A modern approach to regression with R:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer
[2009]
|
Schriftenreihe: | Springer texts in statistics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIV, 392 Seiten Illustrationen |
ISBN: | 9780387096070 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035153783 | ||
003 | DE-604 | ||
005 | 20210218 | ||
007 | t | ||
008 | 081111s2009 gw a||| |||| 00||| eng d | ||
015 | |a 08,N33,0443 |2 dnb | ||
016 | 7 | |a 98974020X |2 DE-101 | |
020 | |a 9780387096070 |c Gb. : EUR 74.85 (freier Pr.), sfr 116.50 (freier Pr.) |9 978-0-387-09607-0 | ||
024 | 3 | |a 9780387096070 | |
028 | 5 | 2 | |a 12177202 |
035 | |a (OCoLC)611231596 | ||
035 | |a (DE-599)DNB98974020X | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-945 |a DE-824 |a DE-473 |a DE-91G |a DE-11 |a DE-384 |a DE-188 |a DE-83 | ||
050 | 0 | |a QA278.2 | |
082 | 0 | |a 519.536 |2 22 | |
084 | |a QH 234 |0 (DE-625)141549: |2 rvk | ||
084 | |a SK 840 |0 (DE-625)143261: |2 rvk | ||
084 | |a ST 250 |0 (DE-625)143626: |2 rvk | ||
084 | |a ST 601 |0 (DE-625)143682: |2 rvk | ||
084 | |a 62-04 |2 msc | ||
084 | |a 62Jxx |2 msc | ||
084 | |a 510 |2 sdnb | ||
084 | |a DAT 307f |2 stub | ||
084 | |a MAT 628f |2 stub | ||
084 | |a 62G08 |2 msc | ||
100 | 1 | |a Sheather, Simon J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a A modern approach to regression with R |c Simon J. Sheather |
264 | 1 | |a New York, NY |b Springer |c [2009] | |
264 | 4 | |c © 2009 | |
300 | |a XIV, 392 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Springer texts in statistics | |
650 | 4 | |a Analyse de régression | |
650 | 4 | |a R (Langage de programmation) | |
650 | 7 | |a R (computerprogramma) |2 gtt | |
650 | 7 | |a Regressieanalyse |2 gtt | |
650 | 4 | |a R (Computer program language) | |
650 | 4 | |a Regression analysis | |
650 | 0 | 7 | |a R |g Programm |0 (DE-588)4705956-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Regressionsmodell |0 (DE-588)4127980-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Regressionsmodell |0 (DE-588)4127980-3 |D s |
689 | 0 | 1 | |a R |g Programm |0 (DE-588)4705956-4 |D s |
689 | 0 | |C b |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-0-387-09608-7 |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016960994&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-016960994 |
Datensatz im Suchindex
_version_ | 1809768532526759936 |
---|---|
adam_text |
Contents
1
Introduction
. 1
1.1 Building
Valid
Models. 1
1.2
Motivating Examples
. 1
1.2.1
Assessing the Ability of NFL Kickers
. 1
1.2.2
Newspaper Circulation
. 4
1.2.3
Menu Pricing in a New Italian Restaurant
in New York City
. 5
1.2.4
Effect of Wine Critics' Ratings on Prices
of Bordeaux Wines
. 8
1.3
Level of Mathematics
. 13
2
Simple Linear Regression
. 15
2.1
Introduction and Least Squares Estimates
. 15
2.1.1
Simple Linear Regression Models
. 15
2.2
Inferences About the Slope and the Intercept
. 20
2.2.1
Assumptions Necessary in Order to Make Inferences
About the Regression Model
. 21
2.2.2
Inferences About the Slope of the Regression Line
. 21
2.2.3
Inferences About the Intercept of the Regression Line
. 23
2.3
Confidence Intervals for the Population Regression Line
. 24
2.4
Prediction Intervals for the Actual Value of
Y
. 25
2.5
Analysis of Variance
. 27
2.6
Dummy Variable Regression
. 30
2.7
Derivations of Results
. 33
2.7.1
Inferences about the Slope of the Regression Line
. 34
2.7.2
Inferences about the Intercept of the Regression Line
. 35
2.7.3
Confidence Intervals for the Population Regression Line
. 36
2.7.4
Prediction Intervals for the Actual Value of
Y
. 37
2.8
Exercises
. 38
xii Contents
3
Diagnostics and Transformations for Simple
Linear Regression
. 45
3.1
Valid and Invalid Regression Models:
Anscombe's Four Data Sets
. 45
3.1.1
Residuals
. 48
3.1.2
Using Plots of Residuals to Determine Whether
the Proposed Regression Model Is a Valid Model
. 49
3.1.3
Example of a Quadratic Model
. 50
3.2
Regression Diagnostics: Tools for Checking
the Validity of a Model
. 50
3.2.1
Leverage Points
. 51
3.2.2
Standardized Residuals
. 59
3.2.3
Recommendations for Handling Outliers
and Leverage Points
. 66
3.2.4
Assessing the Influence of Certain Cases
. 67
3.2.5
Normality of the Errors
. 69
3.2.6
Constant Variance
. 71
3.3
Transformations
. 76
3.3.1
Using Transformations to Stabilize Variance
. 76
3.3.2
Using Logarithms to Estimate Percentage Effects
. 79
3.3.3
Using Transformations to Overcome Problems
due to Nonlinearity
. 83
3.4
Exercises
. 103
4
Weighted Least Squares
. 115
4.1
Straight-Line Regression Based on Weighted Least Squares
. 115
4.1.1
Prediction Intervals for Weighted Least Squares
. 118
4.1.2
Leverage for Weighted Least Squares
. 118
4.1.3
Using Least Squares to Calculate Weighted Least Squares.
