Principles of nano-optics:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2008
|
Ausgabe: | 1. publ., reprint. with corr. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | XVII, 539 S. Ill., graph. Darst. |
ISBN: | 0521832241 9780521832243 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035166768 | ||
003 | DE-604 | ||
005 | 20120924 | ||
007 | t | ||
008 | 081118s2008 ad|| |||| 00||| eng d | ||
020 | |a 0521832241 |9 0-521-83224-1 | ||
020 | |a 9780521832243 |9 978-0-521-83224-3 | ||
035 | |a (OCoLC)553879357 | ||
035 | |a (DE-599)BVBBV035166768 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-19 |a DE-29T |a DE-355 |a DE-83 |a DE-91G | ||
050 | 0 | |a TA418.9.N35 | |
082 | 0 | |a 535 | |
082 | 0 | |a 621.36 | |
084 | |a UH 5600 |0 (DE-625)145666: |2 rvk | ||
084 | |a PHY 350f |2 stub | ||
100 | 1 | |a Novotny, Lukas |d 1966- |e Verfasser |0 (DE-588)137365187 |4 aut | |
245 | 1 | 0 | |a Principles of nano-optics |c Lukas Novotny ; Bert Hecht |
250 | |a 1. publ., reprint. with corr. | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2008 | |
300 | |a XVII, 539 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Optik - Nanometerbereich - Nahfeldoptik | |
650 | 4 | |a Quantenoptik - Nanotechnologie | |
650 | 4 | |a Nanostructured materials | |
650 | 4 | |a Near-field microscopy | |
650 | 4 | |a Photonics | |
650 | 4 | |a Quantum optics | |
650 | 0 | 7 | |a Optik |0 (DE-588)4043650-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nanometerbereich |0 (DE-588)4327473-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optische Nahfeldmikroskopie |0 (DE-588)4380320-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenoptik |0 (DE-588)4047990-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Photonik |0 (DE-588)4243979-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Optische Nahfeldmikroskopie |0 (DE-588)4380320-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Quantenoptik |0 (DE-588)4047990-0 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Photonik |0 (DE-588)4243979-6 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Optik |0 (DE-588)4043650-0 |D s |
689 | 3 | 1 | |a Nanometerbereich |0 (DE-588)4327473-0 |D s |
689 | 3 | |5 DE-604 | |
700 | 1 | |a Hecht, Bert |e Verfasser |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016973783&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016973783&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-016973783 |
Datensatz im Suchindex
_version_ | 1804138332770271232 |
---|---|
adam_text | Contents
Preface
page
xv
Introduction
1
1.1
Nano-optics in a nutshell
3
1.2
Historical survey
5
1.3
Scope of the book
7
References
11
Theoretical foundations
13
2.1
Macroscopic electrodynamics
14
2.2
Wave equations
15
2.3
Constitutive relations
15
2.4
Spectral representation of time-dependent fields
17
2.5
Time-harmonic fields
17
2.6
Complex dielectric constant
18
2.7
Piecewise homogeneous media
19
2.8
Boundary conditions
19
2.8.1
Fresnel reflection and transmission coefficients
21
2.9
Conservation of energy
23
2.10
Dyadic Green s functions
25
2.10.1
Mathematical basis of Green s functions
25
2.10.2
Derivation of the Green s function for the electric field
26
2.10.3
Time-dependent Green s functions
30
2.11
Evanescent fields
31
2.11.1
Energy transport by evanescent waves
35
2.11.2
Frustrated total internal reflection
36
2.12
Angular spectrum representation of optical fields
38
2.12.1
Angular spectrum representation of the
dipole
field
42
vn
viii Contents
Problems 43
References
43
3
Propagation and focusing of optical fields
45
3.1
Field propagators
45
3.2
Paraxial approximation of optical fields
47
3.2.1
Gaussian laser beams
47
3.2.2
Higher-order laser modes
50
3.2.3
Longitudinal fields in the focal region
50
3.3
