Photonic crystals: physics and technology
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Milano
Springer
2008
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | X, 284 S. Ill., graph. Darst. |
ISBN: | 8847008433 9788847008434 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035158692 | ||
003 | DE-604 | ||
005 | 20090130 | ||
007 | t | ||
008 | 081113s2008 ad|| |||| 00||| eng d | ||
015 | |a 08,N10,0559 |2 dnb | ||
016 | 7 | |a 987565664 |2 DE-101 | |
020 | |a 8847008433 |c Pb. : ca. EUR 58.80 (freier Pr.), ca. sfr 96.00 (freier Pr.) |9 88-470-0843-3 | ||
020 | |a 9788847008434 |c Pb. : ca. EUR 58.80 (freier Pr.), ca. sfr 96.00 (freier Pr.) |9 978-88-470-0843-4 | ||
024 | 3 | |a 9788847008434 | |
028 | 5 | 2 | |a 12242023 |
035 | |a (OCoLC)233934704 | ||
035 | |a (DE-599)DNB987565664 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-11 | ||
050 | 0 | |a QC793.5.P427 | |
082 | 0 | |a 621.36 |2 22 | |
084 | |a UP 8000 |0 (DE-625)146448: |2 rvk | ||
084 | |a UQ 4500 |0 (DE-625)146515: |2 rvk | ||
084 | |a 530 |2 sdnb | ||
245 | 1 | 0 | |a Photonic crystals |b physics and technology |c C. Sibilia ... ed. |
264 | 1 | |a Milano |b Springer |c 2008 | |
300 | |a X, 284 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Crystal optics | |
650 | 4 | |a Photonic crystals | |
650 | 0 | 7 | |a Photonischer Kristall |0 (DE-588)4587112-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Photonischer Kristall |0 (DE-588)4587112-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Sibilia, Concita |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-88-470-0844-1 |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016965842&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016965842&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-016965842 |
Datensatz im Suchindex
_version_ | 1804138320714792960 |
---|---|
adam_text | Contents
Introduction
.
Parti
Basics
1
Introduction
to Photonic Crystals and Photonic Band-Gaps
Richard
M. De
La Rue, Sarah
A. De La
Rue
........................... 7
1.1
Introduction
................................................... 7
1.2
Brief Historical and Definitional Note
............................. 7
1.3
What Does a Photonic Crystal Look Like?
......................... 8
1.4
Photonic Band-Structure and the Electron-Photon Analogy
........... 10
1.5
Propagation of Light in Periodic Media, Photonic Crystals
and Photonic Band-Gaps
........................................ 11
1.6
Quantum Energy-Frequency Relations
............................ 13
1.7
Light Confinement in One Spatial Dimension: The Slab Waveguide
----- 15
1.8
Band-Structure in Periodic Media, the ID Case
..................... 18
1.9
Band-Structure in Periodic Media, the 2D Case
..................... 20
1.10
Gap Maps
.................................................... 22
1.11
Channel Waveguides Through Photonic Crystals
.................... 23
1.12
Concluding Remarks
........................................... 24
References
......................................................... 24
2
Physics of Slow Bloch Modes and Their Applications
Pierre Viktorovitch
............................................... 27
2.1
Introduction
................................................... 27
2.2
Photonic Crystals: A Brief Overview of Basic Concepts
.............. 28
2.2.1
What Are Photonic Crystals?
.............................. 28
2.2.2
Why Photonic Crystals?
.................................. 30
2.2.3
Photonic Crystal: How Does It Work?
