Solving applied mathematical problems with MATLAB:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton [u.a.]
CRC Press
2009
|
Schlagworte: | |
Online-Zugang: | Publisher description Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | XIV, 432 S. Ill., graph. Darst. |
ISBN: | 9781420082500 1420082507 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV035153768 | ||
003 | DE-604 | ||
005 | 20090216 | ||
007 | t | ||
008 | 081111s2009 xxuad|| |||| 00||| eng d | ||
010 | |a 2008025953 | ||
020 | |a 9781420082500 |c (hbk.) |9 978-1-420-08250-0 | ||
020 | |a 1420082507 |9 1-420-08250-7 | ||
035 | |a (OCoLC)232257583 | ||
035 | |a (DE-599)BVBBV035153768 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-11 | ||
050 | 0 | |a TA331 | |
082 | 0 | |a 510.285/5133 | |
084 | |a ST 601 |0 (DE-625)143682: |2 rvk | ||
100 | 1 | |a Xue, Dingyü |e Verfasser |4 aut | |
245 | 1 | 0 | |a Solving applied mathematical problems with MATLAB |c Dingyu Xue ; YangQuan Chen |
264 | 1 | |a Boca Raton [u.a.] |b CRC Press |c 2009 | |
300 | |a XIV, 432 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
630 | 0 | 4 | |a MATLAB |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Engineering mathematics |x Data processing | |
650 | 4 | |a Numerical analysis |x Data processing | |
650 | 4 | |a Mathematical optimization |x Data processing | |
650 | 0 | 7 | |a Technische Mathematik |0 (DE-588)4827059-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a MATLAB |0 (DE-588)4329066-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Technische Mathematik |0 (DE-588)4827059-3 |D s |
689 | 0 | 1 | |a MATLAB |0 (DE-588)4329066-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Chen, Yangquan |d 1966- |e Verfasser |0 (DE-588)121213277 |4 aut | |
856 | 4 | |u http://www.loc.gov/catdir/enhancements/fy0838/2008025953-d.html |3 Publisher description | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016960979&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-016960979 |
Datensatz im Suchindex
_version_ | 1808044201960538112 |
---|---|
adam_text |
Contents
Preface
xi
1 Computer
Mathematics Languages
—
An Overview
1
1.1
Computer Solutions to Mathematics Problems
. 1
1.1.1
Why should we study computer mathematics language?
1
1.1.2
Analytical solutions versus numerical solutions
. 4
1.1.3
Mathematics software packages: an overview
. 5
1.2
Summary of Computer Mathematics Languages
. 6
1.2.1
A brief historic review of
MATLAB
. 6
1.2.2
Three widely used computer mathematics languages
. 7
1.2.3
Introduction to free scientific open-source softwares
. . 7
1.3
Outline of the Book
. 8
Exercises
. 9
2
Fundamentals of
MATLAB
Programming
11
2.1
Fundamentals of
MATLAB
Programming
. 12
2.1.1
Variables and constants in
MATLAB
. 12
2.1.2
Data structure
. 13
2.1.3
Basic structure of
MATLAB
. 14
2.1.4
Colon expressions and sub-matrices extraction
. 15
2.2
Fundamental Mathematical Calculations
. 16
2.2.1
Algebraic operations of matrices
. 16
2.2.2
Logic operations of matrices
. 18
2.2.3
Relationship operations of matrices
. 19
2.2.4
Simplifications and presentations of analytical results
. 19
2.2.5
Basic number theory computations
. 21
2.3
Flow Control Structures of
MATLAB
Language
. 22
2.3.1
Loop control structures
. 22
2.3.2
Conditional control structures
. 24
2.3.3
Switch structure
. 25
2.3.4
Trial structure
. 26
2.4
Writing and Debugging
MATLAB
Functions
. 27
2.4.1
Basic structure of
MATLAB
functions
. 27
2.4.2
Programming of functions with variable inputs/outputs
