.2
Forerunners
317
10.2.1
Effective-medium theory
317
10.2.2
Negative permittivity
317
10.2.3
Negative permeability
318
10.2.4
Plasmon-polaritons
318
10.2.5
Backward waves
318
10.2.6
Theory of periodic structures
319
10.2.7
Resonant elements
small relative to the wavelength
319
10.2.8
Chiral materials
320
10.2.9
Faster than light
320
10.2.10
Frequency filters made of periodically
arranged resonant elements
320
10.2.11
Slow-wave structures
320
10.2.12
Waves arising from nearest-neighbour
interactions
321
10.2.13
Superdirectivity,
superresolution,
subwavelength focusing and imaging
321
10.2.14
Inverse scattering
321
10.2.15
Bianisotropy
322
10.2.16
Photonic
bandgap
materials
322
10.2.17
Waves on nanoparticles
322
10.3 ...
and the subject went on and flourished...
323
A Acronyms
325
В
Field at the centre of a cubical lattice
of identical dipoles
327
С
Derivation of material parameters from
reflection and transmission coefficients
329
D
How does surface charge appear
in the boundary conditions?
331
E
The Brewster wave
333
F
The electrostatic limit
335
F.I Single interface
335
F.2 Symmetric slab
336
G
Alternative derivation of the dispersion equation
for SPPs for a dielectric—metal—dielectric structure:
presence of a surface charge
339
H
Electric
dipole
moment induced by a magnetic field
perpendicular to the plane of the SRR
343
I Average dielectric constants of a multilayer structure
345
J
Derivation of mutual inductance between two
magnetic dipoles in the presence of retardation
347
References
349
Index
381
|
adam_txt |
Contents
Basic
concepts
and basic equations
1
1.1
Introduction
1
1.2
Newton's equation and electrical conductivity
2
1.3
Maxwell's equations, fields and potentials
3
1.4
The wave equation and boundary conditions
4
1.5
Hollow metal waveguides
6
1.6
Refraction at a boundary: Snell's law
and the
Ewald
circle construction
8
1.7
Fermat
's
principle
11
1.8
The optical path and lens design
12
1.9
The effective
ε
in the presence of a current
14
1.10
Surface waves
14
1.11
Plane wave incident upon a slab
16
1.12
Dipoles
17
1.13
Poynting vector
18
1.14
Radiation resistance
18
1.15
Permittivity and permeability tensors
19
1.16
Polarizability
20
1.17
Working with tensors
21
1.18
Dispersion: forward and backward waves
21
1.19
Mutual impedance and mutual inductance
23
1.20
Kinetic inductance
24
1.21
Four-poles: impedance and chain matrices
25
1.22
Transmission line equations
26
1.23
Waves on four-poles
28
1.24
Scattering coefficients
30
1.25
Fourier transform and the transfer function
31
A bird's-eye view of metamaterials
35
2.1
Introduction
35
2.2
Natural and artificial materials
35
2.3
Determination of the effective permittivity/dielectric
constant in a natural material
40
2.4
Effective plasma frequency of a wire medium
42
2.5
Resonant elements for metamaterials
44
2.6
Loading the transmission line
45
2.6.1
By resonant magnetic elements in the form
of LC circuits
46
2.6.2
By metallic rods
48
2.6.3
By a combination of resonant magnetic
elements and metallic rods
49
2.7
Polarizability of a current-carrying resonant loop:
radiation damping
50
2.8
Effective permeability
52
2.9
Dispersion equation of magnetoinductive waves
derived in terms of
dipole
interactions
55
2.10
Backward waves and negative refraction
56
2.11
Negative-index materials
58
2.11.1
Do they exist?
58
2.11.2
Terminology
59
2.11.3
Negative-index lenses
60
2.11.4
The flat-lens family
61
2.11.5
Experimental results and numerical simulations
63
2.11.6
Derivation of material parameters
from reflection and transmission coefficients
65
2.12
The perfect lens
66
2.12.1
Does it exist?
66
2.12.2
The ideal situation,
εΓ
= —1
and
μτ
= —1 67
2.12.3
The periodic solution
69
2.12.4
The electrostatic limit: does it exist?