Polarized electric and polarized magnetic fields
53
3.4
Far-fields in the angular spectrum representation
54
3.5
Focusing of fields
56
3.6
Focal fields
61
3.7
Focusing of higher-order laser modes
66
3.8
Limit of weak focusing
71
3.9
Focusing near planar interfaces
73
3.10
Reflected image of a strongly focused spot
78
Problems
86
References
87
4
Spatial resolution and position accuracy
89
4.1
The point-spread function
89
4.2
The resolution limit(s)
95
4.2.1
Increasing resolution through selective excitation
98
4.2.2
Axial resolution
100
4.2.3
Resolution enhancement through saturation
102
4.3
Principles of confocal microscopy
105
4.4
Axial resolution in multiphoton microscopy
110
4.5
Position accuracy 111
4.5.1
Theoretical background
112
4.5.2
Estimating the uncertainties of fit parameters
115
4.6
Principles of near-field optical microscopy
121
4.6.1
Information transfer from near-field to far-field
125
Problems
131
References
132
5
Nanoscale optical microscopy
134
5.1
Far-field illumination and detection
134
5.1.1
Confocal microscopy
134
5.2
Near-field illumination and far-field detection
147
5.2.1
Aperture scanning near-field optical microscopy
148
5.2.2
Field-enhanced scanning near-field optical microscopy
149
Contents ix
5.3
Far-field
Illumination
and near-field detection
157
5.3.1
Scanning tunneling optical microscopy
157
5.3.2
Collection mode near-field optical microscopy
162
5.4
Near-field illumination and near-field detection
163
5.5
Other configurations: energy-transfer microscopy
165
5.6
Conclusion
169
Problems
169
References
169
6
Near-field optical probes
173
6.1
Dielectric probes
173
6.1.1
Tapered optical fibers
174
6.1.2
Tetrahedral tips
179
6.2
Light propagation in a conical dielectric probe
179
6.3
Aperture probes
182
6.3.1
Power transmission through aperture probes
184
6.3.2
Field distribution near small apertures
189
6.3.3
Near-field distribution of aperture probes
193
6.3.4
Enhancement of transmission and directionality
195
6.4
Fabrication of aperture probes
197
6.4.1
Aperture formation by focused ion beam milling
200
6.4.2
Electrochemical opening and closing of apertures
201
6.4.3
Aperture punching
202
6.4.4 Microfabricated
probes
203
6.5
Optical antennas: tips, scatterers, and bowties
208
6.5.1
Solid metal tips
208
6.5.2
Particle-plasmon probes
215
6.5.3
Bowtie antenna probes
218
6.6
Conclusion
219
Problems
220
References
220
7
Probe-sample distance control
225
7.1
Shear-force methods
226
7.1.1
Optical fibers as resonating beams
227
7.1.2
Tuning-fork sensors
230
7.1.3
The effective harmonic oscillator model
232
7.1.4
Response time
234
7.1.5
Equivalent electric circuit
236
7.2
Normal force methods
238
7.2.1
Tuning fork in tapping mode
239
7.2.2
Bent fiber probes
240
Contents
7.3 Topographie
artifacts
240
7.3.1 Phenomenological
theory of artifacts
243
7.3.2
Example of near-field artifacts
245
7.3.3
Discussion
246
Problems
247
References
248
Light emission and optical interactions in nanoscale environments
250
8.1
The multipole expansion
251
8.2
The classical particle-field Hamiltonian
255
8.2.1
Multipole expansion of the interaction Hamiltonian
25 8
8.3
The radiating electric
dipole
260
8.3.1
Electric
dipole
fields in a homogeneous space
261
8.3.2
Dipole
radiation
265
8.3.3
Rate of energy dissipation in inhomogeneous environments
266
8.3.4
Radiation reaction
268
8.4
Spontaneous decay
269
8.4.1
QED of spontaneous decay
270
8.4.2
Spontaneous decay and Green s dyadics
273
8.4.3
Local density of states
276
8.5
Classical lifetimes and decay rates
277
8.5.1
Homogeneous environment
277
8.5.2
Inhomogeneous environment
281
8.5.3
Frequency shifts
282
8.5.4
Quantum yield
283
8.6
Dipole-dipole interactions and energy transfer
284
8.6.1
Multipole expansion of the Coulombic interaction
284
8.6.2