30
2.4.3
Inline functions and anonymous functions
. 31
2.5
Two-Dimensional Graphics
. 31
2.5.1
Basic statements of two-dimensional plotting
. 32
2.5.2
Other two-dimensional plotting statements
. 34
2.5.3
Implicit function plotting and applications
. 36
vi
Solving
Applied
Mathematical Problems with
MATLAB
2.5.4
Graphics decorations
. 36
2.6
Three-Dimensional Graphics
. 39
2.6.1
Plotting of three-dimensional curves
. 39
2.6.2
Plotting of three-dimensional surfaces
. 40
2.6.3
Viewpoint setting in
3D
graphs
. 43
Exercises
. 44
3
Calculus Problems
47
3.1
Analytical Solutions to Calculus Problems
. 47
3.1.1
Analytical solutions to limit problems
. 48
3.1.2
Analytical solutions to derivative problems
. 50
3.1.3
Analytical solutions to integral problems
. 55
3.2
Series Expansions and Series Evaluations
. 58
3.2.1
Taylor series expansion
. 59
3.2.2
Fourier series expansion
. 62
3.2.3
Series
. 65
3.2.4
Sequence product
. 67
3.3
Numerical Differentiation
. 67
3.3.1
Numerical differentiation algorithms
. 68
3.3.2
Central-point difference algorithm
. 69
3.3.3
Gradient computations of functions with two variables
71
3.4
Numerical Integration Problems
. 72
3.4.1
Numerical integration from given data using trapezoidal
method
. 72
3.4.2
Numerical integration of single variable functions
. 74
3.4.3
Numerical solutions to double integrals
. 77
3.4.4
Numerical solutions to triple integrals
. 79
3.5
Path Integrals and Line Integrals
. 80
3.5.1
Path integrals
. 80
3.5.2
Line integrals
. 81
3.6
Surface Integrals
. 83
3.6.1
Scalar surface integrals
. 83
3.6.2
Vector surface integrals
. 84
Exercises
. 85
4
Linear Algebra Problems
89
4.1
Inputting Special Matrices
. 90
4.1.1
Numerical matrix input
. 90
4.1.2
Defining symbolic matrices
. 94
4.2
Fundamental Matrix Operations
. 95
4.2.1
Basic concepts and properties of matrices
. 95
4.2.2
Matrix inversion and generalized inverse of a matrix
. 102
4.2.3
Matrix eigenvalue problems
. 106
4.3
Fundamental Matrix Transformations
. 109
4.3.1
Similarity transformations and orthogonal matrices
. . 109
4.3.2
Triangular and Cholesky decompositions
.
Ill
4.3.3
Jordan transformations
. 114
4.3.4
Singular value decompositions
. 116
Contents
vii
4.4
Solving Matrix Equations
. 118
4.4.1
Solutions to linear algebraic equations
. 118
4.4.2
Solutions to Lyapunov equations
. 121
4.4.3
Solutions to Sylvester equations
. 124
4.4.4
Solutions to Riccati equations
. 125
4.5
Nonlinear Functions and Matrix Function Evaluations
. 126
4.5.1
Element-by-element computations
. 126
4.5.2
Matrix function evaluations
. 127
Exercises
. 133
Integral Transforms and Complex Variable Functions
137
5.1
Laplace Transforms and Their Inverses
. 137
5.1.1
Definitions and properties
. 138
5.1.2
Computer solution to Laplace transform problems
. 139
5.2
Fourier Transforms and Their Inverses
. 142
5.2.1
Definitions and properties
. 142
5.2.2
Solving Fourier transform problems
. 142
5.2.3
Fourier sine and cosine transforms
. 144
5.2.4
Discrete Fourier sine, cosine transforms
. 147
5.3
Other Integral Transforms
. 147
5.3.1
Mellin transform
. 148
5.3.2
Hankel transform solutions
. 149
5.4
Z
Transforms and Their Inverses
. 150
5.4.1
Definitions and properties of
Z
transforms and inverses
150
5.4.2
Computations of
Z
transform
. 151
5.5
Solving Complex Variable Function Problems
. 152
5.5.1
Complex variable functions and mapping visualization
152
5.5.2
Concept and computation of residues
. 152
5.5.3
Partial fraction expansion for rational functions
. 155
