Introduction to engineering mechanics: a continuum approach
"The essence of continuum mechanics is often obscured by the complex mathematics of its formulation. By building gradually from one-dimensional to two- and three-dimensional formulations, this book provides an accessible introduction to the fundamentals of solid and fluid mechanics." "...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton
CRC Press
2009
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | "The essence of continuum mechanics is often obscured by the complex mathematics of its formulation. By building gradually from one-dimensional to two- and three-dimensional formulations, this book provides an accessible introduction to the fundamentals of solid and fluid mechanics." "Introduction to Engineering Mechanics demonstrates the concepts of stress and strain in the continuum context, showing the relationships between solid and fluid behavior and the mathematics that describe them. The continuum approach underlies an integrated introduction to the mechanics of engineering materials that includes complex behavior such as nonlinearity and viscoelasticity. Detailed case studies describe real-world applications and such catastrophic failures as the collapse of the St. Francis Dam and the Hartford Civic Center. The authors demonstrate the development of the mechanics field by interweaving historical context, such as the longstanding feud between Sirs Isaac Newton and Robert Hooke, throughout the text's chapters." "Through its progressive development of ideas, this book facilitates the development of both physical intuition for how solids and fluids behave and the mathematical techniques needed to describe their behaviors."--BOOK JACKET. |
Beschreibung: | XVI, 472 S. graph. Darst. |
ISBN: | 9781420062717 1420062719 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV035175370 | ||
003 | DE-604 | ||
005 | 20090123 | ||
007 | t | ||
008 | 081124s2009 xxud||| |||| 00||| eng d | ||
020 | |a 9781420062717 |9 978-1-4200-6271-7 | ||
020 | |a 1420062719 |9 1-4200-6271-9 | ||
035 | |a (OCoLC)154683824 | ||
035 | |a (DE-599)BVBBV035175370 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-M347 |a DE-703 | ||
050 | 0 | |a TA350 | |
082 | 0 | |a 620.1 |2 22 | |
084 | |a UF 1500 |0 (DE-625)145560: |2 rvk | ||
100 | 1 | |a Rossmann, Jenn Stroud |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to engineering mechanics |b a continuum approach |c Jenn Stroud Rossmann ; Clive L. Dym |
264 | 1 | |a Boca Raton |b CRC Press |c 2009 | |
300 | |a XVI, 472 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | 1 | |a "The essence of continuum mechanics is often obscured by the complex mathematics of its formulation. By building gradually from one-dimensional to two- and three-dimensional formulations, this book provides an accessible introduction to the fundamentals of solid and fluid mechanics." "Introduction to Engineering Mechanics demonstrates the concepts of stress and strain in the continuum context, showing the relationships between solid and fluid behavior and the mathematics that describe them. The continuum approach underlies an integrated introduction to the mechanics of engineering materials that includes complex behavior such as nonlinearity and viscoelasticity. Detailed case studies describe real-world applications and such catastrophic failures as the collapse of the St. Francis Dam and the Hartford Civic Center. The authors demonstrate the development of the mechanics field by interweaving historical context, such as the longstanding feud between Sirs Isaac Newton and Robert Hooke, throughout the text's chapters." "Through its progressive development of ideas, this book facilitates the development of both physical intuition for how solids and fluids behave and the mathematical techniques needed to describe their behaviors."--BOOK JACKET. | |
650 | 4 | |a Mechanics, Applied | |
650 | 0 | 7 | |a Technische Mechanik |0 (DE-588)4059231-5 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Technische Mechanik |0 (DE-588)4059231-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Dym, Clive L. |e Verfasser |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016982228&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016982228 |
Datensatz im Suchindex
_version_ | 1804138345603792896 |
---|---|
adam_text | Contents
Preface
.........................................................................................................xv
About the Authors
...................................................................................xvii
1
Introduction
.........................................................................................1
1.1
A Motivating Example: Remodeling an Underwater Structure
....2
1.2
Newton s Laws: The First Principles of Mechanics
.........................4
1.3
Equilibrium
...........................................................................................5
1.4
Definition of a Continuum
..................................................................6
1.5
Mathematical Basics: Scalars and Vectors
.........................................9
1.6
Problem Solving
..................................................................................12
1.7
Examples
..............................................................................................13
Example
1.1..........................................................................................13
Solution
.....................................................................................13
Example
1.2..........................................................................................15
Solution
.....................................................................................16
1.8
Problems
..............................................................................................17
Notes
.............................................................................................................18
2
