History of cognitive neuroscience:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Malden, MA
Wiley-Blackwell
2008
|
Schlagworte: | |
Online-Zugang: | Contributor biographical information Publisher description Table of contents only Inhaltsverzeichnis |
Beschreibung: | Hier auch später erschienene, unveränderte Nachdrucke Includes bibliographical references and index |
Beschreibung: | XIX, 288, [20] S. Ill., graph. Darst. |
ISBN: | 9781405181822 9781118346341 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035173150 | ||
003 | DE-604 | ||
005 | 20141203 | ||
007 | t | ||
008 | 081121s2008 xxuad|| |||| 00||| eng d | ||
010 | |a 2008018526 | ||
020 | |a 9781405181822 |c hardback : alk. paper |9 978-1-4051-8182-2 | ||
020 | |a 9781118346341 |c pbk. : alk. paper |9 978-1-1183-4634-1 | ||
035 | |a (OCoLC)377911791 | ||
035 | |a (DE-599)BVBBV035173150 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-12 |a DE-19 |a DE-11 |a DE-355 |a DE-188 |a DE-83 | ||
050 | 0 | |a QP360.5 | |
082 | 0 | |a 612.8/233 | |
084 | |a CZ 1300 |0 (DE-625)19229: |2 rvk | ||
100 | 1 | |a Bennett, Maxwell R. |d 1939- |e Verfasser |0 (DE-588)136811388 |4 aut | |
245 | 1 | 0 | |a History of cognitive neuroscience |c M. R. Bennett and P. M. S. Hacker |
264 | 1 | |a Malden, MA |b Wiley-Blackwell |c 2008 | |
300 | |a XIX, 288, [20] S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Hier auch später erschienene, unveränderte Nachdrucke | ||
500 | |a Includes bibliographical references and index | ||
648 | 7 | |a Geschichte Anfänge-2000 |2 gnd |9 rswk-swf | |
650 | 4 | |a Neurosciences cognitives - Histoire | |
650 | 7 | |a Neurosciences cognitives - Histoire |2 ram | |
650 | 4 | |a Geschichte | |
650 | 4 | |a Cognitive neuroscience |x History | |
650 | 4 | |a Cognitive Science |x history | |
650 | 4 | |a Neuropsychology |x history | |
650 | 4 | |a Brain |x physiology | |
650 | 4 | |a Cognition |x physiology | |
650 | 0 | 7 | |a Kognitionswissenschaft |0 (DE-588)4193780-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Neurowissenschaften |0 (DE-588)7555119-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Neurowissenschaften |0 (DE-588)7555119-6 |D s |
689 | 0 | 1 | |a Kognitionswissenschaft |0 (DE-588)4193780-6 |D s |
689 | 0 | 2 | |a Geschichte Anfänge-2000 |A z |
689 | 0 | |C b |5 DE-604 | |
700 | 1 | |a Hacker, P. M. S. |d 1939- |e Verfasser |0 (DE-588)109051084 |4 aut | |
856 | 4 | |u http://www.loc.gov/catdir/enhancements/fy0833/2008018526-b.html |3 Contributor biographical information | |
856 | 4 | |u http://www.loc.gov/catdir/enhancements/fy0833/2008018526-d.html |3 Publisher description | |
856 | 4 | |u http://www.loc.gov/catdir/enhancements/fy0833/2008018526-t.html |3 Table of contents only | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016980061&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016980061 | ||
942 | 1 | 1 | |c 610.9 |e 22/bsb |
942 | 1 | 1 | |c 370.9 |e 22/bsb |
942 | 1 | 1 | |c 509 |e 22/bsb |
Datensatz im Suchindex
_version_ | 1804138342225281024 |
---|---|
adam_text | Contents
List of figures xii
List of plates xvi
Foreword by Sir Anthony Kenny (President of the British Academy, 1989-93) xvii
Acknowledgements xx
Introduction 1
1. Perceptions, Sensations and Cortical Function:
Helmholtz to Singer 4
1.1 Visual Illusions and their Interpretation by Cognitive Scientists 4
1.1.1 Misdescription of visual illusions by cognitive scientists 9
1.2 Gestalt Laws of Vision 10
1.3 Split-Brain Cornmissurotomy; the Two Hemispheres may
Operate Independently 11
1.3.1 Misdescription of the results of cornmissurotomy 13
1.3.2 Explaining the discoveries derived from commissurotomies 13
1.4 Specificity of Cortical Neurons 15
1.4.1 Cardinal cells 18
1.4.2 Misdescription of experiments leading to the conception of
cardinal cells 20
1.5 Multiple Pathways Connecting Visual Cortical Modules 22
1.6 Mental Images and Representations 26
1.6.1 Misconceptions about images and representations 28
1.7 What and Where Pathways in Object Recognition and Maps 30
1.8 Misuse of the Term Maps 31
1.9 The Binding Problem and 40 Hz Oscillations 32
1.9.1 Misconceptions concerning the existence of a binding problem 37
1.9.2 On the appropriate interpretation of synchronicity of neuronal
firing in visual cortex 38
1.10 Images and Imagining 39
1.10.1 Misconceptions concerning images and imagining 41
viii Contents
2. Attention, Awareness and Cortical Function:
Helmholtz to Raichle 44
2.1 The Concept of Attention 44
2.2 The Psychophysics of Attention 46
2.3 Neuroscience of Attention 55
2.3.1 Attention and arousal 56
2.3.2 Selective attention 58
2.4 Attention Related to Brain Structures 60
2.4.1 Superior colliculus 60
2.4.2 Parietal cortex 67
2.4.3 Visual cortex 71
2.4.4 Auditory cortex 72
2.5 Conclusion 74
3. Memory and Cortical Function: Milner to Kandel 77
3.1 Memory 77
3.1.1 The hippocampus is required for memory, which decays at two
different rates 77
3.1.2 Memory is of two kinds: declarative and non-declarative 77
3.1.3 Cellular and molecular studies of non-declarative memory in
invertebrates 80
3.1.4 Declarative memory and the hippocampus 82
3.1.5 Long-term potentiation (LTP) of synaptic transmission in the
hippocampus 84