5.5.4
Inverse Laplace transform using PFEs
. 159
5.5.5
Computing closed-path integrals
. 160
Exercises
. 162
Nonlinear Equations and Numerical Optimization Problems
165
6.1
Nonlinear Algebraic Equations
. 166
6.1.1
Graphical method for solving nonlinear equations
. . . 166
6.1.2
Quasi-analytical solutions to polynomial-type equations
168
6.1.3
Numerical solutions to general nonlinear equations
. . 172
6.1.4
Nonlinear matrix equations
. 174
6.2
Unconstrained Optimization Problems
. 176
6.2.1
Analytical solutions and graphical solution methods
. . 176
6.2.2
Numerical solution of unconstrained optimization using
MATLAB
. 178
6.2.3
Global minimum and local minima
. 179
6.2.4
Solving optimization problems with gradients
. 181
6.2.5
Optimization problems with bounded constraints
. 182
6.3
Constrained Optimization Problems
. 183
6.3.1
Constraints and feasibility regions
. 184
viii
Solving
Applied
Mathematical Problems with
MATLAB
6.3.2
Solving linear programming problems
. 185
6.3.3
Solving quadratic programming problems
. 187
6.3.4
Solving general nonlinear programming problems
. . . 188
6.4
Mixed Integer Programming Problems
. 191
6.4.1
Solving mixed integer programming problems
. 191
6.4.2
Solving binary programming problems
. 194
6.5
Linear Matrix Inequalities
. 195
6.5.1
A general introduction to LMIs
. 196
6.5.2
Lyapunov inequalities
. 196
6.5.3
Classification of LMI problems
. 198
6.5.4
LMI problem solutions with
MATLAB
. 199
6.5.5
Optimization of LMI problems by YALMIP Toolbox
. 201
Exercises
. 203
7
Differential Equation Problems
207
7.1
Analytical Solution Methods for Special Classes of ODEs
. . 208
7.1.1
Mathematical descriptions
. 208
7.1.2
Analytical solution methods
. 210
7.1.3
Applications of Laplace transforms
. 212
7.1.4
Analytical solutions to LTI state-space equations
. 214
7.1.5
Analytical solutions to special nonlinear differential
equations
. 215
7.2
Numerical Solutions to ODEs
. 215
7.2.1
Overview of numerical solution algorithms
. 216
7.2.2
Fixed-step Runge-Kutta algorithm and its
MATLAB
implementation
. 218
7.2.3
Numerical solution to first-order vector ODEs
. 219
7.2.4
Transforms to standard ODEs
. 224
7.2.5
Validation of numerical solutions to ODEs
. 231
7.3
Numerical Solutions to Special Ordinary Differential Equations
232
7.3.1
Solutions of stiff ODEs
. 232
7.3.2
Solutions of implicit differential equations
. 235
7.3.3
Solutions to differential algebraic equations
. 239
7.3.4
Solutions to delay differential equations
. 241
7.4
Solving Boundary Value Problems
. 243
7.4.1
Solutions to two-point boundary value problems
. 243
7.4.2
Solutions to general boundary value problems
. 245
7.5
Introduction to Partial Differential Equations
. 247
7.5.1
Solving a set of ID PDEs
. 248
7.5.2
Mathematical description to 2D PDEs
. 249
7.5.3
The GUI for the PDE Toolbox
—
an introduction
. 251
7.6
Solving ODEs with Block Diagrams in Simulink
. 258
7.6.1
A brief introduction to Simulink
. 258
7.6.2
Simulink
—
relevant blocks
. 258
7.6.3
Using Simulink for modeling
ала
simulation of ODEs
. 260
Exercises
. 263
Contents ix
Data Interpolation
and Functional
Approximation Problems 269
8.1 Interpolation
and Data Fitting
. 270
8.1.1
One-dimensional data interpolation
. 270
8.1.2
Definite integral evaluation from given samples
. 273
8.1.3
Two-dimensional grid data interpolation
. 275
8.1.4
Two-dimensional scattered data interpolation
. 277
8.1.5
High-dimensional data interpolations
. 280
8.2
Spline Interpolation and Numerical Calculus