Strain and Stress in One Dimension
.............................................19
2.1
Kinematics: Strain
...............................................................................20
2.1.1
Normal Strain
..........................................................................20
2.1.2
Shear Strain
..............................................................................23
2.1.3
Measurement of Strain
...........................................................24
2.2
The Method of Sections and Stress
..................................................25
2.2.1
Normal Stresses
......................................................................27
2.2.2
Shear Stresses
..........................................................................28
2.3
Stress-Strain Relationships
...............................................................32
2.4
Equilibrium
.........................................................................................36
2.5
Stress in Axially Loaded Bars
...........................................................37
2.6
Deformation of Axially Loaded Bars
...............................................40
2.7
Equilibrium of an Axially Loaded Bar
............................................42
2.8
Indeterminate Bars
.............................................................................43
2.8.1
Force (Flexibility) Method
.....................................................44
2.8.2
Displacement (Stiffness) Method
..........................................46
2.9
Thermal Effects
...................................................................................48
2.10
Saint-Venant s Principle and Stress Concentrations
......................49
2.11
Strain Energy in One Dimension
.....................................................51
2.12
A Road Map for Strength of Materials
............................................53
2.13
Examples
..............................................................................................55
Example
2.1..........................................................................................55
Solution
.....................................................................................55
vi
Introduction to Engineering Mechanics: A Continuum Approach
Example
2.2..........................................................................................56
Solution
.....................................................................................57
Example
2.3..........................................................................................57
Solution
.....................................................................................58
Example
2.4..........................................................................................59
Solution
.....................................................................................59
Example
2.5..........................................................................................60
Solution
.....................................................................................61
Example
2.6..........................................................................................62
Solution
.....................................................................................62
Example
2.7..........................................................................................64
Solution
.....................................................................................65
Example
2.8..........................................................................................66
Solution
.....................................................................................66
Example
2.9..........................................................................................67
Solution
.....................................................................................68
2.14
Problems
..............................................................................................69
Case Study
1:
Collapse of the Kansas City Hyatt Regency
Walkways
.............................................................................................76
Problems
..............................................................................................82
Notes
.............................................................................................................82
3
Strain and Stress in Higher Dimensions
......................................85
3.1
Poisson s Ratio
.....................................................................................85
3.2
The Strain Tensor
................................................................................87
3.3
Strain as Relative Displacement
.......................................................90
3.4
The Stress Tensor
................................................................................92
3.5
Generalized Hooke s Law
..................................................................96
3.6
Limiting Behavior
...............................................................................97
3.7
Properties of Engineering Materials
..............................................101
Ferrous Metals
...................................................................................103
Nonferrous Metals
............................................................................103
Nonmetals
..........................................................................................104
3.8
Equilibrium
.......................................................................................104
3.8.1
Equilibrium Equations
.........................................................105
3.8.2
The Two-Dimensional State of Plane Stress
......................107
3.8.3
The Two-Dimensional State of Plane Strain
.....................108
3.9
Formulating Two-Dimensional Elasticity Problems
...................109
3.9.1
Equilibrium Expressed in Terms of Displacements
.........110
3.9.2
Compatibility Expressed in Terms of Stress Functions
...
