Introduction to the calculus of variations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English French |
Veröffentlicht: |
New Jersey
Imperial College Press
2009
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | XII, 285 S. |
ISBN: | 9781848163331 1848163339 9781848163348 1848163347 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV035172865 | ||
003 | DE-604 | ||
005 | 20090407 | ||
007 | t | ||
008 | 081120s2009 xxu |||| 00||| eng d | ||
010 | |a 2008038721 | ||
020 | |a 9781848163331 |c hardcover : alk. paper |9 978-1-84816-333-1 | ||
020 | |a 1848163339 |c hardcover : alk. paper |9 1-84816-333-9 | ||
020 | |a 9781848163348 |c pbk. : alk. paper |9 978-1-84816-334-8 | ||
020 | |a 1848163347 |c pbk. : alk. paper |9 1-84816-334-7 | ||
035 | |a (OCoLC)473878459 | ||
035 | |a (DE-599)BVBBV035172865 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 1 | |a eng |h fre | |
044 | |a xxu |c US | ||
049 | |a DE-384 |a DE-703 |a DE-706 |a DE-19 |a DE-20 |a DE-11 | ||
050 | 0 | |a QA315 | |
082 | 0 | |a 515/.64 | |
082 | 0 | |a 515 |2 22 | |
084 | |a SK 660 |0 (DE-625)143251: |2 rvk | ||
100 | 1 | |a Dacorogna, Bernard |d 1953- |e Verfasser |0 (DE-588)133791920 |4 aut | |
240 | 1 | 0 | |a Introduction au calcul des variations |
245 | 1 | 0 | |a Introduction to the calculus of variations |c Bernard Dacorogna |
250 | |a 2. ed. | ||
264 | 1 | |a New Jersey |b Imperial College Press |c 2009 | |
300 | |a XII, 285 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Calculus of variations | |
650 | 4 | |a Calculus of variations | |
650 | 0 | 7 | |a Variationsrechnung |0 (DE-588)4062355-5 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Variationsrechnung |0 (DE-588)4062355-5 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016979779&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016979779 |
Datensatz im Suchindex
_version_ | 1804138341731401728 |
---|---|
adam_text | Contents
Prefaces to the English Edition
**
Preface to the French Edition
**
0
Introduction
0.1
Brief historical comments
......................
0.2
Model problem and some examples
.................
0.3
Presentation of the content of the monograph
...........
13
1
Preliminaries
1.1
Introduction
..............................
1.2
Continuous and Holder continuous functions
1.2.1
Exercises
...........................
1.3
Lp spaces
...............................
1.3.1
Exercises
...........................
1.4
Sobolev spaces
............................
1.4.1
Exercises
...........................
1.5
Convex analysis
............................
1.5.1
Exercises
...........................
Classical methods
_
2.1
Introduction
.............................. _„
2.2
Euler-Lagrange equation
.......................
2.2.1
Exercises
...........................
2.3
Second form of the Euler-Lagrange equation
............
. .
Do
2.3.1
Exercises
......................
2.4
Hamiltonian formulation
.......................
2.4.1
Exercises
...........................
2.5
Hamilton-Jacobi equation
......................
2.5.1
Exercises
...........................
V1 CONTENTS
2.6
Fields theories
........
gì
2.6.1
Exercises
..............
gg
3
Direct methods: existence
87
3.1
Introduction
............
g7
3.2
The model case: Dirichlet integral
................. 89
3.2.1
Exercise
............................ 92
3.3
A general existence theorem
..................... 92
3.3.1
Exercises
................ 99
3.4
Euler-Lagrange equation
....................... 101
3.4.1
Exercises
................. 107
3.5
The
vectorial
case
.............. 107
3.5.1
Exercises
........................... 115
3.6
Relaxation theory
........................... 118
3.6.1
Exercises
........................... 121
4
Direct methods: regularity
125
4.1
Introduction
.............................. 125
4.2
The one dimensional case
...................... 126
4.2.1
Exercises
........................... 131
4.3
The difference quotient method: interior regularity
........ 133
4.3.1
Exercises
........................... 139
4.4
The difference quotient method: boundary regularity
....... 140
4.4.1
Exercise
............................ 143
4.5
Higher regularity for the Dirichlet integral
............. 144
4.5.1
Exercises
........................... 146
4.6
Weyl lemma
.............................. 147
4.6.1
Exercise
............................ 150
4.7
Some general results
......................... 150
4.7.1
Exercises
........................... 152
>
Minimal surfaces
155
5.1
Introduction
.............................. 155
5.2
Generalities about surfaces
..................... 158
5.2.1
Exercises
........................... 166
5.3
The Douglas-Courant-Tonelli method
................ 167
5.3.1
Exercise
............................ 173
5.4
Regularity, uniqueness and non-uniqueness
............. 173
5.5
Nonparametric minimal surfaces
.................. 175
5.5.1
Exercise
.................. 180
CONTENTS
vii
6 Isoperimetric
inequality
181
6.1
Introduction
.............................. 181
6.2
The case of dimension
2....................... 182
6.2.1
Exercises
........................... 188
6.3
The case of dimension
η
....................... 189
6.3.1
Exercises
........................... 196
7
Solutions to the Exercises
199
7.1
Chapter
1.