...................... 31
2.3
Photonic Crystals: Slow Bloch Modes and Related Devices
........... 34
vi
Contents
2.4
Towards 2.5D
Micro-Nano-Photonics............................. 38
2.5
Conclusion
.................................................... 41
References
......................................................... 41
Part
Π
Nonlinear Optics in Photonic Crystals
3
Quasi Phase Matching in Two-Dimensional Quadratic Nonlinear
Photonic Crystals
Ady
Arie, Nili
Habshoosh,
Alón Bahabad
............................. 45
3.1
Introduction
................................................... 45
3.2
General Analysis of a Periodic Two-Dimensional Nonlinear
Photonic Crystal
............................................... 47
3.2.1
The Real Lattice
........................................ 47
3.2.2
The Reciprocal Lattice
................................... 48
3.2.3
Wave Equations in 2D NLPhC
............................ 49
3.3
Conversion Efficiency for Specific Types of 2D Periodic Structures
.... 51
3.3.1
General Expressions for Fourier Coefficients
................. 51
3.3.2
Efficiency for Specific QPM Orders
........................ 53
3.4
Experimental Results
........................................... 55
3.5
Conclusion
.................................................... 58
References
......................................................... 59
4
Harmonic Generation in Nanostructures:
Metal Nanoparticles and Photonic Crystals
Andrea Marco
Malvezzi
........................................... 61
4.1
Introduction
................................................... 61
4.2
Metallic Nanospheres
........................................... 62
4.3
Nanoparticles in Monolayers
..................................... 63
4.4
Planar Photonic Structures
....................................... 66
4.5
Conclusions
................................................... 74
References
......................................................... 75
5
Ultra-fast Optical Reconfiguration via Nonlinear Effects
in Semiconductor Photonic Crystals
Crina
Cojocaru, Jose Trull, Ramon Vilaseca,
Fabrice Raineri,
Ariel Levenson, Rama Raj
......................................... 79
5.1
Introduction
................................................... 79
5.2
Ultra-fast Optical Tuning of a Photonic Crystal Response
via Quadratic Nonlinearities
..................................... 81
5.3
Multifunction Operation in Two-Dimensional Semiconductor
Photonic Crystal Slabs
.......................................... 88
5.4
Conclusions
................................................... 94
References
.......... ........ 95
Contents
vii
6
Nonlinear Optics with Photonic-Crystal Fibres
Aleksei M. Zheltikov
.............................................. 97
6.1
Introduction: Photonic-Crystal Fibre Components
for Advanced Optical Technologies
............................... 97
6.2
Supercontinuum Generation in Photonic-Crystal Fibres
..............101
6.3
Photonic-Crystal Fibre Sources
for Nonlinear Raman Microspectroscopy
..........................103
6.4
Photonic-Crystal Fibre Components for Time-Resolved Studies
of Ultrafast Molecular Dynamics
.................................107
6.5
Spectral Transformation of Megawatt Femtosecond Laser Pulses
in a Large-Mode-Area Photonic-Crystal Fibre
......................
Ill
6.6
Third-Harmonic Generation by
Ultrashort
Laser Pulses
..............115
6.7
Hollow Photonic-Crystal Fibres for the Delivery and Nonlinear-Optical
Transformation of High-Peak-Power
Ultrashort
Pulses
...............116
6.8
Conclusion
....................................................122
References
.........................................................123
Part III Technology, Integration an Active Photonic Crystals
7
Photonic Crystal and Photonic Band-Gap Structures
for Light Extraction and Emission Control
Richard
M. De La
Rue
............................................131
7.1
Introduction
...................................................131
7.2
Basic Background
..............................................132
7.3
Why III-V Semiconductors?
.....................................133
7.4
Efficient Extraction of Light from
LEDs...........................136
7.5
Photonic Crystal Light Extraction Structures
.......................140
7.6
Photonic Crystal (PhC) and Photonic Quasi-Crystal (PQC) Structures
Incorporated into Large Band-Gap Nitride
LEDs....................142
7.7
Emission Control and Lasing
....................................144
7.8
Conclusions
...................................................146
References
.........................................................146
8
Silicon-Based Photonic Crystals and Nanowires
Božena
Jaskorzynska, Lech Wosinski
................................. 149
8.1
Towards Dense Photonic Integration
..............................149
8.2
Device Concepts and Demonstrators
..............................152
8.2.1
The Smallest AWG Demultiplexer
.........................152
8.2.2
Negative Refraction for Polarization Splitting
................153
8.2.3
Channel Drop Filter in a Two-Dimensional Triangular
Photonic Crystal
........................................155
8.2.4
Narrow Band Directional Coupler Filter with ID PhC Arm
___156
viii Contents
8.2.5
Widely Tuneable Directional Coupler Filters
with ID Photonic Crystal
.................................157
8.2.6
Vertical Waveguide-PhC Cavity Coupler
....................158
8.3
Nanofabrication Technology for Si-Based Mesostructures
............160
8.3.1
Plasma Enhanced Chemical Vapour Deposition (PECVD)
of Amorphous Si and S1O2
................................160
8.3.2
Electron Beam Lithography
...............................163
8.3.3
Etching
................................................164
8.4
Conclusions
...................................................166
References
.........................................................166
Part IV Characterisation and Measurements of Nanostructures
9
Near Infrared Optical Characterization Techniques
for Photonic Crystals
Romuald
Houdré.................................................