Energy transfer between two particles
285
8.7
Delocalized excitations (strong coupling)
294
8.7.1
Entanglement
299
Problems
300
References
302
Quantum emitters
304
9.1
Fluorescent molecules
304
9.1.1
Excitation
305
9.1.2
Relaxation
306
9.2
Semiconductor quantum dots
309
9.2.1
Surface passivation
310
9.2.2
Excitation
311
9.2.3
Coherent control of
excitons
313
Contents xi
9.3
The absorption cross-section
315
9.4
Single-photon emission by three-level systems
318
9.4.1
Steady-state analysis
319
9.4.2
Time-dependent analysis
320
9.5
Single molecules as probes for localized fields
325
9.5.1
Field distribution in a laser focus
327
9.5.2
Probing strongly localized fields
329
9.6
Conclusion
332
Problems
333
References
333
10 Dipole
emission near planar interfaces
335
10.1
Allowed and forbidden light
336
10.2
Angular spectrum representation of the dyadic Green s function
338
10.3
Decomposition of the dyadic Green s function
339
10.4
Dyadic Green s functions for the reflected and transmitted fields
340
10.5
Spontaneous decay rates near planar interfaces
343
10.6
Far-fields
346
10.7
Radiation patterns
350
10.8
Where is the radiation going?
353
10.9
Magnetic dipoles
356
10.10
Image
dipole
approximation
357
10.10.1
Vertical
dipole
358
10.10.2
Horizontal
dipole
359
10.10.3
Including retardation
359
Problems
360
References
361
11
Photonic crystals and resonators
363
11.1
Photonic crystals
363
11.1.1
The photonic
bandgap
364
11.1.2
Defects in photonic crystals
368
11.2
Optical microcavities
370
Problems
377
References
377
12
Surface plasmons
378
12.1
Optical properties of noble metals
379
12.1.1 Drude-Sommerfeld
theory
380
12.1.2
Interband
transitions
381
12.2
Surface plasmon polaritons at plane interfaces
382
12.2.1
Properties of surface plasmon polaritons
386
xii
Contents
12.2.2
Excitation of surface plasmon polaritons
387
12.2.3
Surface plasmon sensors
392
12.3
Surface plasmons in nano-optics
393
12.3.1
Plasmons supported by wires and particles
398
12.3.2
Plasmon resonances of more complex structures
407
12.3.3
Surface-enhanced Raman scattering
410
12.4
Conclusion
414
Problems
414
References
416
13
Forces in confined fields
419
13.1
Maxwell s stress tensor
420
13.2
Radiation pressure
423
13.3
The
dipole
approximation
424
13.3.1
Time-averaged force
426
13.3.2
Monochromatic fields
427
13.3.3
Saturation behavior for near-resonance excitation
429
13.3.4
Beyond the
dipole
approximation
432
13.4
Optical tweezers
433
13.5
Angular momentum and torque
436
13.6
Forces in optical near-fields
437
13.7
Conclusion
443
Problems
443
References
444
14
Fluctuation-induced interactions
446
14.1
The fluctuation-dissipation theorem
446
14.1.1
The system response function
448
14.1.2
Johnson noise
452
14.1.3
Dissipation due to fluctuating external fields
454
14.1.4
Normal and
antinormal
ordering
455
14.2
Emission by fluctuating sources
456
14.2.1
Blackbody
radiation
458
14.2.2
Coherence, spectral shifts and heat transfer
459
14.3
Fluctuation-induced forces
461
14.3.1
The
Casimir-Polder
potential
463
14.3.2
Electromagnetic friction
467
14.4
Conclusion
472
Problems
472
References
473
Contents xiii
15
Theoretical methods in nano-optics
475
15.1
The multiple multipole method
476
15.2
Volume integral methods
483
15.2.1
The volume integral equation
484
15.2.2
The method of moments (MOM)
490
15.2.3
The coupled
dipole
method (COM)
490
15.2.4
Equivalence of the MOM and the CDM
492
15.3
Effective polarizability
494
15.4
The total Green s function
495
15.5
Conclusion and outlook
496
Problems
497
References
498
Appendix A Semianalytical derivation of the atomic polarizability
500
A.I Steady-state polarizability for weak excitation fields
504
A.2 Near-resonance excitation in absence of damping
506
A.3 Near-resonance excitation with damping
508