3.1.6 Cellular and molecular mechanisms of declarative memory in the
hippocampus 93
3.1.7 Summary 94
3.2 Memory and Knowledge 96
3.2.1 Memory 99
3.2.2 Memory and storage 103
3.3 The Contribution of Neuroscience to Understanding Memory 113
4. Language and Cortical Function: Wernicke to Levelt 115
4.1 Introduction: Psycholinguistics and the Neuroanatomy of Language 115
4.2 The Theory of Wernicke/Lichtheim 120
4.2.1 Introduction: Wernicke 120
4.2.1.1 Images of sensations 121
4.2.1.2 Movement images 122
4.2.1.3 Voluntary movement 123
4.2.1.4 Sound images and language 125
4.2.1.5 Language acquisition, words and concepts 126
Contents ix
4.2.2 Lichtheim s concept centre 128
4.2.3 Concepts and representations 129
4.2.4 Conclusion 130
4.3 The Mental Dictionary and its Units: Treisman 130
4.4 The Modular Study of Word Recognition and Reading Aloud:
Morton 132
4.4.1 The model system 132
4.4.2 The cognitive system 135
4.4.3 Thought units 140
4.4.4 Computational studies 141
4.5 The Modular Study of Fluent Speech: Levelt 141
4.5.1 The model study 141
4.5.2 Development of the model system 145
4.6 The Functional Neuroanatomy of Language
Comprehension 147
4.6.1 Attention to visual compared with semantic aspects of words 147
4.6.2 Auditory compared with visual presentation of words 149
4.6.3 Attention to the semantic as compared to the syntactic aspect
of a sentence 149
4.7 The Functional Neuroanatomy of Speech 152
4.7.1 Speech 152
4.7.2 Spoken action words and colour words 153
4.7.3 Naming animals and tools 154
4.7.4 Speaking with strings of words compared with single words 158
4.7.5 Word repetition 161
4.8 The Functional Neuroanatomy that Underpins Psycholinguistic
Accounts of Language 162
5. Emotion and Cortical-Subcortical Function:
Darwin to Damasio 164
5.1 Introduction 164
5.2 Darwin 167
5.3 Cognitive versus Precognitive Theories for the Expression of
Emotions 169
5.3.1 On physiological measurements of emotional responses 173
5.3.2 Involvement of the amygdala and the orbitofrontal cortex in the
emotional responses to faces 174
5.4 The Amygdala 174
5.4.1 Faces expressing different emotions and the amygdala:
PET and fMRI 174
5.4.2 Behavioural studies involving face recognition following damage
to the amygdala 179
5.4.3 Fear conditioning and the amygdala 181
x Contents
5.4.4 Is cognitive appraisal an important ingredient in emotional
experience? LeDoux s interpretations of his experiments on
the amygdala 181
5.4.5 Fear is unrepresentative of the emotions 182
5.5 The Orbitofrontal Cortex 183
5.5.1 Behavioural studies involving face recognition following
damage to the orbitofrontal cortex 183
5.5.2 The orbitofrontal cortex and face recognition: PET and fMRI 183
5.5.3 The orbitofrontal cortex and the satisfying of appetites:
Rolls s interpretation of his experiments on the orbitofrontal cortex 186
5.5.4 Misconceptions about emotions and appetites 187
5.6 Neural Networks: Amygdala and Orbitofrontal Cortex in Vision 187
5.6.1 Amygdala 187
5.6.2 Orbitofrontal cortex 190
5.7 The Origins of Emotional Experience 191
5.7.1 The claims of LeDoux 191
5.7.2 The claims of Rolls 193
5.7.3 The claims of Damasio, following James 193
5.7.4 Misconceptions concerning the somatic marker hypothesis of
James/Damasio 194
6. Motor Action and Cortical-Spinal Cord Function:
Galen to Broca and Sherrington 199
6.1 The Ventricular Doctrine, from Galen to Descartes 199
6.1.1 Galen: motor and sensory centres 199
6.1.2 Galen: the functional localization of the rational soul in the
anterior ventricles 201
6.1.3 Nemesius: the attribution of all mental functions to the
ventricles 201
6.1.4 One thousand years of the ventricular doctrine 203
6.1.5 Fernel: the origins of neurophysiology 206
6.1.6 Descartes 208
6.2 The Cortical Doctrine: from Willis to du Petit 214
6.2.1 Thomas Willis: the origins of psychological functions in the
cortex 214
6.2.2 The cortex 100 years after Willis 216
6.3 The Spinal Soul, the Spinal Sensorium Commune, and the Idea
of a Reflex 219
6.3.1 The spinal cord can operate independently of the enkephalon 219
6.3.2 Bell and Magendie: the identification of sensory and motor
spinal nerves 222
6.3.3 Marshall Hall: isolating sensation from sense-reaction in the
spinal cord 223
Contents xi
6.3.4 Elaboration of the conception of the true spinal marrow 225
6.3.5 Implications of the conception of a reflex for the function of the
cortex 227
6.4 The Localization of Function in the Cortex 227
6.4.1 Broca: the cortical area for language 227
6.4.2 Fritsch and Hitzig: the motor cortex 227
6.4.3 Electrical phenomena in the cortex support the idea of a motor
cortex 231
6.5 Charles Scott Sherrington: the Integrative Action of Synapses
in the Spinal Cord and Cortex 231
6.5.1 Integrative action in the spinal cord 231
6.5.2 The motor cortex 236
7. Conceptual Presuppositions of Cognitive Neuroscience 237
7.1 Conceptual Elucidation 237
7.2 Two Paradigms: Aristotle and Descartes 240
7.3 Aristotle s Principle and the Mereological Fallacy 241
7.4 Is the Mereological Fallacy Really Mereological? 243
7.5 The Rationale of the Mereological Principle 245
7.5.1 Consciousness 245
7.5.2 Knowledge 246
7.5.3 Perception 247
7.6 The Location of Psychological Attributes 250
7.7 Linguistic Anthropology, Auto-anthropology, Metaphor and