119
4.1.4
Defining Residuals for Weighted Least Squares
. 121
4.1.5
The Use of Weighted Least Squares
. 121
4.2
Exercises
. 122
5
Multiple Linear Regression
. 125
5.1
Polynomial Regression
. 125
5.2
Estimation and Inference in Multiple Linear Regression
. 130
5.3
Analysis of Covariance
. 140
5.4
Exercises
. 146
6
Diagnostics and Transformations for Multiple Linear Regression
. 151
6.1
Regression Diagnostics for Multiple Regression
. 151
6.1.1
Leverage Points in Multiple Regression
. 152
6.1.2
Properties of Residuals in Multiple Regression
. 154
6.1.3
Added Variable Plots
. 162
Contents xiii
6.2
Transformations
. 167
6.2.1
Using Transformations to Overcome Nonlinearity
. 167
6.2.2
Using Logarithms to Estimate Percentage Effects:
Real Valued Predictor Variables
. 184
6.3
Graphical Assessment of the Mean Function Using
Marginal Model Plots
. 189
6.4
Multicollinearity
. 195
6.4.1
Multicollinearity and Variance Inflation Factors
. 203
6.5
Case Study: Effect of Wine Critics' Ratings on Prices
of Bordeaux Wines
. 203
6.6
Pitfalls of Observational Studies Due to Omitted Variables
. 210
6.6.1
Spurious Correlation
Dueto
Omitted Variables
. 210
6.6.2
The Mathematics of Omitted Variables
. 213
6.6.3
Omitted Variables in Observational Studies
. 214
6.7
Exercises
. 215
7
Variable Selection
. 227
7.1
Evaluating Potential Subsets of Predictor Variables
. 228
7.1.1
Criterion
1 :
R2-Adjusted
. 228
7.1.2
Criterion
2:
AIC, Akaike's Information Criterion
. 230
7.1.3
Criterion
3:
AICC,
Corrected AIC
. 231
7.1.4
Criterion
4:
BIC,
Bayesian Information Criterion
. 232
7.1.5
Comparison of AIC, AICC and
BIC
. 232
7.2
Deciding on the Collection of Potential Subsets
of Predictor Variables
. 233
7.2.1
All Possible Subsets
. 233
7.2.2
Stepwise Subsets
. 236
7.2.3
Inference After Variable Selection
. 238
7.3
Assessing the Predictive Ability of Regression Models
. 239
7.3.1
Stage
1 :
Model Building Using the Training Data Set
. 239
7.3.2
Stage
2:
Model Comparison Using the Test Data Set
. 247
7.4
Recent Developments in Variable Selection
-
LASSO
. 250
7.5
Exercises
. 252
8
Logistic Regression
. 263
8.1
Logistic Regression Based on a Single Predictor
. 263
8.1.1
The Logistic Function and Odds
. 265
8.1.2
Likelihood for Logistic Regression with
a Single Predictor
. 268
8.1.3
Explanation of Deviance
. 271
8.1.4
Using Differences in Deviance Values
to Compare Models
. 272
8.1.5
R: for Logistic Regression
. 273
8.1.6
Residuals for Logistic Regression
. 274
xiv
Contents
8.2
Binary Logistic Regression
. 277
8.2.1
Deviance for the Case of Binary Data
. 280
8.2.2
Residuals for Binary Data
. 281
8.2.3
Transforming Predictors in Logistic Regression
for Binary Data
. 282
8.2.4
Marginal Model Plots for Binary Data
. 286
8.3
Exercises
. 294
9
Serially Correlated Errors
. 305
9.1
Autocorrelation
. 305
9.2
Using Generalized Least Squares When the Errors Are AR(1)
. 310
9.2.1
Generalized Least Squares Estimation