Preliminaries
....................... 199
7.1.1
Continuous and Holder continuous functions
....... 199
7.1.2
Lp spaces
........................... 203
7.1.3
Sobolev spaces
........................ 210
7.1.4
Convex analysis
........................ 217
7.2
Chapter
2.
Classical methods
.................... 224
7.2.1
Euler-Lagrange equation
................... 224
7.2.2
Second form of the Euler-Lagrange equation
........ 230
7.2.3
Hamiltonian formulation
................... 231
7.2.4
Hamilton-Jacobi equation
.................. 232
7.2.5
Fields theories
........................ 234
7.3
Chapter
3.
Direct methods: existence
............... 236
7.3.1
The model case: Dirichlet integral
............. 236
7.3.2
A general existence theorem
................. 236
7.3.3
Euler-Lagrange equation
................... 239
7.3.4
The
vectorial
case
...................... 240
7.3.5
Relaxation theory
...................... 247
7.4
Chapter
4.
Direct methods: regularity
............... 251
7.4.1
The one dimensional case
.................. 251
7.4.2
The difference quotient method: interior regularity
.... 254
7.4.3
The difference quotient method: boundary regularity
. . . 256
7.4.4
Higher regularity for the Dirichlet integral
......... 257
7.4.5
Weyl lemma
.......................... 259
7.4.6
Some general results
..................... 260
7.5
Chapter
5.
Minimal surfaces
..................... 263
7.5.1
Generalities about surfaces
................. 263
7.5.2
The Douglas-Courant-Tonelli method
........... 266
7.5.3
Nonparametric minimal surfaces
.............. 267
7.6
Chapter
6.
Isoperimetric inequality
................. 268
7.6.1
The case of dimension
2................... 268
7.6.2
The case of dimension
η
................... 271
Bibliography
275
|
adam_txt |
Contents
Prefaces to the English Edition
**
Preface to the French Edition
**
0
Introduction
0.1
Brief historical comments
.
0.2
Model problem and some examples
.
0.3
Presentation of the content of the monograph
.
13
1
Preliminaries
1.1
Introduction
.
1.2
Continuous and Holder continuous functions
1.2.1
Exercises
.
1.3
Lp spaces
.
1.3.1
Exercises
.
1.4
Sobolev spaces
.
1.4.1
Exercises
.
1.5
Convex analysis
.
1.5.1
Exercises
.
Classical methods
_
2.1
Introduction
. _„
2.2
Euler-Lagrange equation
.
2.2.1
Exercises
.
2.3
Second form of the Euler-Lagrange equation
.
. .
Do
2.3.1
Exercises
.
2.4
Hamiltonian formulation
.
2.4.1
Exercises
.
2.5
Hamilton-Jacobi equation
.
2.5.1
Exercises
.
V1 CONTENTS
2.6
Fields theories
.
gì
2.6.1
Exercises
.
gg
3
Direct methods: existence
87
3.1
Introduction
.
g7
3.2
The model case: Dirichlet integral
. 89
3.2.1
Exercise
. 92
3.3
A general existence theorem
. 92
3.3.1
Exercises
. 99
3.4
Euler-Lagrange equation
. 101
3.4.1
Exercises
. 107
3.5
The
vectorial
case
. 107
3.5.1
Exercises
. 115
3.6
Relaxation theory
. 118
3.6.1
Exercises
. 121
4
Direct methods: regularity
125
4.1
Introduction
. 125
4.2
The one dimensional case
. 126
4.2.1
Exercises
. 131
4.3
The difference quotient method: interior regularity
. 133
4.3.1
Exercises
. 139
4.4
The difference quotient method: boundary regularity
. 140
4.4.1
Exercise
. 143
4.5
Higher regularity for the Dirichlet integral
. 144
4.5.1
Exercises
. 146
4.6
Weyl lemma
. 147
4.6.1
Exercise
. 150
4.7
Some general results
. 150
4.7.1
Exercises
. 152
>
Minimal surfaces
155
5.1
Introduction
. 155
5.2
Generalities about surfaces
. 158
5.2.1
Exercises
. 166
5.3
The Douglas-Courant-Tonelli method
. 167
5.3.1
Exercise
. 173
5.4
Regularity, uniqueness and non-uniqueness
. 173
5.5
Nonparametric minimal surfaces
. 175
5.5.1
Exercise
. 180
CONTENTS
vii
6 Isoperimetric
inequality
181
6.1
Introduction
. 181
6.2
The case of dimension
2. 182
6.2.1
Exercises
. 188
6.3
The case of dimension
η
. 189
6.3.1
Exercises
. 196
7
Solutions to the Exercises
199
7.1
Chapter
1.
Preliminaries
. 199
7.1.1
Continuous and Holder continuous functions
. 199
7.1.2
Lp spaces
. 203
7.1.3
Sobolev spaces
. 210
7.1.4
Convex analysis
. 217
7.2
Chapter
2.