173
9.1
Introduction
...................................................173
9.2
External Probe Light Source
.....................................174
9.2.1
Reflectivity
.............................................174
9.2.2
EndFire
...............................................176
9.3
Internal Light Source Techniques
.................................181
9.3.1
Internal Light Source
....................................181
9.3.2
Photoluminescence Spectroscopy
..........................184
9.4
Advanced Techniques
...........................................184
9.4.1
Local Probe
SNOM
.....................................184
9.4.2
Fourier Imaging
.........................................185
9.5
Conclusion
....................................................189
References
.........................................................190
10
Characterization Techniques for Planar Optical
Microresonators
René M.
de Ridder, Wico CL. Hopman,
Edwin
J. Klein
.................. 193
10.1
Introduction...................................................
193
10.2 Fabry-Perot-Type
Optical Resonators
.............................194
10.2.1
Resonance Condition; Free Spectral Range (FSR)
............195
10.2.2
Transfer Function
.......................................196
10.2.3
Field Distribution
.......................................200
10.2.4
Higher-Order Transversal Modes; Degeneracy
...............201
10.3
Spectral Analysis
..............................................202
10.3.1
Determining Cavity Loss and Mirror Reflectivities
............202
10.4
Transmission-Based
SNOM
(T-SNOM)
...........................203
10.4.1
Origin of the Method
....................................203
10.4.2
Set-Up
................................................204
10.4.3
Image Construction
-
Contrast
............................205
10.4.4
Measurements of Nanomechano-Optical Interaction
..........207
10.4.5
Modelling T-SNOM
.....................................207
Contents ix
10.5
Far-Field Scattering Microscopy (FSM)
...........................212
10.5.1
Set-Up
................................................212
10.5.2
Measurements
..........................................214
10.5.3
Interpretation
...........................................214
10.6
Summary
.....................................................215
References
.........................................................215
11
On
SNOM
Resolution Improvement
Tomasz
J-
Antosiewicz, Marian Marciniak,
Tomasz Szoplik
................217
11.1
Introduction
...................................................217
11.2
Transmission of Light Through Sub-wavelength Apertures
and Aperture Arrays in Metal Films
...............................219
11.3
A New Model of Charge Density Distribution on
SNOM
Probe Rims
... 220
11.4
Types of
SNOM
Probes
.........................................223
11.4.1
Tapered-Fibre Metal-Coated Aperture
SNOM
Probes
.........223
11.4.2
Apertureless Tapered Metal
SNOM
Probes
..................224
11.5
Corrugated Metal-coated Tapered Fibre
SNOM
Probes
...............226
11.6
Summary
.....................................................232
References
.........................................................233
Part V Simulation Techniques
12
Photonic Crystals: Simulation Successes
and some Remaining Challenges
Trevor M. Benson, Peter Bienstman
..................................239
12.1
Introduction
...................................................239
12.2
Time-Domain Techniques
.......................................240
12.3
Frequency-Domain Techniques
...................................241
12.4
COST PI
1
Modelling Exercises
..................................243
12.4.1
Slow Wave Structures
(SWS) .............................244
12.4.2
Photonic Wire
..........................................245
12.4.3
Second Harmonic Generation
.............................246
12.4.4
Photonic Crystal Membrane Waveguides
....................247
12.5
A Flavour of Some Emerging Problems
............................248
12.6
Conclusions
...................................................249
References
.........................................................250
13
Plane-Wave Admittance Method and its Applications
to Modelling Photonic Crystal Structures
Maciej
Dems,
Tomasz Czyszanowski, Rafał Kotyński,
Krassimir Panajotov
... 253
13.1
Introduction
...................................................253
13.2
PWAM Theory
................................................254
13.2.1
General Transmission Line Equations and Plane-Wave Basis
... 254
13.2.2 Eigenmode
Determination
................................258
13.2.3
Admittance Transfer
.....................................259
χ
Contents
13.2.4 Determination
of the Fields
...............................262
13.2.5
Perfectly Matched Layers as Boundary Conditions
............263
13.3
Modelling PC-VCSELs with PWAM
..............................265
13.3.1
Dependence of the Wavelength and Modal Loss
on Etching Depth
.......................................266
13.3.2
Analysis of Single-Mode Operation of PC-VCSELs
..........267
13.3.3
Polarisation Control of VCSELs with Photonic-Crystals
.......270
13.4
Conclusions
...................................................275
References
.........................................................275
Acknowledgements
..............................................279
Index
..........................................................281
Sibilio
·
Benson
·
Marciniak
·
Szoplik
ΐ
Photonic Crystals:
Physics and Technology
This book provides an overview of the activity in the field of Photonic
Crystals (PCs) developed in the frame or
Ле
COST
Pl
1
Action.