Appendix
В
Spontaneous emission in the weak coupling regime
510
B.I Weisskopf-Wigner theory
510
B.2 Inhomogeneous environments
512
References
514
Appendix
С
Fields of
a dipole
near a layered substrate
515
C.I Vertical electric
dipole
515
C.2 Horizontal electric
dipole
516
C.3 Definition of the coefficients Aj, Bj, and Cj
519
Appendix
D
Far-field Green s functions
521
Index
525
Nano-optics is the study of optical phenomena and techniques on the nanometer scale, that is, near
or beyond the diffraction limit of light, it is an emergingfield of study, motivated by the rapid advance
of nanoscience and nanotechnology, which require adequate tools and strategies for fabrication,
manipulation, and characterization at this scale.
in Principles of Nano-optics the authors provide a comprehensive overview of the theoretical
and experimental concepts necessary to understand and work in nano-optics. With a very broad
perspective, they cover optical phenomena relevant to the nanoscale across diverse areas ranging
from quantum optics to biophysics, introducing and describing all of the significant methods
extensively.
This is the first textbook specifically on nano-optics. Written for graduate students who want to enter
the field, it includes problem sets to reinforce and extend the discussion, it is also a valuable reference
for researchers and course teachers.
|
adam_txt |
Contents
Preface
page
xv
Introduction
1
1.1
Nano-optics in a nutshell
3
1.2
Historical survey
5
1.3
Scope of the book
7
References
11
Theoretical foundations
13
2.1
Macroscopic electrodynamics
14
2.2
Wave equations
15
2.3
Constitutive relations
15
2.4
Spectral representation of time-dependent fields
17
2.5
Time-harmonic fields
17
2.6
Complex dielectric constant
18
2.7
Piecewise homogeneous media
19
2.8
Boundary conditions
19
2.8.1
Fresnel reflection and transmission coefficients
21
2.9
Conservation of energy
23
2.10
Dyadic Green's functions
25
2.10.1
Mathematical basis of Green's functions
25
2.10.2
Derivation of the Green's function for the electric field
26
2.10.3
Time-dependent Green's functions
30
2.11
Evanescent fields
31
2.11.1
Energy transport by evanescent waves
35
2.11.2
Frustrated total internal reflection
36
2.12
Angular spectrum representation of optical fields
38
2.12.1
Angular spectrum representation of the
dipole
field
42
vn
viii Contents
Problems 43
References
43
3
Propagation and focusing of optical fields
45
3.1
Field propagators
45
3.2
Paraxial approximation of optical fields
47
3.2.1
Gaussian laser beams
47
3.2.2
Higher-order laser modes
50
3.2.3
Longitudinal fields in the focal region
50
3.3
Polarized electric and polarized magnetic fields
53
3.4
Far-fields in the angular spectrum representation
54
3.5
Focusing of fields
56
3.6
Focal fields
61
3.7
Focusing of higher-order laser modes
66
3.8
Limit of weak focusing
71
3.9
Focusing near planar interfaces
73
3.10
Reflected image of a strongly focused spot
78
Problems
86
References
87
4
Spatial resolution and position accuracy
89
4.1
The point-spread function
89
4.2
The resolution limit(s)
95
4.2.1
Increasing resolution through selective excitation
98
4.2.2
Axial resolution
100
4.2.3
Resolution enhancement through saturation
102
4.3
Principles of confocal microscopy
105
4.4
Axial resolution in multiphoton microscopy
110
4.5
Position accuracy 111
4.5.1
Theoretical background
112
4.5.2
Estimating the uncertainties of fit parameters
115
4.6
Principles of near-field optical microscopy
121
4.6.1
Information transfer from near-field to far-field
125
Problems
131
References
132
5
Nanoscale optical microscopy
134
5.1
Far-field illumination and detection
134
5.1.1
Confocal microscopy
134
5.2
Near-field illumination and far-field detection
147
5.2.1
Aperture scanning near-field optical microscopy