Extending Usage 253
7.8 Qualia 260
7.9 Enskulled Brains 262
7.10 Cognitive Neuroscience 262
References 264
Index 281
Plate section falls between pages 140 and 141
List of Figures
Fig. 1.1 Helmholtz 5
Fig. 1.2 Helmholtz s argument on how a perception is formed 6
Fig. 1.3 The Kanizsa and Ponzo illusions 6
Fig. 1.4 The Adelbert Ames distorting room 7
Fig. 1.5 Ramachandran s bumps and hollows 7
Fig. 1.6 The phenomenon of filling in 8
Fig. 1.7 Rubin s vase or two faces andjastrow s duck-rabbit 10
Fig. 1.8 Gestalt Laws of proximity , similarity and good continuation 11
Fig. 1.9 Techniques for observing behaviours of split-brain patients 12
Fig. 1.10 Axons have different functions in different parts of corpus callosum 14
Fig. 1.11 Brodmann s charts of convex and medial surface of cortex 16
Fig. 1.12 Neuronal orientation selectivity in primary visual cortex 17
Fig. 1.13 Ocular dominance columns in primate visual cortex 19
Fig. 1.14 Firing of neurons in inferior temporal cortex of a monkey in response
to different images 21
Fig. 1.15 Random-dot stereogram 22
Fig. 1.16 Psychophysical experiments in conjunction with non-invasive brain
imaging 24
Fig. 1.17 Shepard and Metzler-type drawings used in mental rotation
experiments 27
Fig. 1.18 Synchronized neuronal firing of two different groups of
cortical neurons 34
Fig. 1.19 Synchronized neuronal firing in three different groups of neurons in
each hemisphere of the visual cortex of a cat 35
Fig. 1.20 Forward and backward projections to the primary visual cortex 39
Fig. 1.21 The stimuli used to determine the role of visual area 17 in visual
imagery. 40
Fig. 1.22 Effects of transcranial magnetic stimulation on response times for
imagery tasks 42
Fig. 2.1 Reconstruction by a subject of two speeches presented as
mixed speeches 48
List of Figures xiii
Fig. 2.2 Broadbent s mechanism for selective auditory attention 50
Fig. 2.3 Treisman s mechanism for detecting letter G in a display 51
Fig. 2.4 Reaction times of a subject for displays of different sizes 54
Fig. 2.5 Effect of brain stem stimulation on electrocortical activity 56
Fig. 2.6 Occipital potentials for subjects, in different arousal states, to flashes
of light 57
Fig. 2.7 Auditory evoked potentials evoked by stimuli to each ear 59
Fig. 2.8 Effect of visual stimulus size and duration on choice by a subject
with no VI 61
Fig. 2.9 Conscious and unconscious visual discrimination following lesions
to primary visual cortex 62
Fig. 2.10 Firing of superior colliculus neurons in a monkey when a spot
appears on a screen 64
Fig. 2.11 Experiments on the role of neurons in the superior colliculus 65
Fig. 2.12 Reaction times to detect a visual target after a parietal cortex lesion 68
Fig. 2.13 Enhancement of neuron firing in parietal cortex on detecting a
dimming light 70
Fig. 2.14 Changes in firing of neurons in visual area V4 due to selective
attention 73
Fig. 2.15 Identification of brain areas that generate the P3 auditory evoked
response potential 75
Fig. 3.1 Lesions of the hippocampus show that it is required for memory
in humans 78
Fig. 3.2 Classical conditioning of a defensive withdrawal reflex in
Aplysia califomica 81
Fig. 3.3 Discovery of neurons in the hippocampus that fire optimally when
the rat is in a particular place 83
Fig. 3.4 Experiments that established the phenomenon of long-
term potentiation (LTP) 86
Fig. 3.5 Experiments showing that NMD A receptors are involved in
associative LTP 88
Fig. 3.6 Effects of polarization of neurons during stimulation on
the generation of LTP 90
Fig. 3.7 Experiments showing that cAMP simulates late stages of LTP 92
Fig. 3.8 Experiments showing that AMP A are not involved in LTP 95
Fig. 4.1 Models of language systems in the cortex 116
Fig. 4.2 Wernicke s theory of how aphasia arises 124
Fig. 4.3 Treisman s theory of the operation of the mental dictionary and
its units 131
Fig. 4.4 Morton s models for word recognition and speech
recognition 133
Fig. 4.5 Morton s more recent logogen models for language 136
Fig. 4.6 Recent theories of speech 142
Fig. 4.7 Levelt s theory for speech 144
xiv List of Figures
Fig. 4.8 PET images of subjects when presented with four different
sets of word-like stimuli 148
Fig. 4.9 PET images of subjects when presented with words and when
speaking words 150
Fig. 4.10 PET images of patients with various kinds of damage 155
Fig. 4.11 Activity in different areas of temporal cortex accompanying
perceiving animals or tools 157
Fig. 4.12 PET localization of active areas during certain movement types
and the corresponding action words 159
Fig. 5.1 Types of feelings distinguished 165
Fig. 5.2 Types of affections distinguished 165
Fig. 5.3 Facial expressions manifesting emotions of terror as well as horror
and agony 168
Fig. 5.4 Experiments claiming to show that affect and cognition involve
separate systems 171
Fig. 5.5 Experiments claiming to show that cognitive appraisal is an
ingredient in emotional experience 173
Fig. 5.6 Brodmann s cytoarchitectural map of human cortex 175
Fig. 5.7 PET images showing increased activity in the amygdala when the
subject views fearful photographs 177
Fig. 5.8 PET images showing enhanced activity in amygdala, orbitofrontal