Ill
3.9.3
Some Remaining Pieces of the Puzzle of General
Formulations
.....................................................................................112
3.10
Examples
............................................................................................114
Example
3.1........................................................................................114
Solution
...................................................................................115
Example
3.2........................................................................................116
Contents
vii
Solution
...................................................................................116
3.11 Problems.............................................................................................116
Notes
...........................................................................................................121
4
Applying Strain and Stress in Multiple Dimensions
................123
4.1
Torsion
................................................................................................123
4.1.1
Method of Sections
................................................................123
4.1.2
Torsionai
Shear Stress: Angle of Twist and the
Torsion Formula
................................................................................125
4.1.3
Stress Concentrations
...........................................................130
4.1.4
Transmission of Power by a Shaft
.......................................131
4.1.5
Statically Indeterminate Problems
.....................................132
4.1.6
Torsion of Inelastic Circular Members
...............................133
4.1.7
Torsion of Solid Noncircular Members
..............................135
4.1.8
Torsion of Thin-Walled Tubes
.............................................138
4.2
Pressure Vessels
................................................................................141
4.3
Transformation of Stress and Strain
..............................................145
4.3.1
Transformation of Plane Stress
...........................................146
4.3.2
Principal and Maximum Stresses
.......................................149
4.3.3
Mohr s Circle for Plane Stress
.............................................151
4.3.4
Transformation of Plane Strain
...........................................154
4.3.5
Three-Dimensional State of Stress
.....................................156
4.4
Failure Prediction Criteria
...............................................................157
4.4.1
Failure Criteria for Brittle Materials
...................................158
4.4.1.1
Maximum Normal Stress Criterion
.....................158
4.4.1.2
Mohr s Criterion
......................................................159
4.4.2
Yield Criteria for Ductile Materials
....................................161
4.4.2.1
Maximum Shearing Stress
(Tresca)
Criterion
.... 161
4.4.2.2 Von
Mises
Criterion
...............................................162
4.5
Examples
............................................................................................162
Example
4.1........................................................................................162
Solution
...................................................................................163
Example
4.2........................................................................................163
Solution
...................................................................................163
Example
4.3........................................................................................165
Solution
...................................................................................165
Example
4.4........................................................................................165
Solution
...................................................................................165
Example
4.5........................................................................................166
Solution
...................................................................................166
Example
4.6........................................................................................168
Solution
...................................................................................168
Example
4.7........................................................................................170
Solution
...................................................................................170
Example
4.8........................................................................................171
Solution
...................................................................................171
viii
Introduction
to Engineering Mechanics: A Continuum Approach
Example
4.9........................................................................................172
Solution
...................................................................................172
Example
4.10......................................................................................177
Solution
...................................................................................177
Example
4.11......................................................................................180
Solution
...................................................................................180
4.6
Problems
............................................................................................183
Case Study
2:
Pressure Vessel Safety
.....................................................188
Why Are Pressure Vessels Spheres and Cylinders?
....................189
Why Do Pressure Vessels Fail?
.......................................................194
Problems
............................................................................................197
Notes
...........................................................................................................200
5
Beams
...............................................................................................201
5.1
Calculation of Reactions
..................................................................201
5.2
Method of Sections: Axial Force, Shear, Bending Moment
........202
Axial Force in Beams
........................................................................203
Shear in Beams
..................................................................................203
Bending Moment in Beams
.............................................................205
5.3
Shear and Bending Moment Diagrams
.........................................206
Rules and Regulations for Shear and Bending Moment
Diagrams
............................................................................................206
Shear Diagrams
.....................................................................206
Moment Diagrams
................................................................207
5.4
Integration Methods for Shear and Bending Moment
................207
5.5
Normal Stresses in Beams
...............................................................210
5.6
Shear Stresses in Beams
...................................................................214
5.7
Examples
............................................................................................221
Example
5.1........................................................................................221
Solution
...................................................................................221
Example
5.2........................................................................................223
Solution
...................................................................................224
Example
5.3........................................................................................229
Solution
...................................................................................230
Example
5.4........................................................................................231
Solution
...................................................................................232
Example
5.5........................................................................................234
Solution
...................................................................................235
Example
5.6........................................................................................236
Solution
...................................................................................237
5.8
Problems
............................................................................................239
Case Study
3:
Physiological Levers and Repairs
..................................241
The Forearm Is Connected to the Elbow Joint
..............................241
Fixing an Intertrochanteric Fracture
.............................................245
Problems
............................................................................................247
Notes
...........................................................................................................248
Contents ix
6
Beam Deflections
............................................................................251
6.1
Governing Equation
.........................................................................251
6.2
Boundary Conditions
.......................................................................255
6.3
Solution of Deflection Equation by Integration
............................256
6.4
Singularity Functions
......................................................................259
6.5
Moment Area Method
......................................................................260
6.6
Beams with Elastic Supports
...........................................................264
6.7
Strain Energy for Bent Beams
.........................................................266
6.8
Flexibility Revisited and Maxwell-Betti Reciprocal Theorem
... 269
6.9
Examples