. 311
9.2.2
Transforming a Model with AR(
1 )
Errors into
a Model with iid Errors
. 315
9.2.3
A General Approach to Transforming GLS into LS
. 316
9.3
Case Study
. 319
9.4
Exercises
. 325
10
Mixed Models
. 331
10.1
Random Effects
. 331
10.1.1
Maximum Likelihood and Restricted
Maximum Likelihood
. 334
10.1.2
Residuals in Mixed Models
. 345
10.2
Models with Covariance Structures Which Vary Over Time
. 353
10.2.1
Modeling the Conditional Mean
. 354
10.3
Exercises
. 368
Appendix: Nonparametric Smoothing
. 371
References
. 383
Index
. 387 |
adam_txt |
Contents
1
Introduction
. 1
1.1 Building
Valid
Models. 1
1.2
Motivating Examples
. 1
1.2.1
Assessing the Ability of NFL Kickers
. 1
1.2.2
Newspaper Circulation
. 4
1.2.3
Menu Pricing in a New Italian Restaurant
in New York City
. 5
1.2.4
Effect of Wine Critics' Ratings on Prices
of Bordeaux Wines
. 8
1.3
Level of Mathematics
. 13
2
Simple Linear Regression
. 15
2.1
Introduction and Least Squares Estimates
. 15
2.1.1
Simple Linear Regression Models
. 15
2.2
Inferences About the Slope and the Intercept
. 20
2.2.1
Assumptions Necessary in Order to Make Inferences
About the Regression Model
. 21
2.2.2
Inferences About the Slope of the Regression Line
. 21
2.2.3
Inferences About the Intercept of the Regression Line
. 23
2.3
Confidence Intervals for the Population Regression Line
. 24
2.4
Prediction Intervals for the Actual Value of
Y
. 25
2.5
Analysis of Variance
. 27
2.6
Dummy Variable Regression
. 30
2.7
Derivations of Results
. 33
2.7.1
Inferences about the Slope of the Regression Line
. 34
2.7.2
Inferences about the Intercept of the Regression Line
. 35
2.7.3
Confidence Intervals for the Population Regression Line
. 36
2.7.4
Prediction Intervals for the Actual Value of
Y
. 37
2.8
Exercises
. 38
xii Contents
3
Diagnostics and Transformations for Simple
Linear Regression
. 45
3.1
Valid and Invalid Regression Models:
Anscombe's Four Data Sets
. 45
3.1.1
Residuals
. 48
3.1.2
Using Plots of Residuals to Determine Whether
the Proposed Regression Model Is a Valid Model
. 49
3.1.3
Example of a Quadratic Model
. 50
3.2
Regression Diagnostics: Tools for Checking
the Validity of a Model
. 50
3.2.1
Leverage Points
. 51
3.2.2
Standardized Residuals
. 59
3.2.3
Recommendations for Handling Outliers
and Leverage Points
. 66
3.2.4
Assessing the Influence of Certain Cases
. 67
3.2.5
Normality of the Errors
. 69
3.2.6
Constant Variance
. 71
3.3
Transformations
. 76
3.3.1
Using Transformations to Stabilize Variance
. 76
3.3.2
Using Logarithms to Estimate Percentage Effects
. 79
3.3.3
Using Transformations to Overcome Problems
due to Nonlinearity
. 83
3.4
Exercises
. 103
4
Weighted Least Squares
. 115
4.1
Straight-Line Regression Based on Weighted Least Squares
. 115
4.1.1
Prediction Intervals for Weighted Least Squares
. 118
4.1.2
Leverage for Weighted Least Squares
. 118
4.1.3
Using Least Squares to Calculate Weighted Least Squares.