. 281
8.2.1
Spline interpolation in
MATLAB
. 281
8.2.2
Numerical differentiation and integration with splines
284
8.3
Data Modeling
. 287
8.3.1
Polynomial fitting
. 287
8.3.2
Approximation by continued fraction expansions
. 290
8.3.3
Padé
rational approximations
. 292
8.3.4
Curve fitting by linear combination of basis functions
. 294
8.3.5
Least squares curve fitting
. 296
8.4
Signal Analysis and Digital Signal Processing
. 298
8.4.1
Correlation analysis
. 298
8.4.2
Fast Fourier transforms
. 300
8.4.3
Filtering techniques and filter design
. 302
Exercises
. 306
Probability and Mathematical Statistics Problems
309
9.1
Distributions and
Pseudo-
Random Number Generators
. . . 309
9.1.1
Introduction to PDFs and CDFs
. 309
9.1.2
PDFs/CDFs of commonly used distributions
. 310
9.1.3
Solving probability problems
. 317
9.1.4
Random numbers and pseudo-random numbers
. 318
9.2
Statistics
. 319
9.2.1
Mean and variance of random variables
. 319
9.2.2
Moments of random variables
. 321
9.2.3
Covariance analysis of multivariate random variables
. 322
9.2.4
Multivariate normal distributions
. 323
9.2.5
Monte Carlo solutions to mathematical problems
. . . 324
9.3
Statistical Analysis
. 326
9.3.1
Parametric estimation and interval estimation
. 326
9.3.2 Multivariable
linear regression and interval estimation
328
9.3.3
Nonlinear parametric and interval estimations
. 330
9.4
Statistic Hypothesis Tests
. 333
9.4.1
Basic concept and procedures for statistic hypothesis
test
. 333
9.4.2
Solving hypothesis test problems in
MATLAB
. 334
9.5
Analysis of Variance and Its Computation
. 337
9.5.1
One-way ANOVA
. 337
9.5.2
Two-way ANOVA
. 339
9.5.3
η
-way ANOVA
. 341
Exercises
. 341
χ
Solving Applied Mathematical Problems with
MATLAB
10
Nontraditional
Solution Methods
345
10.1
Fuzzy Logic and Fuzzy Inference
. 346
10.1.1
Classical set theory and fuzzy sets
. 346
10.1.2
Membership function and fuzzification
. 349
10.1.3
An interactive membership function editor
. 351
10.1.4
Building fuzzy inference systems
. 351
10.1.5
Fuzzy rules and fuzzy inference
. 353
10.2
Neural Network and Its Applications in Data Fitting Problems
356
10.2.1
Fundamentals of neural networks
. 357
10.2.2
Graphical user interface for neural networks
. 364
10.3
Evolution Algorithms and Their Applications in Optimization
Problems
. 366
10.3.1
Basic idea of genetic algorithms
. 366
10.3.2
MATLAB
solutions to optimization problems with
genetic algorithms
. 368
10.3.3
Particle swarm optimizations
. 373
10.3.4
Solving optimization problems with GADS Toolbox
. . 374
10.3.5
Towards accurate global minimum solutions
. 377
10.4
Wavelet Transform and Its Applications in Data Processing
. 378
10.4.1
Wavelet transform and waveforms of wavelet bases
. . 378
10.4.2
Wavelet transform in signal processing problems
. 383
10.4.3
Graphical user interface in wavelets
. 386
10.5
Rough Set Theory and Its Applications
. 388
10.5.1
Introduction to rough set theory
. 388
10.5.2
Data processing problem solutions using rough sets
. . 391
10.6
Fractional-Order Calculus
. 395
10.6.1
Definitions of fractional-order calculus
. 395
10.6.2
Evaluating fractional-order differentiation
. 400
10.6.3
Solving fractional-order differential equations
. 405
Exercises
. 412
References and Bibliography
415
MATLAB
Functions Index
419
Index
425 |
adam_txt |
Contents
Preface
xi
1 Computer
Mathematics Languages
—
An Overview
1
1.1
Computer Solutions to Mathematics Problems
. 1
1.1.1
Why should we study computer mathematics language?