148
5.2.2
Field-enhanced scanning near-field optical microscopy
149
Contents ix
5.3
Far-field
Illumination
and near-field detection
157
5.3.1
Scanning tunneling optical microscopy
157
5.3.2
Collection mode near-field optical microscopy
162
5.4
Near-field illumination and near-field detection
163
5.5
Other configurations: energy-transfer microscopy
165
5.6
Conclusion
169
Problems
169
References
169
6
Near-field optical probes
173
6.1
Dielectric probes
173
6.1.1
Tapered optical fibers
174
6.1.2
Tetrahedral tips
179
6.2
Light propagation in a conical dielectric probe
179
6.3
Aperture probes
182
6.3.1
Power transmission through aperture probes
184
6.3.2
Field distribution near small apertures
189
6.3.3
Near-field distribution of aperture probes
193
6.3.4
Enhancement of transmission and directionality
195
6.4
Fabrication of aperture probes
197
6.4.1
Aperture formation by focused ion beam milling
200
6.4.2
Electrochemical opening and closing of apertures
201
6.4.3
Aperture punching
202
6.4.4 Microfabricated
probes
203
6.5
Optical antennas: tips, scatterers, and bowties
208
6.5.1
Solid metal tips
208
6.5.2
Particle-plasmon probes
215
6.5.3
Bowtie antenna probes
218
6.6
Conclusion
219
Problems
220
References
220
7
Probe-sample distance control
225
7.1
Shear-force methods
226
7.1.1
Optical fibers as resonating beams
227
7.1.2
Tuning-fork sensors
230
7.1.3
The effective harmonic oscillator model
232
7.1.4
Response time
234
7.1.5
Equivalent electric circuit
236
7.2
Normal force methods
238
7.2.1
Tuning fork in tapping mode
239
7.2.2
Bent fiber probes
240
Contents
7.3 Topographie
artifacts
240
7.3.1 Phenomenological
theory of artifacts
243
7.3.2
Example of near-field artifacts
245
7.3.3
Discussion
246
Problems
247
References
248
Light emission and optical interactions in nanoscale environments
250
8.1
The multipole expansion
251
8.2
The classical particle-field Hamiltonian
255
8.2.1
Multipole expansion of the interaction Hamiltonian
25 8
8.3
The radiating electric
dipole
260
8.3.1
Electric
dipole
fields in a homogeneous space
261
8.3.2
Dipole
radiation
265
8.3.3
Rate of energy dissipation in inhomogeneous environments
266
8.3.4
Radiation reaction
268
8.4
Spontaneous decay
269
8.4.1
QED of spontaneous decay
270
8.4.2
Spontaneous decay and Green's dyadics
273
8.4.3
Local density of states
276
8.5
Classical lifetimes and decay rates
277
8.5.1
Homogeneous environment
277
8.5.2
Inhomogeneous environment
281
8.5.3
Frequency shifts
282
8.5.4
Quantum yield
283
8.6
Dipole-dipole interactions and energy transfer
284
8.6.1
Multipole expansion of the Coulombic interaction
284
8.6.2
Energy transfer between two particles
285
8.7
Delocalized excitations (strong coupling)
294
8.7.1
Entanglement
299
Problems
300
References
302
Quantum emitters
304
9.1
Fluorescent molecules
304
9.1.1
Excitation
305
9.1.2
Relaxation
306
9.2
Semiconductor quantum dots
309
9.2.1
Surface passivation
310
9.2.2
Excitation
311
9.2.3
Coherent control of
excitons
313
Contents xi
9.3
The absorption cross-section
315
9.4
Single-photon emission by three-level systems
318
9.4.1
Steady-state analysis
319
9.4.2
Time-dependent analysis
320
9.5
Single molecules as probes for localized fields
325
9.5.1
Field distribution in a laser focus
327
9.5.2
Probing strongly localized fields
329
9.6
Conclusion
332
Problems
333
References
333
10 Dipole
emission near planar interfaces
335
10.1
Allowed and forbidden light
336
10.2
Angular spectrum representation of the dyadic Green's function
338
10.3
Decomposition of the dyadic Green's function
339
10.4
Dyadic Green's functions for the reflected and transmitted fields
340
10.5
Spontaneous decay rates near planar interfaces
343
10.6
Far-fields
346
10.7
Radiation patterns
350
10.8
Where is the radiation going?