The main objective of the COST
Ρ
11
Action was to unify and
coordinate national efforts aimed at studying linear and nonlinear
optical interactions with PCs. Related materials research and methods
for the realization of
3D
PCs were also considered, togerfier with the
development and implementation of measurement techniques for the
experimental evaluation of the potential applications of PCs in different
areas, for example telecommunication with novel optical fibres,
lasers, nonlinear multi-functionality, display devices, optoelectronics
and sensors. The book contains contributions from authors who gave
their lectures at the COST PI
1
Training School that was held at
Warsaw University and the National Institute of Telecommunications,
Warsaw, in May
2007.
It was attended by
23
students. The focus
of the School was on the work of Working Croups WC
1
and WG3
of the COST PI
1
Action, concerning the active and non-linear
properties of photonic crystals and
Ле
fabrication and
characterisation of photonic crystal stuctures. This was supported
by two opening lectures providing a general introdudion to the topics
covered within the Action, and a summary of the challenges faced
by and achievements of the modelling and simulation activities
developed during the Action.
|
adam_txt |
Contents
Introduction
.
Parti
Basics
1
Introduction
to Photonic Crystals and Photonic Band-Gaps
Richard
M. De
La Rue, Sarah
A. De La
Rue
. 7
1.1
Introduction
. 7
1.2
Brief Historical and Definitional Note
. 7
1.3
What Does a Photonic Crystal Look Like?
. 8
1.4
Photonic Band-Structure and the Electron-Photon Analogy
. 10
1.5
Propagation of Light in Periodic Media, Photonic Crystals
and Photonic Band-Gaps
. 11
1.6
Quantum Energy-Frequency Relations
. 13
1.7
Light Confinement in One Spatial Dimension: The Slab Waveguide
----- 15
1.8
Band-Structure in Periodic Media, the ID Case
. 18
1.9
Band-Structure in Periodic Media, the 2D Case
. 20
1.10
Gap Maps
. 22
1.11
Channel Waveguides Through Photonic Crystals
. 23
1.12
Concluding Remarks
. 24
References
. 24
2
Physics of Slow Bloch Modes and Their Applications
Pierre Viktorovitch
. 27
2.1
Introduction
. 27
2.2
Photonic Crystals: A Brief Overview of Basic Concepts
. 28
2.2.1
What Are Photonic Crystals?
. 28
2.2.2
Why Photonic Crystals?
. 30
2.2.3
Photonic Crystal: How Does It Work?