1
1.1.2
Analytical solutions versus numerical solutions
. 4
1.1.3
Mathematics software packages: an overview
. 5
1.2
Summary of Computer Mathematics Languages
. 6
1.2.1
A brief historic review of
MATLAB
. 6
1.2.2
Three widely used computer mathematics languages
. 7
1.2.3
Introduction to free scientific open-source softwares
. . 7
1.3
Outline of the Book
. 8
Exercises
. 9
2
Fundamentals of
MATLAB
Programming
11
2.1
Fundamentals of
MATLAB
Programming
. 12
2.1.1
Variables and constants in
MATLAB
. 12
2.1.2
Data structure
. 13
2.1.3
Basic structure of
MATLAB
. 14
2.1.4
Colon expressions and sub-matrices extraction
. 15
2.2
Fundamental Mathematical Calculations
. 16
2.2.1
Algebraic operations of matrices
. 16
2.2.2
Logic operations of matrices
. 18
2.2.3
Relationship operations of matrices
. 19
2.2.4
Simplifications and presentations of analytical results
. 19
2.2.5
Basic number theory computations
. 21
2.3
Flow Control Structures of
MATLAB
Language
. 22
2.3.1
Loop control structures
. 22
2.3.2
Conditional control structures
. 24
2.3.3
Switch structure
. 25
2.3.4
Trial structure
. 26
2.4
Writing and Debugging
MATLAB
Functions
. 27
2.4.1
Basic structure of
MATLAB
functions
. 27
2.4.2
Programming of functions with variable inputs/outputs
30
2.4.3
Inline functions and anonymous functions
. 31
2.5
Two-Dimensional Graphics
. 31
2.5.1
Basic statements of two-dimensional plotting
. 32
2.5.2
Other two-dimensional plotting statements
. 34
2.5.3
Implicit function plotting and applications
. 36
vi
Solving
Applied
Mathematical Problems with
MATLAB
2.5.4
Graphics decorations
. 36
2.6
Three-Dimensional Graphics
. 39
2.6.1
Plotting of three-dimensional curves
. 39
2.6.2
Plotting of three-dimensional surfaces
. 40
2.6.3
Viewpoint setting in
3D
graphs
. 43
Exercises
. 44
3
Calculus Problems
47
3.1
Analytical Solutions to Calculus Problems
. 47
3.1.1
Analytical solutions to limit problems
. 48
3.1.2
Analytical solutions to derivative problems
. 50
3.1.3
Analytical solutions to integral problems
. 55
3.2
Series Expansions and Series Evaluations
. 58
3.2.1
Taylor series expansion
. 59
3.2.2
Fourier series expansion
. 62
3.2.3
Series
. 65
3.2.4
Sequence product
. 67
3.3
Numerical Differentiation
. 67
3.3.1
Numerical differentiation algorithms
. 68
3.3.2
Central-point difference algorithm
. 69
3.3.3
Gradient computations of functions with two variables
71
3.4
Numerical Integration Problems
. 72
3.4.1
Numerical integration from given data using trapezoidal
method
. 72
3.4.2
Numerical integration of single variable functions
. 74
3.4.3
Numerical solutions to double integrals
. 77
3.4.4
Numerical solutions to triple integrals
. 79
3.5
Path Integrals and Line Integrals
. 80
3.5.1
Path integrals
. 80
3.5.2
Line integrals
. 81
3.6
Surface Integrals
. 83
3.6.1
Scalar surface integrals
. 83
3.6.2
Vector surface integrals
. 84
Exercises
. 85
4
Linear Algebra Problems
89
4.1
Inputting Special Matrices
. 90
4.1.1
Numerical matrix input
. 90
4.1.2
Defining symbolic matrices
. 94
4.2
Fundamental Matrix Operations
. 95
4.2.1
Basic concepts and properties of matrices
. 95
4.2.2
Matrix inversion and generalized inverse of a matrix
. 102
4.2.3
Matrix eigenvalue problems
. 106
4.3
Fundamental Matrix Transformations
. 109
4.3.1
Similarity transformations and orthogonal matrices
. . 109
4.3.2
Triangular and Cholesky decompositions
.
Ill
4.3.3
Jordan transformations
. 114
4.3.4
Singular value decompositions
. 116
Contents
vii
4.4
Solving Matrix Equations
. 118
4.4.1
Solutions to linear algebraic equations
. 118
4.4.2
Solutions to Lyapunov equations
. 121
4.4.3
Solutions to Sylvester equations
. 124
4.4.4
Solutions to Riccati equations
. 125
4.5
Nonlinear Functions and Matrix Function Evaluations
. 126
4.5.1
Element-by-element computations
. 126
4.5.2
Matrix function evaluations
. 127
Exercises
. 133
Integral Transforms and Complex Variable Functions
137
5.1
Laplace Transforms and Their Inverses
. 137
5.1.1
Definitions and properties
. 138
5.1.2
Computer solution to Laplace transform problems
. 139
5.2
Fourier Transforms and Their Inverses
. 142
5.2.1
Definitions and properties
. 142
5.2.2
Solving Fourier transform problems
. 142
5.2.3
Fourier sine and cosine transforms
. 144
5.2.4
Discrete Fourier sine, cosine transforms
. 147
5.3
Other Integral Transforms
. 147
5.3.1
Mellin transform
. 148
5.3.2
Hankel transform solutions
. 149
5.4
Z
Transforms and Their Inverses