353
10.9
Magnetic dipoles
356
10.10
Image
dipole
approximation
357
10.10.1
Vertical
dipole
358
10.10.2
Horizontal
dipole
359
10.10.3
Including retardation
359
Problems
360
References
361
11
Photonic crystals and resonators
363
11.1
Photonic crystals
363
11.1.1
The photonic
bandgap
364
11.1.2
Defects in photonic crystals
368
11.2
Optical microcavities
370
Problems
377
References
377
12
Surface plasmons
378
12.1
Optical properties of noble metals
379
12.1.1 Drude-Sommerfeld
theory
380
12.1.2
Interband
transitions
381
12.2
Surface plasmon polaritons at plane interfaces
382
12.2.1
Properties of surface plasmon polaritons
386
xii
Contents
12.2.2
Excitation of surface plasmon polaritons
387
12.2.3
Surface plasmon sensors
392
12.3
Surface plasmons in nano-optics
393
12.3.1
Plasmons supported by wires and particles
398
12.3.2
Plasmon resonances of more complex structures
407
12.3.3
Surface-enhanced Raman scattering
410
12.4
Conclusion
414
Problems
414
References
416
13
Forces in confined fields
419
13.1
Maxwell's stress tensor
420
13.2
Radiation pressure
423
13.3
The
dipole
approximation
424
13.3.1
Time-averaged force
426
13.3.2
Monochromatic fields
427
13.3.3
Saturation behavior for near-resonance excitation
429
13.3.4
Beyond the
dipole
approximation
432
13.4
Optical tweezers
433
13.5
Angular momentum and torque
436
13.6
Forces in optical near-fields
437
13.7
Conclusion
443
Problems
443
References
444
14
Fluctuation-induced interactions
446
14.1
The fluctuation-dissipation theorem
446
14.1.1
The system response function
448
14.1.2
Johnson noise
452
14.1.3
Dissipation due to fluctuating external fields
454
14.1.4
Normal and
antinormal
ordering
455
14.2
Emission by fluctuating sources
456
14.2.1
Blackbody
radiation
458
14.2.2
Coherence, spectral shifts and heat transfer
459
14.3
Fluctuation-induced forces
461
14.3.1
The
Casimir-Polder
potential
463
14.3.2
Electromagnetic friction
467
14.4
Conclusion
472
Problems
472
References
473
Contents xiii
15
Theoretical methods in nano-optics
475
15.1
The multiple multipole method
476
15.2
Volume integral methods
483
15.2.1
The volume integral equation
484
15.2.2
The method of moments (MOM)
490
15.2.3
The coupled
dipole
method (COM)
490
15.2.4
Equivalence of the MOM and the CDM
492
15.3
Effective polarizability
494
15.4
The total Green's function
495
15.5
Conclusion and outlook
496
Problems
497
References
498
Appendix A Semianalytical derivation of the atomic polarizability
500
A.I Steady-state polarizability for weak excitation fields
504
A.2 Near-resonance excitation in absence of damping
506
A.3 Near-resonance excitation with damping
508
Appendix
В
Spontaneous emission in the weak coupling regime
510
B.I Weisskopf-Wigner theory
510
B.2 Inhomogeneous environments
512
References
514
Appendix
С
Fields of
a dipole
near a layered substrate
515
C.I Vertical electric
dipole
515
C.2 Horizontal electric
dipole
516
C.3 Definition of the coefficients Aj, Bj, and Cj
519
Appendix
D
Far-field Green's functions
521
Index
525
Nano-optics is the study of optical phenomena and techniques on the nanometer scale, that is, near
or beyond the diffraction limit of light, it is an emergingfield of study, motivated by the rapid advance
of nanoscience and nanotechnology, which require adequate tools and strategies for fabrication,
manipulation, and characterization at this scale.