. 31
2.3
Photonic Crystals: Slow Bloch Modes and Related Devices
. 34
vi
Contents
2.4
Towards 2.5D
Micro-Nano-Photonics. 38
2.5
Conclusion
. 41
References
. 41
Part
Π
Nonlinear Optics in Photonic Crystals
3
Quasi Phase Matching in Two-Dimensional Quadratic Nonlinear
Photonic Crystals
Ady
Arie, Nili
Habshoosh,
Alón Bahabad
. 45
3.1
Introduction
. 45
3.2
General Analysis of a Periodic Two-Dimensional Nonlinear
Photonic Crystal
. 47
3.2.1
The Real Lattice
. 47
3.2.2
The Reciprocal Lattice
. 48
3.2.3
Wave Equations in 2D NLPhC
. 49
3.3
Conversion Efficiency for Specific Types of 2D Periodic Structures
. 51
3.3.1
General Expressions for Fourier Coefficients
. 51
3.3.2
Efficiency for Specific QPM Orders
. 53
3.4
Experimental Results
. 55
3.5
Conclusion
. 58
References
. 59
4
Harmonic Generation in Nanostructures:
Metal Nanoparticles and Photonic Crystals
Andrea Marco
Malvezzi
. 61
4.1
Introduction
. 61
4.2
Metallic Nanospheres
. 62
4.3
Nanoparticles in Monolayers
. 63
4.4
Planar Photonic Structures
. 66
4.5
Conclusions
. 74
References
. 75
5
Ultra-fast Optical Reconfiguration via Nonlinear Effects
in Semiconductor Photonic Crystals
Crina
Cojocaru, Jose Trull, Ramon Vilaseca,
Fabrice Raineri,
Ariel Levenson, Rama Raj
. 79
5.1
Introduction
. 79
5.2
Ultra-fast Optical Tuning of a Photonic Crystal Response
via Quadratic Nonlinearities
. 81
5.3
Multifunction Operation in Two-Dimensional Semiconductor
Photonic Crystal Slabs
. 88
5.4
Conclusions
. 94
References
. . 95
Contents
vii
6
Nonlinear Optics with Photonic-Crystal Fibres
Aleksei M. Zheltikov
. 97
6.1
Introduction: Photonic-Crystal Fibre Components
for Advanced Optical Technologies
. 97
6.2
Supercontinuum Generation in Photonic-Crystal Fibres
.101
6.3
Photonic-Crystal Fibre Sources
for Nonlinear Raman Microspectroscopy
.103
6.4
Photonic-Crystal Fibre Components for Time-Resolved Studies
of Ultrafast Molecular Dynamics
.107
6.5
Spectral Transformation of Megawatt Femtosecond Laser Pulses
in a Large-Mode-Area Photonic-Crystal Fibre
.
Ill
6.6
Third-Harmonic Generation by
Ultrashort
Laser Pulses
.115
6.7
Hollow Photonic-Crystal Fibres for the Delivery and Nonlinear-Optical
Transformation of High-Peak-Power
Ultrashort
Pulses
.116
6.8
Conclusion
.122
References
.123
Part III Technology, Integration an Active Photonic Crystals
7
Photonic Crystal and Photonic Band-Gap Structures
for Light Extraction and Emission Control
Richard
M. De La
Rue
.131
7.1
Introduction
.131
7.2
Basic Background
.132
7.3
Why III-V Semiconductors?
.133
7.4
Efficient Extraction of Light from
LEDs.136
7.5
Photonic Crystal Light Extraction Structures
.140
7.6
Photonic Crystal (PhC) and Photonic Quasi-Crystal (PQC) Structures
Incorporated into Large Band-Gap Nitride
LEDs.142
7.7
Emission Control and Lasing
.144
7.8
Conclusions
.146
References
.146
8
Silicon-Based Photonic Crystals and Nanowires
Božena
Jaskorzynska, Lech Wosinski
. 149
8.1
Towards Dense Photonic Integration
.149
8.2
Device Concepts and Demonstrators
.152
8.2.1
The Smallest AWG Demultiplexer
.152
8.2.2
Negative Refraction for Polarization Splitting
.153
8.2.3
Channel Drop Filter in a Two-Dimensional Triangular
Photonic Crystal
.155
8.2.4
Narrow Band Directional Coupler Filter with ID PhC Arm
_156
viii Contents
8.2.5
Widely Tuneable Directional Coupler Filters
with ID Photonic Crystal
.157
8.2.6
Vertical Waveguide-PhC Cavity Coupler
.158
8.3
Nanofabrication Technology for Si-Based Mesostructures
.160
8.3.1
Plasma Enhanced Chemical Vapour Deposition (PECVD)
of Amorphous Si and S1O2
.160
8.3.2
Electron Beam Lithography
.163
8.3.3
Etching
.164
8.4
Conclusions
.166
References
.166
Part IV Characterisation and Measurements of Nanostructures
9
Near Infrared Optical Characterization Techniques
for Photonic Crystals
Romuald
Houdré.
173
9.1
Introduction
.173
9.2
External Probe Light Source
.174
9.2.1
Reflectivity
.174
9.2.2
EndFire
.176
9.3
Internal Light Source Techniques
.181
9.3.1
Internal Light Source
.181
9.3.2
Photoluminescence Spectroscopy
.184
9.4
Advanced Techniques
.184
9.4.1
Local Probe
SNOM
.184
9.4.2
Fourier Imaging
.185
9.5
Conclusion
.189
References
.190
10
Characterization Techniques for Planar Optical
Microresonators
René M.
de Ridder, Wico CL. Hopman,
Edwin
J. Klein
. 193
10.1
Introduction.