............................................................................................273
Example
6.1........................................................................................273
Solution
...................................................................................273
Example
6.2........................................................................................275
Solution
...................................................................................275
Example
6.3........................................................................................278
Solution
...................................................................................278
Example
6.4........................................................................................281
Solution
...................................................................................282
6.10
Problems
............................................................................................285
Notes
...........................................................................................................288
7
Instability: Column Buckling
......................................................289
7.1
Euler s Formula
.................................................................................289
7.2
Effect of Eccentricity
.........................................................................294
7.3
Examples
............................................................................................298
Example
7.1........................................................................................298
Solution
...................................................................................298
Example
7.2........................................................................................300
Solution
...................................................................................301
7.4
Problems
............................................................................................303
Case Study
4:
Hartford Civic Arena
......................................................304
Notes
...........................................................................................................307
8
Connecting Solid and Fluid Mechanics
......................................309
8.1
Pressure
..............................................................................................310
8.2
Viscosity
.............................................................................................311
8.3
Surface Tension
.................................................................................315
8.4
Governing Laws
................................................................................315
8.5
Motion and Deformation of Fluids
................................................316
8.5.1
Linear Motion and Deformation
.........................................316
8.5.2
Angular Motion and Deformation
.....................................317
8.5.3
Vorticity
...................................................................................319
8.5.4
Constitutive Equation (Generalized Hooke s Law)
for Newtonian Fluids
............................................................321
8.6
Examples
............................................................................................322
Example
8.1........................................................................................322
χ
Introduction to Engineering Mechanics: A Continuum Approach
Solution
...................................................................................323
Example
8.2........................................................................................324
Solution
...................................................................................324
Example
8.3........................................................................................325
Solution
...................................................................................326
Example
8.4........................................................................................327
Solution
...................................................................................327
8.7
Problems
............................................................................................328
Case Study
5:
Mechanics of
Biomaterials
..............................................330
Nonlinearity
......................................................................................332
Composite Materials
........................................................................333
Viscoelasticity
....................................................................................336
Problems
............................................................................................338
Notes
...........................................................................................................339
9
Fluid Statics
.....................................................................................341
9.1
Local Pressure
...................................................................................341
9.2
Force Due to Pressure
......................................................................342
9.3
Fluids at Rest
.....................................................................................345
9.4
Forces on Submerged Surfaces
.......................................................348
9.5
Buoyancy
............................................................................................355
9.6
Examples
............................................................................................357
Example
9.1........................................................................................357
Solution
...................................................................................357
Example^
........................................................................................358
Solution
...................................................................................359
Example
9.3........................................................................................360
Solution
...................................................................................361
Example
9.4........................................................................................363
Solution
...................................................................................364
Example
9.5........................................................................................365
Solution
...................................................................................366
9.7
Problems
............................................................................................368
Case Study
6:
St. Francis Dam
................................................................373
Problems
............................................................................................375
Notes
...........................................................................................................376
10
Fluid Dynamics: Governing Equations
......................................377
10.1
Description of Fluid Motion
.........................................................377
10.2
Equations of Fluid Motion
............................................................379
10.3
Integral Equations of Motion
.......................................................379
10.3.1
Mass Conservation
...........................................................380
10.3.2
F
=
ma, or Momentum Conservation
.............................382
10.3.3
Reynolds Transport Theorem
.........................................385
10.4
Differential Equations of Motion
.................................................386
10.4.1
Continuity, or Mass Conservation
.................................386
Contents xi
10.4.2
F
-
ma,
,
or Momentum Conservation
.............................388
10.5
Bernoulli Equation
...........................................................................391
10.6
Examples
............................................................................................392
Example
10.1......................................................................................392
Solution
...................................................................................393
Example
10.2......................................................................................394
Solution
...................................................................................395
Example
10.3......................................................................................396
Solution
...................................................................................397
Example
10.4......................................................................................398
Solution
...................................................................................399
Example
10.5......................................................................................402
Solution
...................................................................................402
Example
10.6......................................................................................404
Solution
...................................................................................405
10.7
Problems
............................................................................................406
Notes
...........................................................................................................408
11
Fluid Dynamics: Applications
.....................................................411
11.1
How Do We Classify Fluid Flows?
..............................................411
11.2
What s Going on Inside Pipes?
.....................................................413
11.3
Why Can an Airplane Fly?
...........................................................417
11.4
Why Does a Curveball Curve?