in Principles of Nano-optics the authors provide a comprehensive overview of the theoretical
and experimental concepts necessary to understand and work in nano-optics. With a very broad
perspective, they cover optical phenomena relevant to the nanoscale across diverse areas ranging
from quantum optics to biophysics, introducing and describing all of the significant methods
extensively.
This is the first textbook specifically on nano-optics. Written for graduate students who want to enter
the field, it includes problem sets to reinforce and extend the discussion, it is also a valuable reference
for researchers and course teachers. |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Novotny, Lukas 1966- Hecht, Bert |
author_GND | (DE-588)137365187 |
author_facet | Novotny, Lukas 1966- Hecht, Bert |
author_role | aut aut |
author_sort | Novotny, Lukas 1966- |
author_variant | l n ln b h bh |
building | Verbundindex |
bvnumber | BV035166768 |
callnumber-first | T - Technology |
callnumber-label | TA418 |
callnumber-raw | TA418.9.N35 |
callnumber-search | TA418.9.N35 |
callnumber-sort | TA 3418.9 N35 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | UH 5600 |
classification_tum | PHY 350f |
ctrlnum | (OCoLC)553879357 (DE-599)BVBBV035166768 |
dewey-full | 535 621.36 |
dewey-hundreds | 500 - Natural sciences and mathematics 600 - Technology (Applied sciences) |
dewey-ones | 535 - Light and related radiation 621 - Applied physics |
dewey-raw | 535 621.36 |
dewey-search | 535 621.36 |
dewey-sort | 3535 |
dewey-tens | 530 - Physics 620 - Engineering and allied operations |
discipline | Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
edition | 1. publ., reprint. with corr. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02502nam a2200613 c 4500</leader><controlfield tag="001">BV035166768</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120924 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081118s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521832241</subfield><subfield code="9">0-521-83224-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521832243</subfield><subfield code="9">978-0-521-83224-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)553879357</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035166768</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA418.9.N35</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">535</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.36</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 5600</subfield><subfield code="0">(DE-625)145666:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 350f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Novotny, Lukas</subfield><subfield code="d">1966-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)137365187</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Principles of nano-optics</subfield><subfield code="c">Lukas Novotny ; Bert Hecht</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ., reprint. with corr.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 539 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optik - Nanometerbereich - Nahfeldoptik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantenoptik - Nanotechnologie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanostructured materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Near-field microscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photonics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum optics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optik</subfield><subfield code="0">(DE-588)4043650-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanometerbereich</subfield><subfield code="0">(DE-588)4327473-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optische Nahfeldmikroskopie</subfield><subfield code="0">(DE-588)4380320-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenoptik</subfield><subfield code="0">(DE-588)4047990-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Photonik</subfield><subfield code="0">(DE-588)4243979-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Optische Nahfeldmikroskopie</subfield><subfield