70
2.12.5
Far field versus near field: Veselago's lens
versus Pendry's lens
70
2.13
Circuits revisited
73
Plasmon—polaritons
75
3.1
Introduction
75
3.2
Bulk polaritons. The
Drude
model
77
3.3
Surface plasmon-polaritons. Semi-infinite case,
TM polarization
79
3.3.1
Dispersion. Surface plasmon wavelength
79
3.3.2
Effect of losses. Propagation length
83
3.3.3
Penetration depth
85
3.3.4
Field distributions in the lossless case
88
3.3.5
Poynting vector: lossless and lossy
90
3.4
Surface plasmon-polaritons on a slab: TM polarization
92
3.4.1
The dispersion equation
92
3.4.2
Field distributions
97
3.4.3
Asymmetric structures
100
3.5
Metal-dielectric-metal and periodic structures
102
3.6
One-dimensional confinement: shells and stripes
103
3.7
SPP for arbitrary
є
and
μ
106
3.7.1
SPP dispersion equation for a single interface
106
3.7.2
Domains of existence of SPPs
for a single interface
108
3.7.3
SPP at a single interface to a metamaterial:
various scenarios
110
3.7.4
SPP modes for a slab of a metamaterial
116
Small resonators
119
4.1
Introduction
П9
4.2
Early designs: a historical review
120
4.3
A roll-call of resonators
126
4.4
A mathematical model and further experimental results
144
4.4.1
Distributed circuits
144
4.4.2
Results
148
4.4.3
A note on higher resonances
152
Subwavelength imaging
155
5.1
Introduction
155
5.2
The perfect lens: controversy around the concept
157
5.2.1
Battle of wits
157
5.2.2
Non-integrable fields
158
5.2.3
High spatial frequency cutoff
158
5.3
Near-perfect lens
159
5.3.1
Introduction
159
5.3.2
Field quantities in the three regions
160
5.3.3
Effect of losses: Transfer function, cutoff,
electrostatic limit
162
5.3.4
Lossless near-perfect lens with
ετ
~
— 1,
μτ
~
— 1 168
5.3.5
Near-perfect? Near-sighted!
172
5.3.6
General cutoff frequency relationships
174
5.3.7
Effect of discretization in numerical simulations
175
5.4
Negative-permittivity lens
176
5.4.1
Introduction
176
5.4.2
Dependence on thickness
176
5.4.3
Field variation in the lens
178
5.4.4
Other configurations: compression
179
5.4.5
The electrostatic approximation revisited
180
5.4.6
Experimental results
183
5.5
Multilayer
superlens
188
5.6
Magnifying multilayer
superlens
192
5.7
Misconceptions
196
Phenomena in waveguides
199
6.1
Introduction
199
6.2
Propagation in cutoff waveguides
199
6.3
Filters in coplanar and microstrip waveguides
204
6.4
Tunnelling
206
6.5
Phase shifters
208
6.6
Waveguide couplers
209
6.7
Imaging in two dimensions: transmission-line approach
210
Magnetoinductive waves I
213
7.1
Introduction
213
7.2
Dispersion relations
214
7.3
Matching the transmission line
217
7.4
Excitation
217
7.5
Eigenvectors and eigenvalues
218
7.6
Current distributions
220
7.7
Poynting vector
224
7.8
Power in a MI wave
225
7.9
Boundary reflection and transmission
225
7.10
Tailoring the dispersion characteristics:
biperiodic lines
227
7.11
Experimental results
231
7.12
Higher-order interactions
236
7.13
Coupled one-dimensional lines
238
7.14
Rotational resonance
242
7.15
Applications
243
7.15.1
Introduction
243
7.15.2
Waveguide components
244
7.15.3
Imaging
248
7.15.4
Detection of nuclear magnetic resonance
249
Magnetoinductive waves II
251
8.1
MI waves in two dimensions
251
8.1.1
Introduction
251
8.1.2
Dispersion equation, group velocity,
power density
252
8.1.3
Reflection and refraction
254
8.1.4
Excitation by a point source:
reflection and diffraction
258
8.1.5
Spatial resonances in hexagonal lattices
259
8.1.6
Imaging
265
8.2
MI waves retarded
266
8.2.1
Introduction
266
8.2.2
Dispersion equation
268
8.2.3
The nature of the dispersion equation
269
8.2.4
A 500-element line
270
8.2.5
Conclusions
276
8.3
Non-linear effects in magnetoinductive waves
277
8.3.1
Introduction
277
8.3.2
Phase matching
278
8.3.3
Theoretical formulation of amplification
for the single array
280
8.3.4
Theoretical formulation for the coupled arrays
285
8.3.5
MRI
detector
287
Seven topics in search of a chapter
289
9.1
Introduction
289
9.2
Further imaging mechanisms
290
9.2.1
Parallel sheets consisting of resonant elements
290
9.2.2
Channelling by wire structures
291
9.2.3
Imaging by photonic crystals
295
9.3