.....................................................419
11.5
Problems
..........................................................................................423
Notes
...........................................................................................................426
12
Solid Dynamics: Governing Equations
......................................427
12.1
Continuity, or Mass Conservation
...............................................427
12.2
F
=
ma, or Momentum Conservation
..........................................429
12.3
Constitutive Laws: Elasticity
........................................................431
Note
.............................................................................................................433
References
................................................................................................435
Appendix A: Second Moments of Area
................................................439
Appendix B: A Quick Look at the Del Operator
.................................443
Divergence
.................................................................................................444
Physical Interpretation of the Divergence
.....................................444
Example
..............................................................................................445
Curl
.............................................................................................................445
Physical Interpretation of the Curl
.................................................445
Examples
............................................................................................446
Example
1...............................................................................446
Example
2...............................................................................446
Laplacian
....................................................................................................447
xii
Introduction
to
Engineering
Mechanics: A Continuum Approach
Appendix
С:
Property Tables
.................................................................449
Appendix D: All the Equations
.............................................................455
Index
..........................................................................................................457
|
adam_txt |
Contents
Preface
.xv
About the Authors
.xvii
1
Introduction
.1
1.1
A Motivating Example: Remodeling an Underwater Structure
.2
1.2
Newton's Laws: The First Principles of Mechanics
.4
1.3
Equilibrium
.5
1.4
Definition of a Continuum
.6
1.5
Mathematical Basics: Scalars and Vectors
.9
1.6
Problem Solving
.12
1.7
Examples
.13
Example
1.1.13
Solution
.13
Example
1.2.15
Solution
.16
1.8
Problems
.17
Notes
.18
2
Strain and Stress in One Dimension
.19
2.1
Kinematics: Strain
.20
2.1.1
Normal Strain
.20
2.1.2
Shear Strain
.23
2.1.3
Measurement of Strain
.24
2.2
The Method of Sections and Stress
.25
2.2.1
Normal Stresses
.27
2.2.2
Shear Stresses
.28
2.3
Stress-Strain Relationships
.32
2.4
Equilibrium
.36
2.5
Stress in Axially Loaded Bars
.37
2.6
Deformation of Axially Loaded Bars
.40
2.7
Equilibrium of an Axially Loaded Bar
.42
2.8
Indeterminate Bars
.43
2.8.1
Force (Flexibility) Method
.44
2.8.2
Displacement (Stiffness) Method
.46
2.9
Thermal Effects
.48
2.10
Saint-Venant's Principle and Stress Concentrations
.49
2.11
Strain Energy in One Dimension
.51
2.12
A Road Map for Strength of Materials
.53
2.13
Examples
.55
Example
2.1.55
Solution
.55
vi
Introduction to Engineering Mechanics: A Continuum Approach
Example
2.2.56
Solution
.57
Example
2.3.57
Solution
.58
Example
2.4.59
Solution
.59
Example
2.5.60
Solution
.61
Example
2.6.62
Solution
.62
Example
2.7.64
Solution
.65
Example
2.8.66
Solution
.66
Example
2.9.67
Solution
.68
2.14
Problems
.69
Case Study
1:
Collapse of the Kansas City Hyatt Regency
Walkways
.76
Problems
.82
Notes
.82
3
Strain and Stress in Higher Dimensions
.85
3.1
Poisson's Ratio
.85
3.2
The Strain Tensor
.87
3.3
Strain as Relative Displacement
.90
3.4
The Stress Tensor
.92
3.5
Generalized Hooke's Law
.96
3.6
Limiting Behavior
.97
3.7
Properties of Engineering Materials
.101
Ferrous Metals
.103
Nonferrous Metals
.103
Nonmetals
.104
3.8
Equilibrium
.104
3.8.1
Equilibrium Equations
.105
3.8.2
The Two-Dimensional State of Plane Stress
.107
3.8.3
The Two-Dimensional State of Plane Strain
.108
3.9
Formulating Two-Dimensional Elasticity Problems
.109
3.9.1
Equilibrium Expressed in Terms of Displacements
.110
3.9.2
Compatibility Expressed in Terms of Stress Functions
.