. 150
5.4.1
Definitions and properties of
Z
transforms and inverses
150
5.4.2
Computations of
Z
transform
. 151
5.5
Solving Complex Variable Function Problems
. 152
5.5.1
Complex variable functions and mapping visualization
152
5.5.2
Concept and computation of residues
. 152
5.5.3
Partial fraction expansion for rational functions
. 155
5.5.4
Inverse Laplace transform using PFEs
. 159
5.5.5
Computing closed-path integrals
. 160
Exercises
. 162
Nonlinear Equations and Numerical Optimization Problems
165
6.1
Nonlinear Algebraic Equations
. 166
6.1.1
Graphical method for solving nonlinear equations
. . . 166
6.1.2
Quasi-analytical solutions to polynomial-type equations
168
6.1.3
Numerical solutions to general nonlinear equations
. . 172
6.1.4
Nonlinear matrix equations
. 174
6.2
Unconstrained Optimization Problems
. 176
6.2.1
Analytical solutions and graphical solution methods
. . 176
6.2.2
Numerical solution of unconstrained optimization using
MATLAB
. 178
6.2.3
Global minimum and local minima
. 179
6.2.4
Solving optimization problems with gradients
. 181
6.2.5
Optimization problems with bounded constraints
. 182
6.3
Constrained Optimization Problems
. 183
6.3.1
Constraints and feasibility regions
. 184
viii
Solving
Applied
Mathematical Problems with
MATLAB
6.3.2
Solving linear programming problems
. 185
6.3.3
Solving quadratic programming problems
. 187
6.3.4
Solving general nonlinear programming problems
. . . 188
6.4
Mixed Integer Programming Problems
. 191
6.4.1
Solving mixed integer programming problems
. 191
6.4.2
Solving binary programming problems
. 194
6.5
Linear Matrix Inequalities
. 195
6.5.1
A general introduction to LMIs
. 196
6.5.2
Lyapunov inequalities
. 196
6.5.3
Classification of LMI problems
. 198
6.5.4
LMI problem solutions with
MATLAB
. 199
6.5.5
Optimization of LMI problems by YALMIP Toolbox
. 201
Exercises
. 203
7
Differential Equation Problems
207
7.1
Analytical Solution Methods for Special Classes of ODEs
. . 208
7.1.1
Mathematical descriptions
. 208
7.1.2
Analytical solution methods
. 210
7.1.3
Applications of Laplace transforms
. 212
7.1.4
Analytical solutions to LTI state-space equations
. 214
7.1.5
Analytical solutions to special nonlinear differential
equations
. 215
7.2
Numerical Solutions to ODEs
. 215
7.2.1
Overview of numerical solution algorithms
. 216
7.2.2
Fixed-step Runge-Kutta algorithm and its
MATLAB
implementation
. 218
7.2.3
Numerical solution to first-order vector ODEs
. 219
7.2.4
Transforms to standard ODEs
. 224
7.2.5
Validation of numerical solutions to ODEs
. 231
7.3
Numerical Solutions to Special Ordinary Differential Equations
232
7.3.1
Solutions of stiff ODEs
. 232
7.3.2
Solutions of implicit differential equations
. 235
7.3.3
Solutions to differential algebraic equations
. 239
7.3.4
Solutions to delay differential equations
. 241
7.4
Solving Boundary Value Problems
. 243
7.4.1
Solutions to two-point boundary value problems
. 243
7.4.2
Solutions to general boundary value problems
. 245
7.5
Introduction to Partial Differential Equations
. 247
7.5.1
Solving a set of ID PDEs
. 248
7.5.2
Mathematical description to 2D PDEs
. 249
7.5.3
The GUI for the PDE Toolbox
—
an introduction
. 251
7.6
Solving ODEs with Block Diagrams in Simulink
. 258
7.6.1
A brief introduction to Simulink
. 258
7.6.2
Simulink
—
relevant blocks
. 258
7.6.3
Using Simulink for modeling
ала
simulation of ODEs
. 260
Exercises
. 263
Contents ix
Data Interpolation
and Functional
Approximation Problems 269
8.1 Interpolation
and Data Fitting
. 270
8.1.1
One-dimensional data interpolation
. 270
8.1.2
Definite integral evaluation from given samples
. 273
8.1.3
Two-dimensional grid data interpolation
. 275
8.1.4
Two-dimensional scattered data interpolation
. 277
8.1.5
High-dimensional data interpolations
. 280
8.2
Spline Interpolation and Numerical Calculus
. 281
8.2.1
Spline interpolation in
MATLAB
. 281
8.2.2
Numerical differentiation and integration with splines
284
8.3
Data Modeling
. 287
8.3.1
Polynomial fitting
. 287
8.3.2
Approximation by continued fraction expansions
. 290
8.3.3
Padé
rational approximations
. 292
8.3.4
Curve fitting by linear combination of basis functions
. 294
8.3.5
Least squares curve fitting
. 296
8.4
Signal Analysis and Digital Signal Processing
. 298
8.4.1
Correlation analysis
. 298
8.4.2
Fast Fourier transforms
. 300
8.4.3
Filtering techniques and filter design
. 302