cortex and anterior cingulate with increasingly sad or angry expressions 178
Fig. 5.9 Arrangement of nuclei in the amygdala and their relationship with
other brain structures 180
Fig. 5.10 Neurons in orbitofrontal cortex of monkeys fire maximally when
the monkey views a face 184
Fig. 5.11 fMRI scan showing orbitofrontal lesion in experiments relating
to correct identification of facial expressions 185
Fig. 5.12 Diagram of some of the connections to and from orbitofrontal cortex 186
Fig. 5.13 Diagram showing connections between amygdala, orbitofrontal
cortex and projections to these in primates 188
Fig. 5.14 Diagram showing principal reciprocal projections from the
primate center to the amygdala 189
Fig. 5.15 Diagram showing principal projections from the primate cortex
to the orbitofrontal cortex 191
Fig. 5.16 Diagram showing principal connections of the anterior and
middle cortical areas 192
Fig. 6.1 Fifteenth-century illustration relating faculties of the mind to the
four ventricles 202
Fig. 6.2 Portraits of fifteenth- to seventeenth-century contributors to
understanding brain function: Leonardo da Vinci, Vesalius, Descartes,
and Willis 204
Fig. 6.3 Brain structure as determined by Leonardo, Vesalius, Descartes,
and Willis 205
List of Figures xv
Fig. 6.4 Diagrams showing Descartes conception of how motor nerves
initiate muscle contraction 213
Fig. 6.5 Eighteenth-century conceptions of the origin of motor and sensory
nerves: Mistichelli, Duverney, Prochaska, and Taylor 217
Fig. 6.6 Portraits of eighteenth- and nineteenth-century pioneers on spinal
cord function: Whytt, Bell, Magendie, and Hall 220
Fig. 6.7 Experiments in the eighteenth century showing that isolated spinal
cord can mediate reflex actions 221
Fig. 6.8 Nineteenth-century determinations of neural pathways of brain
stem and spinal cord 226
Fig. 6.9 Portraits of nineteenth-century pioneers on the localization of cortical
functions: Broca, Fritsch, Hitzig, Hughlings Jackson, Ferrier, and
Sherrington 228
Fig. 6.10 Images of the human cortex involved in establishing localization
of cortical functions 229
Fig. 6.11 Experiments elucidating the principles of operation of the spinal
cord due to Sherrington 232
Fig. 6.12 Identification of the motor and somatosensory cortex in primates
and humans due to Sherrington, Penfield, and their colleagues 234
|
adam_txt |
Contents
List of figures xii
List of plates xvi
Foreword by Sir Anthony Kenny (President of the British Academy, 1989-93) xvii
Acknowledgements xx
Introduction 1
1. Perceptions, Sensations and Cortical Function:
Helmholtz to Singer 4
1.1 Visual Illusions and their Interpretation by Cognitive Scientists 4
1.1.1 Misdescription of visual illusions by cognitive scientists 9
1.2 Gestalt Laws of Vision 10
1.3 Split-Brain Cornmissurotomy; the Two Hemispheres may
Operate Independently 11
1.3.1 Misdescription of the results of cornmissurotomy 13
1.3.2 Explaining the discoveries derived from commissurotomies 13
1.4 Specificity of Cortical Neurons 15
1.4.1 Cardinal cells 18
1.4.2 Misdescription of experiments leading to the conception of
cardinal cells 20
1.5 Multiple Pathways Connecting Visual Cortical Modules 22
1.6 Mental Images and Representations 26
1.6.1 Misconceptions about images and representations 28
1.7 What and Where Pathways in Object Recognition and Maps 30
1.8 Misuse of the Term 'Maps' 31
1.9 The Binding Problem and 40 Hz Oscillations 32
1.9.1 Misconceptions concerning the existence of a binding problem 37
1.9.2 On the appropriate interpretation of synchronicity of neuronal
firing in visual cortex 38
1.10 Images and Imagining 39
1.10.1 Misconceptions concerning images and imagining 41
viii Contents
2. Attention, Awareness and Cortical Function:
Helmholtz to Raichle 44
2.1 The Concept of Attention 44
2.2 The Psychophysics of Attention 46
2.3 Neuroscience of Attention 55
2.3.1 Attention and arousal 56
2.3.2 Selective attention 58
2.4 Attention Related to Brain Structures 60
2.4.1 Superior colliculus 60
2.4.2 Parietal cortex 67
2.4.3 Visual cortex 71
2.4.4 Auditory cortex 72
2.5 Conclusion 74
3. Memory and Cortical Function: Milner to Kandel 77
3.1 Memory 77
3.1.1 The hippocampus is required for memory, which decays at two
different rates 77
3.1.2 Memory is of two kinds: declarative and non-declarative 77
3.1.3 Cellular and molecular studies of non-declarative memory in
invertebrates 80
3.1.4 Declarative memory and the hippocampus 82
3.1.5 Long-term potentiation (LTP) of synaptic transmission in the
hippocampus 84
3.1.6 Cellular and molecular mechanisms of declarative memory in the
hippocampus 93
3.1.7 Summary 94
3.2 Memory and Knowledge 96
3.2.1 Memory 99
3.2.2 Memory and storage 103
3.3 The Contribution of Neuroscience to Understanding Memory 113
4. Language and Cortical Function: Wernicke to Levelt 115
4.1 Introduction: Psycholinguistics and the Neuroanatomy of Language 115
4.2 The Theory of Wernicke/Lichtheim 120
4.2.1 Introduction: Wernicke 120
4.2.1.1 Images of sensations 121
4.2.1.2 Movement images 122
4.2.1.3 Voluntary movement 123
4.2.1.4 Sound images and language 125
4.2.1.5 Language acquisition, words and concepts 126
Contents ix
4.2.2 Lichtheim's concept centre 128
4.2.3 Concepts and representations 129