Ill
3.9.3
Some Remaining Pieces of the Puzzle of General
Formulations
.112
3.10
Examples
.114
Example
3.1.114
Solution
.115
Example
3.2.116
Contents
vii
Solution
.116
3.11 Problems.116
Notes
.121
4
Applying Strain and Stress in Multiple Dimensions
.123
4.1
Torsion
.123
4.1.1
Method of Sections
.123
4.1.2
Torsionai
Shear Stress: Angle of Twist and the
Torsion Formula
.125
4.1.3
Stress Concentrations
.130
4.1.4
Transmission of Power by a Shaft
.131
4.1.5
Statically Indeterminate Problems
.132
4.1.6
Torsion of Inelastic Circular Members
.133
4.1.7
Torsion of Solid Noncircular Members
.135
4.1.8
Torsion of Thin-Walled Tubes
.138
4.2
Pressure Vessels
.141
4.3
Transformation of Stress and Strain
.145
4.3.1
Transformation of Plane Stress
.146
4.3.2
Principal and Maximum Stresses
.149
4.3.3
Mohr's Circle for Plane Stress
.151
4.3.4
Transformation of Plane Strain
.154
4.3.5
Three-Dimensional State of Stress
.156
4.4
Failure Prediction Criteria
.157
4.4.1
Failure Criteria for Brittle Materials
.158
4.4.1.1
Maximum Normal Stress Criterion
.158
4.4.1.2
Mohr's Criterion
.159
4.4.2
Yield Criteria for Ductile Materials
.161
4.4.2.1
Maximum Shearing Stress
(Tresca)
Criterion
. 161
4.4.2.2 Von
Mises
Criterion
.162
4.5
Examples
.162
Example
4.1.162
Solution
.163
Example
4.2.163
Solution
.163
Example
4.3.165
Solution
.165
Example
4.4.165
Solution
.165
Example
4.5.166
Solution
.166
Example
4.6.168
Solution
.168
Example
4.7.170
Solution
.170
Example
4.8.171
Solution
.171
viii
Introduction
to Engineering Mechanics: A Continuum Approach
Example
4.9.172
Solution
.172
Example
4.10.177
Solution
.177
Example
4.11.180
Solution
.180
4.6
Problems
.183
Case Study
2:
Pressure Vessel Safety
.188
Why Are Pressure Vessels Spheres and Cylinders?
.189
Why Do Pressure Vessels Fail?
.194
Problems
.197
Notes
.200
5
Beams
.201
5.1
Calculation of Reactions
.201
5.2
Method of Sections: Axial Force, Shear, Bending Moment
.202
Axial Force in Beams
.203
Shear in Beams
.203
Bending Moment in Beams
.205
5.3
Shear and Bending Moment Diagrams
.206
Rules and Regulations for Shear and Bending Moment
Diagrams
.206
Shear Diagrams
.206
Moment Diagrams
.207
5.4
Integration Methods for Shear and Bending Moment
.207
5.5
Normal Stresses in Beams
.210
5.6
Shear Stresses in Beams
.214
5.7
Examples
.221
Example
5.1.221
Solution
.221
Example
5.2.223
Solution
.224
Example
5.3.229
Solution
.230
Example
5.4.231
Solution
.232
Example
5.5.234
Solution
.235
Example
5.6.236
Solution
.237
5.8
Problems
.239
Case Study
3:
Physiological Levers and Repairs
.241
The Forearm Is Connected to the Elbow Joint
.241
Fixing an Intertrochanteric Fracture
.245
Problems
.247
Notes
.248
Contents ix
6
Beam Deflections
.251
6.1
Governing Equation
.251
6.2
Boundary Conditions
.255
6.3
Solution of Deflection Equation by Integration
.256
6.4
Singularity Functions
.259
6.5
Moment Area Method
.260
6.6
Beams with Elastic Supports
.264
6.7
Strain Energy for Bent Beams
.266
6.8
Flexibility Revisited and Maxwell-Betti Reciprocal Theorem
. 269
6.9
Examples
.273
Example
6.1.273
Solution
.273
Example
6.2.275
Solution
.275
Example
6.3.278
Solution
.278
Example
6.4.281
Solution
.282
6.10
Problems
.285
Notes
.288
7
Instability: Column Buckling
.289
7.1
Euler's Formula
.289
7.2
Effect of Eccentricity
.294
7.3
Examples
.298
Example
7.1.298
Solution
.298
Example
7.2.300
Solution
.301
7.4
Problems
.303
Case Study
4:
Hartford Civic Arena
.304
Notes
.307
8
Connecting Solid and Fluid Mechanics
.309
8.1
Pressure
.310
8.2
Viscosity
.311
8.3
Surface Tension
.315
8.4
Governing Laws
.315
8.5
Motion and Deformation of Fluids
.316
8.5.1
Linear Motion and Deformation
.316
8.5.2
Angular Motion and Deformation
.317
8.5.3
Vorticity
.319
8.5.4
Constitutive Equation (Generalized Hooke's Law)
for Newtonian Fluids
.321
8.6
Examples
.322
Example
8.1.322
χ
Introduction to Engineering Mechanics: A Continuum Approach
Solution
.323
Example
8.2.324
Solution
.324
Example
8.3.325
Solution
.326
Example
8.4.327
Solution
.327
8.7
Problems
.328
Case Study
5:
Mechanics of
Biomaterials
.330
Nonlinearity
.332
Composite Materials
.333
Viscoelasticity
.336
Problems
.338
Notes
.339
9
Fluid Statics
.341
9.1
Local Pressure
.341
9.2
Force Due to Pressure
.342
9.3
Fluids at Rest
.345
9.4
Forces on Submerged Surfaces
.348
9.5
Buoyancy
.355
9.6
Examples
.357
Example
9.1.357
Solution
.357
Example^
.358
Solution
.359
Example
9.3.360
Solution
.361
Example
9.4.363
Solution
.364
Example
9.5.365
Solution
.366
9.7
Problems
.368
Case Study
6:
St. Francis Dam
.373
Problems
.375
Notes
.376
10