code="0">(DE-588)4380320-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Quantenoptik</subfield><subfield code="0">(DE-588)4047990-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Photonik</subfield><subfield code="0">(DE-588)4243979-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Optik</subfield><subfield code="0">(DE-588)4043650-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Nanometerbereich</subfield><subfield code="0">(DE-588)4327473-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hecht, Bert</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016973783&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016973783&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016973783</subfield></datafield></record></collection> |
id | DE-604.BV035166768 |
illustrated | Illustrated |
index_date | 2024-07-02T22:52:47Z |
indexdate | 2024-07-09T21:26:31Z |
institution | BVB |
isbn | 0521832241 9780521832243 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016973783 |
oclc_num | 553879357 |
open_access_boolean | |
owner | DE-20 DE-19 DE-BY-UBM DE-29T DE-355 DE-BY-UBR DE-83 DE-91G DE-BY-TUM |
owner_facet | DE-20 DE-19 DE-BY-UBM DE-29T DE-355 DE-BY-UBR DE-83 DE-91G DE-BY-TUM |
physical | XVII, 539 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Cambridge Univ. Press |
record_format | marc |
spelling | Novotny, Lukas 1966- Verfasser (DE-588)137365187 aut Principles of nano-optics Lukas Novotny ; Bert Hecht 1. publ., reprint. with corr. Cambridge [u.a.] Cambridge Univ. Press 2008 XVII, 539 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Optik - Nanometerbereich - Nahfeldoptik Quantenoptik - Nanotechnologie Nanostructured materials Near-field microscopy Photonics Quantum optics Optik (DE-588)4043650-0 gnd rswk-swf Nanometerbereich (DE-588)4327473-0 gnd rswk-swf Optische Nahfeldmikroskopie (DE-588)4380320-9 gnd rswk-swf Quantenoptik (DE-588)4047990-0 gnd rswk-swf Photonik (DE-588)4243979-6 gnd rswk-swf Optische Nahfeldmikroskopie (DE-588)4380320-9 s DE-604 Quantenoptik (DE-588)4047990-0 s Photonik (DE-588)4243979-6 s Optik (DE-588)4043650-0 s Nanometerbereich (DE-588)4327473-0 s Hecht, Bert Verfasser aut Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016973783&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016973783&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Novotny, Lukas 1966- Hecht, Bert Principles of nano-optics Optik - Nanometerbereich - Nahfeldoptik Quantenoptik - Nanotechnologie Nanostructured materials Near-field microscopy Photonics Quantum optics Optik (DE-588)4043650-0 gnd Nanometerbereich (DE-588)4327473-0 gnd Optische Nahfeldmikroskopie (DE-588)4380320-9 gnd Quantenoptik (DE-588)4047990-0 gnd Photonik (DE-588)4243979-6 gnd |
subject_GND | (DE-588)4043650-0 (DE-588)4327473-0 (DE-588)4380320-9 (DE-588)4047990-0 (DE-588)4243979-6 |
title | Principles of nano-optics |
title_auth | Principles of nano-optics |
title_exact_search | Principles of nano-optics |
title_exact_search_txtP | Principles of nano-optics |
title_full | Principles of nano-optics Lukas Novotny ; Bert Hecht |
title_fullStr | Principles of nano-optics Lukas Novotny ; Bert Hecht |
title_full_unstemmed | Principles of nano-optics Lukas Novotny ; Bert Hecht |
title_short | Principles of nano-optics |
title_sort | principles of nano optics |
topic | Optik - Nanometerbereich - Nahfeldoptik Quantenoptik - Nanotechnologie Nanostructured materials Near-field microscopy Photonics Quantum optics Optik (DE-588)4043650-0 gnd Nanometerbereich (DE-588)4327473-0 gnd Optische Nahfeldmikroskopie (DE-588)4380320-9 gnd Quantenoptik (DE-588)4047990-0 gnd Photonik (DE-588)4243979-6 gnd |
topic_facet | Optik - Nanometerbereich - Nahfeldoptik Quantenoptik - Nanotechnologie Nanostructured materials Near-field microscopy Photonics Quantum optics Optik Nanometerbereich Optische Nahfeldmikroskopie Quantenoptik Photonik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016973783&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016973783&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT novotnylukas principlesofnanooptics AT hechtbert principlesofnanooptics |