193
10.2 Fabry-Perot-Type
Optical Resonators
.194
10.2.1
Resonance Condition; Free Spectral Range (FSR)
.195
10.2.2
Transfer Function
.196
10.2.3
Field Distribution
.200
10.2.4
Higher-Order Transversal Modes; Degeneracy
.201
10.3
Spectral Analysis
.202
10.3.1
Determining Cavity Loss and Mirror Reflectivities
.202
10.4
Transmission-Based
SNOM
(T-SNOM)
.203
10.4.1
Origin of the Method
.203
10.4.2
Set-Up
.204
10.4.3
Image Construction
-
Contrast
.205
10.4.4
Measurements of Nanomechano-Optical Interaction
.207
10.4.5
Modelling T-SNOM
.207
Contents ix
10.5
Far-Field Scattering Microscopy (FSM)
.212
10.5.1
Set-Up
.212
10.5.2
Measurements
.214
10.5.3
Interpretation
.214
10.6
Summary
.215
References
.215
11
On
SNOM
Resolution Improvement
Tomasz
J-
Antosiewicz, Marian Marciniak,
Tomasz Szoplik
.217
11.1
Introduction
.217
11.2
Transmission of Light Through Sub-wavelength Apertures
and Aperture Arrays in Metal Films
.219
11.3
A New Model of Charge Density Distribution on
SNOM
Probe Rims
. 220
11.4
Types of
SNOM
Probes
.223
11.4.1
Tapered-Fibre Metal-Coated Aperture
SNOM
Probes
.223
11.4.2
Apertureless Tapered Metal
SNOM
Probes
.224
11.5
Corrugated Metal-coated Tapered Fibre
SNOM
Probes
.226
11.6
Summary
.232
References
.233
Part V Simulation Techniques
12
Photonic Crystals: Simulation Successes
and some Remaining Challenges
Trevor M. Benson, Peter Bienstman
.239
12.1
Introduction
.239
12.2
Time-Domain Techniques
.240
12.3
Frequency-Domain Techniques
.241
12.4
COST PI
1
Modelling Exercises
.243
12.4.1
Slow Wave Structures
(SWS) .244
12.4.2
Photonic Wire
.245
12.4.3
Second Harmonic Generation
.246
12.4.4
Photonic Crystal Membrane Waveguides
.247
12.5
A Flavour of Some Emerging Problems
.248
12.6
Conclusions
.249
References
.250
13
Plane-Wave Admittance Method and its Applications
to Modelling Photonic Crystal Structures
Maciej
Dems,
Tomasz Czyszanowski, Rafał Kotyński,
Krassimir Panajotov
. 253
13.1
Introduction
.253
13.2
PWAM Theory
.254
13.2.1
General Transmission Line Equations and Plane-Wave Basis
. 254
13.2.2 Eigenmode
Determination
.258
13.2.3
Admittance Transfer
.259
χ
Contents
13.2.4 Determination
of the Fields
.262
13.2.5
Perfectly Matched Layers as Boundary Conditions
.263
13.3
Modelling PC-VCSELs with PWAM
.265
13.3.1
Dependence of the Wavelength and Modal Loss
on Etching Depth
.266
13.3.2
Analysis of Single-Mode Operation of PC-VCSELs
.267
13.3.3
Polarisation Control of VCSELs with Photonic-Crystals
.270
13.4
Conclusions
.275
References
.275
Acknowledgements
.279
Index
.281
Sibilio
·
Benson
·
Marciniak
·
Szoplik
ΐ
Photonic Crystals:
Physics and Technology
This book provides an overview of the activity in the field of Photonic
Crystals (PCs) developed in the frame or
Ле
COST
Pl
1
Action.
The main objective of the COST
Ρ
11
Action was to unify and
coordinate national efforts aimed at studying linear and nonlinear
optical interactions with PCs. Related materials research and methods
for the realization of
3D
PCs were also considered, togerfier with the
development and implementation of measurement techniques for the
experimental evaluation of the potential applications of PCs in different
areas, for example telecommunication with novel optical fibres,
lasers, nonlinear multi-functionality, display devices, optoelectronics
and sensors. The book contains contributions from authors who gave
their lectures at the COST PI
1
Training School that was held at
Warsaw University and the National Institute of Telecommunications,
Warsaw, in May
2007.