Fluid Dynamics: Governing Equations
.377
10.1
Description of Fluid Motion
.377
10.2
Equations of Fluid Motion
.379
10.3
Integral Equations of Motion
.379
10.3.1
Mass Conservation
.380
10.3.2
F
=
ma, or Momentum Conservation
.382
10.3.3
Reynolds Transport Theorem
.385
10.4
Differential Equations of Motion
.386
10.4.1
Continuity, or Mass Conservation
.386
Contents xi
10.4.2
F
-
ma,
,
or Momentum Conservation
.388
10.5
Bernoulli Equation
.391
10.6
Examples
.392
Example
10.1.392
Solution
.393
Example
10.2.394
Solution
.395
Example
10.3.396
Solution
.397
Example
10.4.398
Solution
.399
Example
10.5.402
Solution
.402
Example
10.6.404
Solution
.405
10.7
Problems
.406
Notes
.408
11
Fluid Dynamics: Applications
.411
11.1
How Do We Classify Fluid Flows?
.411
11.2
What's Going on Inside Pipes?
.413
11.3
Why Can an Airplane Fly?
.417
11.4
Why Does a Curveball Curve?
.419
11.5
Problems
.423
Notes
.426
12
Solid Dynamics: Governing Equations
.427
12.1
Continuity, or Mass Conservation
.427
12.2
F
=
ma, or Momentum Conservation
.429
12.3
Constitutive Laws: Elasticity
.431
Note
.433
References
.435
Appendix A: Second Moments of Area
.439
Appendix B: A Quick Look at the Del Operator
.443
Divergence
.444
Physical Interpretation of the Divergence
.444
Example
.445
Curl
.445
Physical Interpretation of the Curl
.445
Examples
.446
Example
1.446
Example
2.446
Laplacian
.447
xii
Introduction
to
Engineering
Mechanics: A Continuum Approach
Appendix
С:
Property Tables
.449
Appendix D: All the Equations
.455
Index
.457 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Rossmann, Jenn Stroud Dym, Clive L. |
author_facet | Rossmann, Jenn Stroud Dym, Clive L. |
author_role | aut aut |
author_sort | Rossmann, Jenn Stroud |
author_variant | j s r js jsr c l d cl cld |
building | Verbundindex |
bvnumber | BV035175370 |
callnumber-first | T - Technology |
callnumber-label | TA350 |
callnumber-raw | TA350 |
callnumber-search | TA350 |
callnumber-sort | TA 3350 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | UF 1500 |
ctrlnum | (OCoLC)154683824 (DE-599)BVBBV035175370 |
dewey-full | 620.1 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1 |
dewey-search | 620.1 |
dewey-sort | 3620.1 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik |
discipline_str_mv | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02753nam a2200409zc 4500</leader><controlfield tag="001">BV035175370</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090123 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081124s2009 xxud||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781420062717</subfield><subfield code="9">978-1-4200-6271-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1420062719</subfield><subfield code="9">1-4200-6271-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)154683824</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035175370</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-M347</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA350</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.1</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 1500</subfield><subfield code="0">(DE-625)145560:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rossmann, Jenn Stroud</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to engineering mechanics</subfield><subfield code="b">a continuum approach</subfield><subfield code="c">Jenn Stroud Rossmann ; Clive L. Dym</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 472 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">"The essence of continuum mechanics is often obscured by the complex mathematics of its formulation. By building gradually from one-dimensional to two- and three-dimensional formulations, this book provides an accessible introduction to the fundamentals of solid and fluid mechanics." "Introduction to Engineering Mechanics demonstrates the concepts of stress and strain in the continuum context, showing the relationships between solid and fluid behavior and the mathematics that describe them. The continuum approach underlies an integrated introduction to the mechanics of engineering materials that includes complex behavior such as nonlinearity and viscoelasticity. Detailed case studies describe real-world applications and such catastrophic failures as the collapse of the St. Francis Dam and the Hartford Civic Center. The authors demonstrate the development of the mechanics field by interweaving historical context, such as the longstanding feud between Sirs Isaac Newton and Robert Hooke, throughout the text's chapters." "Through its progressive development of ideas, this book facilitates the development of both physical intuition for how solids and fluids behave and the mathematical techniques needed to describe their behaviors."