Exercises
. 306
Probability and Mathematical Statistics Problems
309
9.1
Distributions and
Pseudo-
Random Number Generators
. . . 309
9.1.1
Introduction to PDFs and CDFs
. 309
9.1.2
PDFs/CDFs of commonly used distributions
. 310
9.1.3
Solving probability problems
. 317
9.1.4
Random numbers and pseudo-random numbers
. 318
9.2
Statistics
. 319
9.2.1
Mean and variance of random variables
. 319
9.2.2
Moments of random variables
. 321
9.2.3
Covariance analysis of multivariate random variables
. 322
9.2.4
Multivariate normal distributions
. 323
9.2.5
Monte Carlo solutions to mathematical problems
. . . 324
9.3
Statistical Analysis
. 326
9.3.1
Parametric estimation and interval estimation
. 326
9.3.2 Multivariable
linear regression and interval estimation
328
9.3.3
Nonlinear parametric and interval estimations
. 330
9.4
Statistic Hypothesis Tests
. 333
9.4.1
Basic concept and procedures for statistic hypothesis
test
. 333
9.4.2
Solving hypothesis test problems in
MATLAB
. 334
9.5
Analysis of Variance and Its Computation
. 337
9.5.1
One-way ANOVA
. 337
9.5.2
Two-way ANOVA
. 339
9.5.3
η
-way ANOVA
. 341
Exercises
. 341
χ
Solving Applied Mathematical Problems with
MATLAB
10
Nontraditional
Solution Methods
345
10.1
Fuzzy Logic and Fuzzy Inference
. 346
10.1.1
Classical set theory and fuzzy sets
. 346
10.1.2
Membership function and fuzzification
. 349
10.1.3
An interactive membership function editor
. 351
10.1.4
Building fuzzy inference systems
. 351
10.1.5
Fuzzy rules and fuzzy inference
. 353
10.2
Neural Network and Its Applications in Data Fitting Problems
356
10.2.1
Fundamentals of neural networks
. 357
10.2.2
Graphical user interface for neural networks
. 364
10.3
Evolution Algorithms and Their Applications in Optimization
Problems
. 366
10.3.1
Basic idea of genetic algorithms
. 366
10.3.2
MATLAB
solutions to optimization problems with
genetic algorithms
. 368
10.3.3
Particle swarm optimizations
. 373
10.3.4
Solving optimization problems with GADS Toolbox
. . 374
10.3.5
Towards accurate global minimum solutions
. 377
10.4
Wavelet Transform and Its Applications in Data Processing
. 378
10.4.1
Wavelet transform and waveforms of wavelet bases
. . 378
10.4.2
Wavelet transform in signal processing problems
. 383
10.4.3
Graphical user interface in wavelets
. 386
10.5
Rough Set Theory and Its Applications
. 388
10.5.1
Introduction to rough set theory
. 388
10.5.2
Data processing problem solutions using rough sets
. . 391
10.6
Fractional-Order Calculus
. 395
10.6.1
Definitions of fractional-order calculus
. 395
10.6.2
Evaluating fractional-order differentiation
. 400
10.6.3
Solving fractional-order differential equations
. 405
Exercises
. 412
References and Bibliography
415
MATLAB
Functions Index
419
Index
425 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Xue, Dingyü Chen, Yangquan 1966- |
author_GND | (DE-588)121213277 |
author_facet | Xue, Dingyü Chen, Yangquan 1966- |
author_role | aut aut |
author_sort | Xue, Dingyü |
author_variant | d x dx y c yc |
building | Verbundindex |
bvnumber | BV035153768 |
callnumber-first | T - Technology |
callnumber-label | TA331 |
callnumber-raw | TA331 |
callnumber-search | TA331 |
callnumber-sort | TA 3331 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | ST 601 |
ctrlnum | (OCoLC)232257583 (DE-599)BVBBV035153768 |
dewey-full | 510.285/5133 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510.285/5133 |
dewey-search | 510.285/5133 |
dewey-sort | 3510.285 45133 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
discipline_str_mv | Informatik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV035153768</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090216</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081111s2009 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2008025953</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781420082500</subfield><subfield code="c">(hbk.)</subfield><subfield code="9">978-1-420-08250-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1420082507</subfield><subfield code="9">1-420-08250-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)232257583</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035153768</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA331</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510.285/5133</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 601</subfield><subfield code="0">(DE-625)143682:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xue, Dingyü</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solving applied mathematical problems with MATLAB</subfield><subfield code="c">Dingyu Xue ; YangQuan Chen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton [u.a.]