119
4.1.4
Defining Residuals for Weighted Least Squares
. 121
4.1.5
The Use of Weighted Least Squares
. 121
4.2
Exercises
. 122
5
Multiple Linear Regression
. 125
5.1
Polynomial Regression
. 125
5.2
Estimation and Inference in Multiple Linear Regression
. 130
5.3
Analysis of Covariance
. 140
5.4
Exercises
. 146
6
Diagnostics and Transformations for Multiple Linear Regression
. 151
6.1
Regression Diagnostics for Multiple Regression
. 151
6.1.1
Leverage Points in Multiple Regression
. 152
6.1.2
Properties of Residuals in Multiple Regression
. 154
6.1.3
Added Variable Plots
. 162
Contents xiii
6.2
Transformations
. 167
6.2.1
Using Transformations to Overcome Nonlinearity
. 167
6.2.2
Using Logarithms to Estimate Percentage Effects:
Real Valued Predictor Variables
. 184
6.3
Graphical Assessment of the Mean Function Using
Marginal Model Plots
. 189
6.4
Multicollinearity
. 195
6.4.1
Multicollinearity and Variance Inflation Factors
. 203
6.5
Case Study: Effect of Wine Critics' Ratings on Prices
of Bordeaux Wines
. 203
6.6
Pitfalls of Observational Studies Due to Omitted Variables
. 210
6.6.1
Spurious Correlation
Dueto
Omitted Variables
. 210
6.6.2
The Mathematics of Omitted Variables
. 213
6.6.3
Omitted Variables in Observational Studies
. 214
6.7
Exercises
. 215
7
Variable Selection
. 227
7.1
Evaluating Potential Subsets of Predictor Variables
. 228
7.1.1
Criterion
1 :
R2-Adjusted
. 228
7.1.2
Criterion
2:
AIC, Akaike's Information Criterion
. 230
7.1.3
Criterion
3:
AICC,
Corrected AIC
. 231
7.1.4
Criterion
4:
BIC,
Bayesian Information Criterion
. 232
7.1.5
Comparison of AIC, AICC and
BIC
. 232
7.2
Deciding on the Collection of Potential Subsets
of Predictor Variables
. 233
7.2.1
All Possible Subsets
. 233
7.2.2
Stepwise Subsets
. 236
7.2.3
Inference After Variable Selection
. 238
7.3
Assessing the Predictive Ability of Regression Models
. 239
7.3.1
Stage
1 :
Model Building Using the Training Data Set
. 239
7.3.2
Stage
2:
Model Comparison Using the Test Data Set
. 247
7.4
Recent Developments in Variable Selection
-
LASSO
. 250
7.5
Exercises
. 252
8
Logistic Regression
. 263
8.1
Logistic Regression Based on a Single Predictor
. 263
8.1.1
The Logistic Function and Odds
. 265
8.1.2
Likelihood for Logistic Regression with
a Single Predictor
. 268
8.1.3
Explanation of Deviance
. 271
8.1.4
Using Differences in Deviance Values
to Compare Models
. 272
8.1.5
R: for Logistic Regression
. 273
8.1.6
Residuals for Logistic Regression
. 274
xiv
Contents
8.2
Binary Logistic Regression
. 277
8.2.1
Deviance for the Case of Binary Data
. 280
8.2.2
Residuals for Binary Data
. 281
8.2.3
Transforming Predictors in Logistic Regression
for Binary Data
. 282
8.2.4
Marginal Model Plots for Binary Data
. 286
8.3
Exercises
. 294
9
Serially Correlated Errors
. 305
9.1
Autocorrelation
. 305
9.2
Using Generalized Least Squares When the Errors Are AR(1)
. 310
9.2.1
Generalized Least Squares Estimation
. 311
9.2.2
Transforming a Model with AR(
1 )
Errors into
a Model with iid Errors
. 315
9.2.3
A General Approach to Transforming GLS into LS
. 316
9.3
Case Study
. 319
9.4
Exercises
. 325
10
Mixed Models
. 331
10.1
Random Effects
. 331
10.1.1
Maximum Likelihood and Restricted
Maximum Likelihood
. 334
10.1.2
Residuals in Mixed Models
. 345
10.2
Models with Covariance Structures Which Vary Over Time
. 353
10.2.1
Modeling the Conditional Mean
. 354
10.3
Exercises
. 368
Appendix: Nonparametric Smoothing
. 371
References
. 383
Index
. 387 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Sheather, Simon J. |
author_facet | Sheather, Simon J. |
author_role | aut |
author_sort | Sheather, Simon J. |
author_variant | s j s sj sjs |
building | Verbundindex |
bvnumber | BV035153783 |
callnumber-first | Q - Science |
callnumber-label | QA278 |
callnumber-raw | QA278.2 |
callnumber-search | QA278.2 |
callnumber-sort | QA 3278.2 |
callnumber-subject | QA - Mathematics |
classification_rvk | QH 234 SK 840 ST 250 ST 601 |
classification_tum | DAT 307f MAT 628f |
ctrlnum | (OCoLC)611231596 (DE-599)DNB98974020X |
dewey-full | 519.536 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.536 |
dewey-search | 519.536 |
dewey-sort | 3519.536 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Informatik Mathematik Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV035153783</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210218</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081111s2009 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,N33,0443</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">98974020X</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387096070</subfield><subfield code="c">Gb. : EUR 74.85 (freier Pr.), sfr 116.50 (freier Pr.)</subfield><subfield code="9">978-0-387-09607-0</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780387096070</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12177202</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)611231596</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB98974020X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-945</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA278.