4.2.4 Conclusion 130
4.3 The Mental Dictionary and its Units: Treisman 130
4.4 The Modular Study of Word Recognition and Reading Aloud:
Morton 132
4.4.1 The model system 132
4.4.2 The cognitive system 135
4.4.3 Thought units 140
4.4.4 Computational studies 141
4.5 The Modular Study of Fluent Speech: Levelt 141
4.5.1 The model study 141
4.5.2 Development of the model system 145
4.6 The Functional Neuroanatomy of Language
Comprehension 147
4.6.1 Attention to visual compared with semantic aspects of words 147
4.6.2 Auditory compared with visual presentation of words 149
4.6.3 Attention to the semantic as compared to the syntactic aspect
of a sentence 149
4.7 The Functional Neuroanatomy of Speech 152
4.7.1 Speech 152
4.7.2 Spoken action words and colour words 153
4.7.3 Naming animals and tools 154
4.7.4 Speaking with strings of words compared with single words 158
4.7.5 Word repetition 161
4.8 The Functional Neuroanatomy that Underpins Psycholinguistic
Accounts of Language 162
5. Emotion and Cortical-Subcortical Function:
Darwin to Damasio 164
5.1 Introduction 164
5.2 Darwin 167
5.3 Cognitive versus Precognitive Theories for the Expression of
Emotions 169
5.3.1 On physiological measurements of emotional responses 173
5.3.2 Involvement of the amygdala and the orbitofrontal cortex in the
emotional responses to faces 174
5.4 The Amygdala 174
5.4.1 Faces expressing different emotions and the amygdala:
PET and fMRI 174
5.4.2 Behavioural studies involving face recognition following damage
to the amygdala 179
5.4.3 Fear conditioning and the amygdala 181
x Contents
5.4.4 Is cognitive appraisal an important ingredient in emotional
experience? LeDoux's interpretations of his experiments on
the amygdala 181
5.4.5 'Fear' is unrepresentative of the emotions 182
5.5 The Orbitofrontal Cortex 183
5.5.1 Behavioural studies involving face recognition following
damage to the orbitofrontal cortex 183
5.5.2 The orbitofrontal cortex and face recognition: PET and fMRI 183
5.5.3 The orbitofrontal cortex and the satisfying of appetites:
Rolls's interpretation of his experiments on the orbitofrontal cortex 186
5.5.4 Misconceptions about emotions and appetites 187
5.6 Neural Networks: Amygdala and Orbitofrontal Cortex in Vision 187
5.6.1 Amygdala 187
5.6.2 Orbitofrontal cortex 190
5.7 The Origins of Emotional Experience 191
5.7.1 The claims of LeDoux 191
5.7.2 The claims of Rolls 193
5.7.3 The claims of Damasio, following James 193
5.7.4 Misconceptions concerning the somatic marker hypothesis of
James/Damasio 194
6. Motor Action and Cortical-Spinal Cord Function:
Galen to Broca and Sherrington 199
6.1 The Ventricular Doctrine, from Galen to Descartes 199
6.1.1 Galen: motor and sensory centres 199
6.1.2 Galen: the functional localization of the rational soul in the
anterior ventricles 201
6.1.3 Nemesius: the attribution of all mental functions to the
ventricles 201
6.1.4 One thousand years of the ventricular doctrine 203
6.1.5 Fernel: the origins of neurophysiology 206
6.1.6 Descartes 208
6.2 The Cortical Doctrine: from Willis to du Petit 214
6.2.1 Thomas Willis: the origins of psychological functions in the
cortex 214
6.2.2 The cortex 100 years after Willis 216
6.3 The Spinal Soul, the Spinal Sensorium Commune, and the Idea
of a Reflex 219
6.3.1 The spinal cord can operate independently of the enkephalon 219
6.3.2 Bell and Magendie: the identification of sensory and motor
spinal nerves 222
6.3.3 Marshall Hall: isolating sensation from sense-reaction in the
spinal cord 223
Contents xi
6.3.4 Elaboration of the conception of the 'true spinal marrow' 225
6.3.5 Implications of the conception of a reflex for the function of the
cortex 227
6.4 The Localization of Function in the Cortex 227
6.4.1 Broca: the cortical area for language 227
6.4.2 Fritsch and Hitzig: the motor cortex 227
6.4.3 Electrical phenomena in the cortex support the idea of a motor
cortex 231
6.5 Charles Scott Sherrington: the Integrative Action of Synapses
in the Spinal Cord and Cortex 231
6.5.1 Integrative action in the spinal cord 231
6.5.2 The motor cortex 236
7. Conceptual Presuppositions of Cognitive Neuroscience 237
7.1 Conceptual Elucidation 237
7.2 Two Paradigms: Aristotle and Descartes 240
7.3 Aristotle's Principle and the Mereological Fallacy 241
7.4 Is the Mereological Fallacy Really Mereological? 243
7.5 The Rationale of the Mereological Principle 245
7.5.1 Consciousness 245
7.5.2 Knowledge 246
7.5.3 Perception 247
7.6 The Location of Psychological Attributes 250
7.7 Linguistic Anthropology, Auto-anthropology, Metaphor and
Extending Usage 253
7.8 Qualia 260
7.9 Enskulled Brains 262
7.10 Cognitive Neuroscience 262
References 264
Index 281
Plate section falls between pages 140 and 141
List of Figures
Fig. 1.1 Helmholtz 5
Fig. 1.2 Helmholtz's argument on how a perception is formed 6
Fig. 1.3 The Kanizsa and Ponzo illusions 6
Fig. 1.4 The Adelbert Ames distorting room 7
Fig. 1.5 Ramachandran's bumps and hollows 7
Fig. 1.6 The phenomenon of'filling in' 8
Fig. 1.7 Rubin's vase or two faces andjastrow's duck-rabbit 10
Fig. 1.8 Gestalt 'Laws' of'proximity', 'similarity' and 'good continuation' 11
Fig. 1.9 Techniques for observing behaviours of split-brain patients 12