--BOOK JACKET.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics, Applied</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Technische Mechanik</subfield><subfield code="0">(DE-588)4059231-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Technische Mechanik</subfield><subfield code="0">(DE-588)4059231-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dym, Clive L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016982228&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016982228</subfield></datafield></record></collection> |
genre | (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV035175370 |
illustrated | Illustrated |
index_date | 2024-07-02T22:55:52Z |
indexdate | 2024-07-09T21:26:43Z |
institution | BVB |
isbn | 9781420062717 1420062719 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016982228 |
oclc_num | 154683824 |
open_access_boolean | |
owner | DE-M347 DE-703 |
owner_facet | DE-M347 DE-703 |
physical | XVI, 472 S. graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | CRC Press |
record_format | marc |
spelling | Rossmann, Jenn Stroud Verfasser aut Introduction to engineering mechanics a continuum approach Jenn Stroud Rossmann ; Clive L. Dym Boca Raton CRC Press 2009 XVI, 472 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier "The essence of continuum mechanics is often obscured by the complex mathematics of its formulation. By building gradually from one-dimensional to two- and three-dimensional formulations, this book provides an accessible introduction to the fundamentals of solid and fluid mechanics." "Introduction to Engineering Mechanics demonstrates the concepts of stress and strain in the continuum context, showing the relationships between solid and fluid behavior and the mathematics that describe them. The continuum approach underlies an integrated introduction to the mechanics of engineering materials that includes complex behavior such as nonlinearity and viscoelasticity. Detailed case studies describe real-world applications and such catastrophic failures as the collapse of the St. Francis Dam and the Hartford Civic Center. The authors demonstrate the development of the mechanics field by interweaving historical context, such as the longstanding feud between Sirs Isaac Newton and Robert Hooke, throughout the text's chapters." "Through its progressive development of ideas, this book facilitates the development of both physical intuition for how solids and fluids behave and the mathematical techniques needed to describe their behaviors."--BOOK JACKET. Mechanics, Applied Technische Mechanik (DE-588)4059231-5 gnd rswk-swf (DE-588)4151278-9 Einführung gnd-content Technische Mechanik (DE-588)4059231-5 s DE-604 Dym, Clive L. Verfasser aut Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016982228&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Rossmann, Jenn Stroud Dym, Clive L. Introduction to engineering mechanics a continuum approach Mechanics, Applied Technische Mechanik (DE-588)4059231-5 gnd |
subject_GND | (DE-588)4059231-5 (DE-588)4151278-9 |
title | Introduction to engineering mechanics a continuum approach |
title_auth | Introduction to engineering mechanics a continuum approach |
title_exact_search | Introduction to engineering mechanics a continuum approach |
title_exact_search_txtP | Introduction to engineering mechanics a continuum approach |
title_full | Introduction to engineering mechanics a continuum approach Jenn Stroud Rossmann ; Clive L. Dym |
title_fullStr | Introduction to engineering mechanics a continuum approach Jenn Stroud Rossmann ; Clive L. Dym |
title_full_unstemmed | Introduction to engineering mechanics a continuum approach Jenn Stroud Rossmann ; Clive L. Dym |
title_short | Introduction to engineering mechanics |
title_sort | introduction to engineering mechanics a continuum approach |
title_sub | a continuum approach |
topic | Mechanics, Applied Technische Mechanik (DE-588)4059231-5 gnd |
topic_facet | Mechanics, Applied Technische Mechanik Einführung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016982228&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT rossmannjennstroud introductiontoengineeringmechanicsacontinuumapproach AT dymclivel introductiontoengineeringmechanicsacontinuumapproach |