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.536</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 234</subfield><subfield code="0">(DE-625)141549:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 840</subfield><subfield code="0">(DE-625)143261:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 250</subfield><subfield code="0">(DE-625)143626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 601</subfield><subfield code="0">(DE-625)143682:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">62-04</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">62Jxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 307f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 628f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">62G08</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sheather, Simon J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A modern approach to regression with R</subfield><subfield code="c">Simon J. Sheather</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">[2009]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 392 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer texts in statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analyse de régression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">R (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">R (computerprogramma)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Regressieanalyse</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">R (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Regression analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Regressionsmodell</subfield><subfield code="0">(DE-588)4127980-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Regressionsmodell</subfield><subfield code="0">(DE-588)4127980-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-0-387-09608-7</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016960994&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016960994</subfield></datafield></record></collection> |
id | DE-604.BV035153783 |
illustrated | Illustrated |
index_date | 2024-07-02T22:47:47Z |
indexdate | 2024-09-10T00:56:07Z |
institution | BVB |
isbn | 9780387096070 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016960994 |
oclc_num | 611231596 |
open_access_boolean | |
owner | DE-945 DE-824 DE-473 DE-BY-UBG DE-91G DE-BY-TUM DE-11 DE-384 DE-188 DE-83 |
owner_facet | DE-945 DE-824 DE-473 DE-BY-UBG DE-91G DE-BY-TUM DE-11 DE-384 DE-188 DE-83 |
physical | XIV, 392 Seiten Illustrationen |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Springer |
record_format | marc |
series2 | Springer texts in statistics |
spelling | Sheather, Simon J. Verfasser aut A modern approach to regression with R Simon J. Sheather New York, NY Springer [2009] © 2009 XIV, 392 Seiten Illustrationen txt rdacontent n rdamedia nc rdacarrier Springer texts in statistics Analyse de régression R (Langage de programmation) R (computerprogramma) gtt Regressieanalyse gtt R (Computer program language) Regression analysis R Programm (DE-588)4705956-4 gnd rswk-swf Regressionsmodell (DE-588)4127980-3 gnd rswk-swf Regressionsmodell (DE-588)4127980-3 s R Programm (DE-588)4705956-4 s b DE-604 Erscheint auch als Online-Ausgabe 978-0-387-09608-7 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016960994&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Sheather, Simon J. A modern approach to regression with R Analyse de régression R (Langage de programmation) R (computerprogramma) gtt Regressieanalyse gtt R (Computer program language) Regression analysis R Programm (DE-588)4705956-4 gnd Regressionsmodell (DE-588)4127980-3 gnd |
subject_GND | (DE-588)4705956-4 (DE-588)4127980-3 |
title | A modern approach to regression with R |
title_auth | A modern approach to regression with R |
title_exact_search | A modern approach to regression with R |
title_exact_search_txtP | A modern approach to regression with R |
title_full | A modern approach to regression with R Simon J. Sheather |
title_fullStr | A modern approach to regression with R Simon J. Sheather |
title_full_unstemmed | A modern approach to regression with R Simon J. Sheather |
title_short | A modern approach to regression with R |
title_sort | a modern approach to regression with r |
topic | Analyse de régression R (Langage de programmation) R (computerprogramma) gtt Regressieanalyse gtt R (Computer program language) Regression analysis R Programm (DE-588)4705956-4 gnd Regressionsmodell (DE-588)4127980-3 gnd |
topic_facet | Analyse de régression R (Langage de programmation) R (computerprogramma) Regressieanalyse R (Computer program language) Regression analysis R Programm Regressionsmodell |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016960994&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT sheathersimonj amodernapproachtoregressionwithr |