Fig. 1.10 Axons have different functions in different parts of corpus callosum 14
Fig. 1.11 Brodmann's charts of convex and medial surface of cortex 16
Fig. 1.12 Neuronal orientation selectivity in primary visual cortex 17
Fig. 1.13 Ocular dominance columns in primate visual cortex 19
Fig. 1.14 Firing of neurons in inferior temporal cortex of a monkey in response
to different images 21
Fig. 1.15 Random-dot stereogram 22
Fig. 1.16 Psychophysical experiments in conjunction with non-invasive brain
imaging 24
Fig. 1.17 Shepard and Metzler-type drawings used in 'mental rotation'
experiments 27
Fig. 1.18 Synchronized neuronal firing of two different groups of
cortical neurons 34
Fig. 1.19 Synchronized neuronal firing in three different groups of neurons in
each hemisphere of the visual cortex of a cat 35
Fig. 1.20 Forward and backward projections to the primary visual cortex 39
Fig. 1.21 The stimuli used to determine the role of visual area 17 in visual
imagery. 40
Fig. 1.22 Effects of transcranial magnetic stimulation on response times for
imagery tasks 42
Fig. 2.1 Reconstruction by a subject of two speeches presented as
mixed speeches 48
List of Figures xiii
Fig. 2.2 Broadbent's mechanism for selective auditory attention 50
Fig. 2.3 Treisman's mechanism for detecting letter 'G' in a display 51
Fig. 2.4 Reaction times of a subject for displays of different sizes 54
Fig. 2.5 Effect of brain stem stimulation on electrocortical activity 56
Fig. 2.6 Occipital potentials for subjects, in different arousal states, to flashes
of light 57
Fig. 2.7 Auditory evoked potentials evoked by stimuli to each ear 59
Fig. 2.8 Effect of visual stimulus size and duration on choice by a subject
with no VI 61
Fig. 2.9 Conscious and unconscious visual discrimination following lesions
to primary visual cortex 62
Fig. 2.10 Firing of superior colliculus neurons in a monkey when a spot
appears on a screen 64
Fig. 2.11 Experiments on the role of neurons in the superior colliculus 65
Fig. 2.12 Reaction times to detect a visual target after a parietal cortex lesion 68
Fig. 2.13 Enhancement of neuron firing in parietal cortex on detecting a
dimming light 70
Fig. 2.14 Changes in firing of neurons in visual area V4 due to selective
attention 73
Fig. 2.15 Identification of brain areas that generate the P3 auditory evoked
response potential 75
Fig. 3.1 Lesions of the hippocampus show that it is required for memory
in humans 78
Fig. 3.2 Classical conditioning of a defensive withdrawal reflex in
Aplysia califomica 81
Fig. 3.3 Discovery of neurons in the hippocampus that fire optimally when
the rat is in a particular place 83
Fig. 3.4 Experiments that established the phenomenon of long-
term potentiation (LTP) 86
Fig. 3.5 Experiments showing that NMD A receptors are involved in
associative LTP 88
Fig. 3.6 Effects of polarization of neurons during stimulation on
the generation of LTP 90
Fig. 3.7 Experiments showing that cAMP simulates late stages of LTP 92
Fig. 3.8 Experiments showing that AMP A are not involved in LTP 95
Fig. 4.1 Models of'language systems' in the cortex 116
Fig. 4.2 Wernicke's theory of how aphasia arises 124
Fig. 4.3 Treisman's theory of the operation of the mental dictionary and
its units 131
Fig. 4.4 Morton's models for word recognition and speech
recognition 133
Fig. 4.5 Morton's more recent logogen models for language 136
Fig. 4.6 Recent theories of speech 142
Fig. 4.7 Levelt's theory for speech 144
xiv List of Figures
Fig. 4.8 PET images of subjects when presented with four different
sets of word-like stimuli 148
Fig. 4.9 PET images of subjects when presented with words and when
speaking words 150
Fig. 4.10 PET images of patients with various kinds of damage 155
Fig. 4.11 Activity in different areas of temporal cortex accompanying
perceiving animals or tools 157
Fig. 4.12 PET localization of active areas during certain movement types
and the corresponding action words 159
Fig. 5.1 Types of feelings distinguished 165
Fig. 5.2 Types of affections distinguished 165
Fig. 5.3 Facial expressions manifesting emotions of terror as well as horror
and agony 168
Fig. 5.4 Experiments claiming to show that affect and cognition involve
separate systems 171
Fig. 5.5 Experiments claiming to show that cognitive appraisal is an
ingredient in emotional experience 173
Fig. 5.6 Brodmann's cytoarchitectural map of human cortex 175
Fig. 5.7 PET images showing increased activity in the amygdala when the
subject views fearful photographs 177
Fig. 5.8 PET images showing enhanced activity in amygdala, orbitofrontal
cortex and anterior cingulate with increasingly sad or angry expressions 178
Fig. 5.9 Arrangement of nuclei in the amygdala and their relationship with
other brain structures 180
Fig. 5.10 Neurons in orbitofrontal cortex of monkeys fire maximally when
the monkey views a face 184
Fig. 5.11 fMRI scan showing orbitofrontal lesion in experiments relating
to correct identification of facial expressions 185
Fig. 5.12 Diagram of some of the connections to and from orbitofrontal cortex 186
Fig. 5.13 Diagram showing connections between amygdala, orbitofrontal
cortex and projections to these in primates 188
Fig. 5.14 Diagram showing principal reciprocal projections from the
primate center to the amygdala 189