Combinations of negative-permittivity
and negative-permeability layers
296
9.4
Indefinite media
297
9.5
Gaussian beams and the Goos-Hanchen shift
299
9.6
Waves on nanoparticles
302
9.7
Refractive index close to zero
306
9.7.1
Introduction
306
9.7.2
Wavefront
conversion
307
9.7.3
Effect of low phase variation
308
9.8
Invisibility and cloaking
309
10
A historical review
315
10.1
Introduction
315
10.2
Forerunners
317
10.2.1
Effective-medium theory
317
10.2.2
Negative permittivity
317
10.2.3
Negative permeability
318
10.2.4
Plasmon-polaritons
318
10.2.5
Backward waves
318
10.2.6
Theory of periodic structures
319
10.2.7
Resonant elements
small relative to the wavelength
319
10.2.8
Chiral materials
320
10.2.9
Faster than light
320
10.2.10
Frequency filters made of periodically
arranged resonant elements
320
10.2.11
Slow-wave structures
320
10.2.12
Waves arising from nearest-neighbour
interactions
321
10.2.13
Superdirectivity,
superresolution,
subwavelength focusing and imaging
321
10.2.14
Inverse scattering
321
10.2.15
Bianisotropy
322
10.2.16
Photonic
bandgap
materials
322
10.2.17
Waves on nanoparticles
322
10.3 .
and the subject went on and flourished.
323
A Acronyms
325
В
Field at the centre of a cubical lattice
of identical dipoles
327
С
Derivation of material parameters from
reflection and transmission coefficients
329
D
How does surface charge appear
in the boundary conditions?
331
E
The Brewster wave
333
F
The electrostatic limit
335
F.I Single interface
335
F.2 Symmetric slab
336
G
Alternative derivation of the dispersion equation
for SPPs for a dielectric—metal—dielectric structure:
presence of a surface charge
339
H
Electric
dipole
moment induced by a magnetic field
perpendicular to the plane of the SRR
343
I Average dielectric constants of a multilayer structure
345
J
Derivation of mutual inductance between two
magnetic dipoles in the presence of retardation
347
References
349
Index
381 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Solymar, Laszlo 1930- Shamonina, E. 1970- |
author_GND | (DE-588)142249246 (DE-588)121050084 |
author_facet | Solymar, Laszlo 1930- Shamonina, E. 1970- |
author_role | aut aut |
author_sort | Solymar, Laszlo 1930- |
author_variant | l s ls e s es |
building | Verbundindex |
bvnumber | BV035183647 |
callnumber-first | T - Technology |
callnumber-label | TK7871 |
callnumber-raw | TK7871.15.M48 |
callnumber-search | TK7871.15.M48 |
callnumber-sort | TK 47871.15 M48 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
classification_rvk | UH 3000 UP 3600 UQ 8000 ZN 3400 |
classification_tum | PHY 766f PHY 390f ELT 075f |
ctrlnum | (OCoLC)245558989 (DE-599)BVBBV035183647 |
dewey-full | 620.1/1897 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1/1897 |
dewey-search | 620.1/1897 |
dewey-sort | 3620.1 41897 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Elektrotechnik Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Physik Elektrotechnik Elektrotechnik / Elektronik / Nachrichtentechnik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02050nam a2200541 c 4500</leader><controlfield tag="001">BV035183647</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160831 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081127s2009 ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA8A4957</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780199215331</subfield><subfield code="9">978-0-19-921533-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780198705017</subfield><subfield code="9">978-0-19-870501-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)245558989</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035183647</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7871.15.M48</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.1/1897</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 3000</subfield><subfield code="0">(DE-625)145643:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 3600</subfield><subfield code="0">(DE-625)146385:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 8000</subfield><subfield code="0">(DE-625)146584:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 