It was attended by
23
students. The focus
of the School was on the work of Working Croups WC
1
and WG3
of the COST PI
1
Action, concerning the active and non-linear
properties of photonic crystals and
Ле
fabrication and
characterisation of photonic crystal stuctures. This was supported
by two opening lectures providing a general introdudion to the topics
covered within the Action, and a summary of the challenges faced
by and achievements of the modelling and simulation activities
developed during the Action. |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Sibilia, Concita |
author2_role | edt |
author2_variant | c s cs |
author_facet | Sibilia, Concita |
building | Verbundindex |
bvnumber | BV035158692 |
callnumber-first | Q - Science |
callnumber-label | QC793 |
callnumber-raw | QC793.5.P427 |
callnumber-search | QC793.5.P427 |
callnumber-sort | QC 3793.5 P427 |
callnumber-subject | QC - Physics |
classification_rvk | UP 8000 UQ 4500 |
ctrlnum | (OCoLC)233934704 (DE-599)DNB987565664 |
dewey-full | 621.36 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.36 |
dewey-search | 621.36 |
dewey-sort | 3621.36 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01969nam a2200469 c 4500</leader><controlfield tag="001">BV035158692</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090130 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081113s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,N10,0559</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">987565664</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">8847008433</subfield><subfield code="c">Pb. : ca. EUR 58.80 (freier Pr.), ca. sfr 96.00 (freier Pr.)</subfield><subfield code="9">88-470-0843-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9788847008434</subfield><subfield code="c">Pb. : ca. EUR 58.80 (freier Pr.), ca. sfr 96.00 (freier Pr.)</subfield><subfield code="9">978-88-470-0843-4</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9788847008434</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12242023</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)233934704</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB987565664</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC793.5.P427</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.36</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 8000</subfield><subfield code="0">(DE-625)146448:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 4500</subfield><subfield code="0">(DE-625)146515:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Photonic crystals</subfield><subfield code="b">physics and technology</subfield><subfield code="c">C. Sibilia ... ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Milano</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 284 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crystal optics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photonic crystals</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Photonischer Kristall</subfield><subfield code="0">(DE-588)4587112-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Photonischer Kristall</subfield><subfield code="0">(DE-588)4587112-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sibilia, Concita</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-88-470-0844-1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016965842&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016965842&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016965842</subfield></datafield></record></collection> |
id | DE-604.BV035158692 |
illustrated | Illustrated |
index_date | 2024-07-02T22:49:47Z |
indexdate | 2024-07-09T21:26:19Z |
institution | BVB |
isbn | 8847008433 9788847008434 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016965842 |
oclc_num | 233934704 |
open_access_boolean | |
owner | DE-703 DE-11 |
owner_facet | DE-703 DE-11 |
physical | X, 284 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
spelling | Photonic crystals physics and technology C. Sibilia ... ed. Milano Springer 2008 X, 284 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Crystal optics Photonic crystals Photonischer Kristall (DE-588)4587112-7 gnd rswk-swf Photonischer Kristall (DE-588)4587112-7 s DE-604 Sibilia, Concita edt Erscheint auch als Online-Ausgabe 978-88-470-0844-1 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016965842&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016965842&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Photonic crystals physics and technology Crystal optics Photonic crystals Photonischer Kristall (DE-588)4587112-7 gnd |
subject_GND | (DE-588)4587112-7 |
title | Photonic crystals physics and technology |
title_auth | Photonic crystals physics and technology |
title_exact_search | Photonic crystals physics and technology |
title_exact_search_txtP | Photonic crystals physics and technology |
title_full | Photonic crystals physics and technology C. Sibilia ... ed. |
title_fullStr | Photonic crystals physics and technology C. Sibilia ... ed. |
title_full_unstemmed | Photonic crystals physics and technology C. Sibilia ... ed. |
title_short | Photonic crystals |
title_sort | photonic crystals physics and technology |
title_sub | physics and technology |
topic | Crystal optics Photonic crystals Photonischer Kristall (DE-588)4587112-7 gnd |
topic_facet | Crystal optics Photonic crystals Photonischer Kristall |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016965842&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016965842&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT sibiliaconcita photoniccrystalsphysicsandtechnology |