Fig. 5.15 Diagram showing principal projections from the primate cortex
to the orbitofrontal cortex 191
Fig. 5.16 Diagram showing principal connections of the anterior and
middle cortical areas 192
Fig. 6.1 Fifteenth-century illustration relating 'faculties of the mind' to the
four ventricles 202
Fig. 6.2 Portraits of fifteenth- to seventeenth-century contributors to
understanding brain function: Leonardo da Vinci, Vesalius, Descartes,
and Willis 204
Fig. 6.3 Brain structure as determined by Leonardo, Vesalius, Descartes,
and Willis 205
List of Figures xv
Fig. 6.4 Diagrams showing Descartes' conception of how motor nerves
initiate muscle contraction 213
Fig. 6.5 Eighteenth-century conceptions of the origin of motor and sensory
nerves: Mistichelli, Duverney, Prochaska, and Taylor 217
Fig. 6.6 Portraits of eighteenth- and nineteenth-century pioneers on spinal
cord function: Whytt, Bell, Magendie, and Hall 220
Fig. 6.7 Experiments in the eighteenth century showing that isolated spinal
cord can mediate reflex actions 221
Fig. 6.8 Nineteenth-century determinations of neural pathways of brain
stem and spinal cord 226
Fig. 6.9 Portraits of nineteenth-century pioneers on the localization of cortical
functions: Broca, Fritsch, Hitzig, Hughlings Jackson, Ferrier, and
Sherrington 228
Fig. 6.10 Images of the human cortex involved in establishing localization
of cortical functions 229
Fig. 6.11 Experiments elucidating the principles of operation of the spinal
cord due to Sherrington 232
Fig. 6.12 Identification of the motor and somatosensory cortex in primates
and humans due to Sherrington, Penfield, and their colleagues 234 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Bennett, Maxwell R. 1939- Hacker, P. M. S. 1939- |
author_GND | (DE-588)136811388 (DE-588)109051084 |
author_facet | Bennett, Maxwell R. 1939- Hacker, P. M. S. 1939- |
author_role | aut aut |
author_sort | Bennett, Maxwell R. 1939- |
author_variant | m r b mr mrb p m s h pms pmsh |
building | Verbundindex |
bvnumber | BV035173150 |
callnumber-first | Q - Science |
callnumber-label | QP360 |
callnumber-raw | QP360.5 |
callnumber-search | QP360.5 |
callnumber-sort | QP 3360.5 |
callnumber-subject | QP - Physiology |
classification_rvk | CZ 1300 |
ctrlnum | (OCoLC)377911791 (DE-599)BVBBV035173150 |
dewey-full | 612.8/233 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 612 - Human physiology |
dewey-raw | 612.8/233 |
dewey-search | 612.8/233 |
dewey-sort | 3612.8 3233 |
dewey-tens | 610 - Medicine and health |
discipline | Psychologie Medizin |
discipline_str_mv | Psychologie Medizin |
era | Geschichte Anfänge-2000 gnd |
era_facet | Geschichte Anfänge-2000 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02643nam a2200625 c 4500</leader><controlfield tag="001">BV035173150</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20141203 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081121s2008 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2008018526</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781405181822</subfield><subfield code="c">hardback : alk. paper</subfield><subfield code="9">978-1-4051-8182-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118346341</subfield><subfield code="c">pbk. : alk. paper</subfield><subfield code="9">978-1-1183-4634-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)377911791</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035173150</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QP360.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">612.8/233</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CZ 1300</subfield><subfield code="0">(DE-625)19229:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bennett, Maxwell R.</subfield><subfield code="d">1939-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136811388</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">History of cognitive neuroscience</subfield><subfield code="c">M. R. Bennett and P. M. S. Hacker</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Malden, MA</subfield><subfield code="b">Wiley-Blackwell</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 288, [20] S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte Anfänge-2000</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neurosciences cognitives - Histoire</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neurosciences cognitives - Histoire</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geschichte</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cognitive neuroscience</subfield><subfield code="x">History</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cognitive Science</subfield><subfield code="x">history</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neuropsychology</subfield><subfield code="x">history</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brain</subfield><subfield code="x">physiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cognition</subfield><subfield code="x">physiology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kognitionswissenschaft</subfield><subfield code="0">(DE-588)4193780-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neurowissenschaften</subfield><subfield code="0">(DE-588)7555119-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Neurowissenschaften</subfield><subfield code="0">(DE-588)7555119-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kognitionswissenschaft</subfield><subfield code="0">(DE-588)4193780-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Geschichte Anfänge-2000</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hacker, P. M. S.