</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 432 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="630" ind1="0" ind2="4"><subfield code="a">MATLAB</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Technische Mathematik</subfield><subfield code="0">(DE-588)4827059-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">MATLAB</subfield><subfield code="0">(DE-588)4329066-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Technische Mathematik</subfield><subfield code="0">(DE-588)4827059-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">MATLAB</subfield><subfield code="0">(DE-588)4329066-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Yangquan</subfield><subfield code="d">1966-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121213277</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0838/2008025953-d.html</subfield><subfield code="3">Publisher description</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016960979&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016960979</subfield></datafield></record></collection> |
id | DE-604.BV035153768 |
illustrated | Illustrated |
index_date | 2024-07-02T22:47:46Z |
indexdate | 2024-08-22T00:08:38Z |
institution | BVB |
isbn | 9781420082500 1420082507 |
language | English |
lccn | 2008025953 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016960979 |
oclc_num | 232257583 |
open_access_boolean | |
owner | DE-11 |
owner_facet | DE-11 |
physical | XIV, 432 S. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | CRC Press |
record_format | marc |
spelling | Xue, Dingyü Verfasser aut Solving applied mathematical problems with MATLAB Dingyu Xue ; YangQuan Chen Boca Raton [u.a.] CRC Press 2009 XIV, 432 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index MATLAB Datenverarbeitung Engineering mathematics Data processing Numerical analysis Data processing Mathematical optimization Data processing Technische Mathematik (DE-588)4827059-3 gnd rswk-swf MATLAB (DE-588)4329066-8 gnd rswk-swf Technische Mathematik (DE-588)4827059-3 s MATLAB (DE-588)4329066-8 s DE-604 Chen, Yangquan 1966- Verfasser (DE-588)121213277 aut http://www.loc.gov/catdir/enhancements/fy0838/2008025953-d.html Publisher description Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016960979&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Xue, Dingyü Chen, Yangquan 1966- Solving applied mathematical problems with MATLAB MATLAB Datenverarbeitung Engineering mathematics Data processing Numerical analysis Data processing Mathematical optimization Data processing Technische Mathematik (DE-588)4827059-3 gnd MATLAB (DE-588)4329066-8 gnd |
subject_GND | (DE-588)4827059-3 (DE-588)4329066-8 |
title | Solving applied mathematical problems with MATLAB |
title_auth | Solving applied mathematical problems with MATLAB |
title_exact_search | Solving applied mathematical problems with MATLAB |
title_exact_search_txtP | Solving applied mathematical problems with MATLAB |
title_full | Solving applied mathematical problems with MATLAB Dingyu Xue ; YangQuan Chen |
title_fullStr | Solving applied mathematical problems with MATLAB Dingyu Xue ; YangQuan Chen |
title_full_unstemmed | Solving applied mathematical problems with MATLAB Dingyu Xue ; YangQuan Chen |
title_short | Solving applied mathematical problems with MATLAB |
title_sort | solving applied mathematical problems with matlab |
topic | MATLAB Datenverarbeitung Engineering mathematics Data processing Numerical analysis Data processing Mathematical optimization Data processing Technische Mathematik (DE-588)4827059-3 gnd MATLAB (DE-588)4329066-8 gnd |
topic_facet | MATLAB Datenverarbeitung Engineering mathematics Data processing Numerical analysis Data processing Mathematical optimization Data processing Technische Mathematik |
url | http://www.loc.gov/catdir/enhancements/fy0838/2008025953-d.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016960979&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT xuedingyu solvingappliedmathematicalproblemswithmatlab AT chenyangquan solvingappliedmathematicalproblemswithmatlab |