Classical methods
. 224
7.2.1
Euler-Lagrange equation
. 224
7.2.2
Second form of the Euler-Lagrange equation
. 230
7.2.3
Hamiltonian formulation
. 231
7.2.4
Hamilton-Jacobi equation
. 232
7.2.5
Fields theories
. 234
7.3
Chapter
3.
Direct methods: existence
. 236
7.3.1
The model case: Dirichlet integral
. 236
7.3.2
A general existence theorem
. 236
7.3.3
Euler-Lagrange equation
. 239
7.3.4
The
vectorial
case
. 240
7.3.5
Relaxation theory
. 247
7.4
Chapter
4.
Direct methods: regularity
. 251
7.4.1
The one dimensional case
. 251
7.4.2
The difference quotient method: interior regularity
. 254
7.4.3
The difference quotient method: boundary regularity
. . . 256
7.4.4
Higher regularity for the Dirichlet integral
. 257
7.4.5
Weyl lemma
. 259
7.4.6
Some general results
. 260
7.5
Chapter
5.
Minimal surfaces
. 263
7.5.1
Generalities about surfaces
. 263
7.5.2
The Douglas-Courant-Tonelli method
. 266
7.5.3
Nonparametric minimal surfaces
. 267
7.6
Chapter
6.
Isoperimetric inequality
. 268
7.6.1
The case of dimension
2. 268
7.6.2
The case of dimension
η
. 271
Bibliography
275 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Dacorogna, Bernard 1953- |
author_GND | (DE-588)133791920 |
author_facet | Dacorogna, Bernard 1953- |
author_role | aut |
author_sort | Dacorogna, Bernard 1953- |
author_variant | b d bd |
building | Verbundindex |
bvnumber | BV035172865 |
callnumber-first | Q - Science |
callnumber-label | QA315 |
callnumber-raw | QA315 |
callnumber-search | QA315 |
callnumber-sort | QA 3315 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 660 |
ctrlnum | (OCoLC)473878459 (DE-599)BVBBV035172865 |
dewey-full | 515/.64 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.64 515 |
dewey-search | 515/.64 515 |
dewey-sort | 3515 264 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01851nam a2200481zc 4500</leader><controlfield tag="001">BV035172865</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090407 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081120s2009 xxu |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2008038721</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848163331</subfield><subfield code="c">hardcover : alk. paper</subfield><subfield code="9">978-1-84816-333-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1848163339</subfield><subfield code="c">hardcover : alk. paper</subfield><subfield code="9">1-84816-333-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848163348</subfield><subfield code="c">pbk. : alk. paper</subfield><subfield code="9">978-1-84816-334-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1848163347</subfield><subfield code="c">pbk. : alk. paper</subfield><subfield code="9">1-84816-334-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)473878459</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035172865</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">fre</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA315</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.64</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 660</subfield><subfield code="0">(DE-625)143251:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dacorogna, Bernard</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)133791920</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Introduction au calcul des variations</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to the calculus of variations</subfield><subfield code="c">Bernard Dacorogna</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey</subfield><subfield code="b">Imperial College Press</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 285 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of variations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of variations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016979779&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016979779</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV035172865 |
illustrated | Not Illustrated |
index_date | 2024-07-02T22:55:00Z |
indexdate | 2024-07-09T21:26:39Z |
institution | BVB |
isbn | 9781848163331 1848163339 9781848163348 1848163347 |
language | English French |
lccn | 2008038721 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016979779 |
oclc_num | 473878459 |
open_access_boolean | |
owner | DE-384 DE-703 DE-706 DE-19 DE-BY-UBM DE-20 DE-11 |
owner_facet | DE-384 DE-703 DE-706 DE-19 DE-BY-UBM DE-20 DE-11 |
physical | XII, 285 S. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Imperial College Press |
record_format | marc |
spelling | Dacorogna, Bernard 1953- Verfasser (DE-588)133791920 aut Introduction au calcul des variations Introduction to the calculus of variations Bernard Dacorogna 2. ed. New Jersey Imperial College Press 2009 XII, 285 S. txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Calculus of variations Variationsrechnung (DE-588)4062355-5 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Variationsrechnung (DE-588)4062355-5 s DE-604 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016979779&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Dacorogna, Bernard 1953- Introduction to the calculus of variations Calculus of variations Variationsrechnung (DE-588)4062355-5 gnd |
subject_GND | (DE-588)4062355-5 (DE-588)4123623-3 |
title | Introduction to the calculus of variations |
title_alt | Introduction au calcul des variations |
title_auth | Introduction to the calculus of variations |
title_exact_search | Introduction to the calculus of variations |
title_exact_search_txtP | Introduction to the calculus of variations |
title_full | Introduction to the calculus of variations Bernard Dacorogna |
title_fullStr | Introduction to the calculus of variations Bernard Dacorogna |
title_full_unstemmed | Introduction to the calculus of variations Bernard Dacorogna |
title_short | Introduction to the calculus of variations |
title_sort | introduction to the calculus of variations |
topic | Calculus of variations Variationsrechnung (DE-588)4062355-5 gnd |
topic_facet | Calculus of variations Variationsrechnung Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016979779&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT dacorognabernard introductionaucalculdesvariations AT dacorognabernard introductiontothecalculusofvariations |