</subfield><subfield code="d">1939-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)109051084</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0833/2008018526-b.html</subfield><subfield code="3">Contributor biographical information</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0833/2008018526-d.html</subfield><subfield code="3">Publisher description</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0833/2008018526-t.html</subfield><subfield code="3">Table of contents only</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016980061&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016980061</subfield></datafield><datafield tag="942" ind1="1" ind2="1"><subfield code="c">610.9</subfield><subfield code="e">22/bsb</subfield></datafield><datafield tag="942" ind1="1" ind2="1"><subfield code="c">370.9</subfield><subfield code="e">22/bsb</subfield></datafield><datafield tag="942" ind1="1" ind2="1"><subfield code="c">509</subfield><subfield code="e">22/bsb</subfield></datafield></record></collection> |
id | DE-604.BV035173150 |
illustrated | Illustrated |
index_date | 2024-07-02T22:55:06Z |
indexdate | 2024-07-09T21:26:40Z |
institution | BVB |
isbn | 9781405181822 9781118346341 |
language | English |
lccn | 2008018526 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016980061 |
oclc_num | 377911791 |
open_access_boolean | |
owner | DE-12 DE-19 DE-BY-UBM DE-11 DE-355 DE-BY-UBR DE-188 DE-83 |
owner_facet | DE-12 DE-19 DE-BY-UBM DE-11 DE-355 DE-BY-UBR DE-188 DE-83 |
physical | XIX, 288, [20] S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Wiley-Blackwell |
record_format | marc |
spelling | Bennett, Maxwell R. 1939- Verfasser (DE-588)136811388 aut History of cognitive neuroscience M. R. Bennett and P. M. S. Hacker Malden, MA Wiley-Blackwell 2008 XIX, 288, [20] S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Hier auch später erschienene, unveränderte Nachdrucke Includes bibliographical references and index Geschichte Anfänge-2000 gnd rswk-swf Neurosciences cognitives - Histoire Neurosciences cognitives - Histoire ram Geschichte Cognitive neuroscience History Cognitive Science history Neuropsychology history Brain physiology Cognition physiology Kognitionswissenschaft (DE-588)4193780-6 gnd rswk-swf Neurowissenschaften (DE-588)7555119-6 gnd rswk-swf Neurowissenschaften (DE-588)7555119-6 s Kognitionswissenschaft (DE-588)4193780-6 s Geschichte Anfänge-2000 z b DE-604 Hacker, P. M. S. 1939- Verfasser (DE-588)109051084 aut http://www.loc.gov/catdir/enhancements/fy0833/2008018526-b.html Contributor biographical information http://www.loc.gov/catdir/enhancements/fy0833/2008018526-d.html Publisher description http://www.loc.gov/catdir/enhancements/fy0833/2008018526-t.html Table of contents only HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016980061&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Bennett, Maxwell R. 1939- Hacker, P. M. S. 1939- History of cognitive neuroscience Neurosciences cognitives - Histoire Neurosciences cognitives - Histoire ram Geschichte Cognitive neuroscience History Cognitive Science history Neuropsychology history Brain physiology Cognition physiology Kognitionswissenschaft (DE-588)4193780-6 gnd Neurowissenschaften (DE-588)7555119-6 gnd |
subject_GND | (DE-588)4193780-6 (DE-588)7555119-6 |
title | History of cognitive neuroscience |
title_auth | History of cognitive neuroscience |
title_exact_search | History of cognitive neuroscience |
title_exact_search_txtP | History of cognitive neuroscience |
title_full | History of cognitive neuroscience M. R. Bennett and P. M. S. Hacker |
title_fullStr | History of cognitive neuroscience M. R. Bennett and P. M. S. Hacker |
title_full_unstemmed | History of cognitive neuroscience M. R. Bennett and P. M. S. Hacker |
title_short | History of cognitive neuroscience |
title_sort | history of cognitive neuroscience |
topic | Neurosciences cognitives - Histoire Neurosciences cognitives - Histoire ram Geschichte Cognitive neuroscience History Cognitive Science history Neuropsychology history Brain physiology Cognition physiology Kognitionswissenschaft (DE-588)4193780-6 gnd Neurowissenschaften (DE-588)7555119-6 gnd |
topic_facet | Neurosciences cognitives - Histoire Geschichte Cognitive neuroscience History Cognitive Science history Neuropsychology history Brain physiology Cognition physiology Kognitionswissenschaft Neurowissenschaften |
url | http://www.loc.gov/catdir/enhancements/fy0833/2008018526-b.html http://www.loc.gov/catdir/enhancements/fy0833/2008018526-d.html http://www.loc.gov/catdir/enhancements/fy0833/2008018526-t.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016980061&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bennettmaxwellr historyofcognitiveneuroscience AT hackerpms historyofcognitiveneuroscience |