3400</subfield><subfield code="0">(DE-625)157307:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 766f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 390f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELT 075f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Solymar, Laszlo</subfield><subfield code="d">1930-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)142249246</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Waves in metamaterials</subfield><subfield code="c">L. Solymar ; E. Shamonina</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford</subfield><subfield code="b">Oxford University Press</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 385 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metamaterials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electromagnetism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electromagnetism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metamaterials</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektromagnetische Eigenschaft</subfield><subfield code="0">(DE-588)4624011-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Metamaterial</subfield><subfield code="0">(DE-588)7547278-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Metamaterial</subfield><subfield code="0">(DE-588)7547278-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Elektromagnetische Eigenschaft</subfield><subfield code="0">(DE-588)4624011-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shamonina, E.</subfield><subfield code="d">1970-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121050084</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016990363&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016990363</subfield></datafield></record></collection> |
id | DE-604.BV035183647 |
illustrated | Illustrated |
index_date | 2024-07-02T22:58:55Z |
indexdate | 2024-07-09T21:26:55Z |
institution | BVB |
isbn | 9780199215331 9780198705017 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016990363 |
oclc_num | 245558989 |
open_access_boolean | |
owner | DE-703 DE-29T DE-83 DE-11 DE-91G DE-BY-TUM DE-898 DE-BY-UBR DE-20 |
owner_facet | DE-703 DE-29T DE-83 DE-11 DE-91G DE-BY-TUM DE-898 DE-BY-UBR DE-20 |
physical | XVI, 385 S. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Oxford University Press |
record_format | marc |
spelling | Solymar, Laszlo 1930- Verfasser (DE-588)142249246 aut Waves in metamaterials L. Solymar ; E. Shamonina 1. publ. Oxford Oxford University Press 2009 XVI, 385 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Hier auch später erschienene, unveränderte Nachdrucke Metamaterials Electromagnetism Elektromagnetische Eigenschaft (DE-588)4624011-1 gnd rswk-swf Metamaterial (DE-588)7547278-8 gnd rswk-swf Metamaterial (DE-588)7547278-8 s Elektromagnetische Eigenschaft (DE-588)4624011-1 s DE-604 Shamonina, E. 1970- Verfasser (DE-588)121050084 aut Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016990363&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Solymar, Laszlo 1930- Shamonina, E. 1970- Waves in metamaterials Metamaterials Electromagnetism Elektromagnetische Eigenschaft (DE-588)4624011-1 gnd Metamaterial (DE-588)7547278-8 gnd |
subject_GND | (DE-588)4624011-1 (DE-588)7547278-8 |
title | Waves in metamaterials |
title_auth | Waves in metamaterials |
title_exact_search | Waves in metamaterials |
title_exact_search_txtP | Waves in metamaterials |
title_full | Waves in metamaterials L. Solymar ; E. Shamonina |
title_fullStr | Waves in metamaterials L. Solymar ; E. Shamonina |
title_full_unstemmed | Waves in metamaterials L. Solymar ; E. Shamonina |
title_short | Waves in metamaterials |
title_sort | waves in metamaterials |
topic | Metamaterials Electromagnetism Elektromagnetische Eigenschaft (DE-588)4624011-1 gnd Metamaterial (DE-588)7547278-8 gnd |
topic_facet | Metamaterials Electromagnetism Elektromagnetische Eigenschaft Metamaterial |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016990363&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT solymarlaszlo wavesinmetamaterials AT shamoninae wavesinmetamaterials |