Molecular catalysts for energy conversion:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2009
|
Schriftenreihe: | Springer Series in Materials Science
111 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXII, 512 S. Ill., graph. Darst. |
ISBN: | 9783540707301 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV035153167 | ||
003 | DE-604 | ||
005 | 20110817 | ||
007 | t | ||
008 | 081111s2009 gw ad|| |||| 00||| eng d | ||
015 | |a 08,N27,1009 |2 dnb | ||
016 | 7 | |a 989198634 |2 DE-101 | |
020 | |a 9783540707301 |c Gb. : ca. EUR 160.45 (freier Pr.), ca. sfr 249.00 (freier Pr.) |9 978-3-540-70730-1 | ||
035 | |a (OCoLC)633687907 | ||
035 | |a (DE-599)DNB989198634 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-20 |a DE-703 |a DE-11 |a DE-1046 |a DE-91G | ||
082 | 0 | |a 621.31242 |2 22/ger | |
084 | |a UQ 1100 |0 (DE-625)146473: |2 rvk | ||
084 | |a VN 6050 |0 (DE-625)147593:253 |2 rvk | ||
084 | |a ZN 8750 |0 (DE-625)157645: |2 rvk | ||
084 | |a CHE 167f |2 stub | ||
084 | |a ELT 970f |2 stub | ||
084 | |a 660 |2 sdnb | ||
245 | 1 | 0 | |a Molecular catalysts for energy conversion |c Tatsuhiro Okada ; Masao Kaneko, ed. |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2009 | |
300 | |a XXII, 512 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Springer Series in Materials Science |v 111 | |
650 | 0 | 7 | |a Katalysator |0 (DE-588)4029919-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Organokatalyse |0 (DE-588)7636906-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elektrochemische Energieumwandlung |0 (DE-588)4151758-1 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Elektrochemische Energieumwandlung |0 (DE-588)4151758-1 |D s |
689 | 0 | 1 | |a Katalysator |0 (DE-588)4029919-3 |D s |
689 | 0 | 2 | |a Organokatalyse |0 (DE-588)7636906-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Okada, Tatsuhiro |e Sonstige |0 (DE-588)136578969 |4 oth | |
700 | 1 | |a Kaneko, Masao |d 1942- |e Sonstige |0 (DE-588)123824516 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-540-70758-5 |
830 | 0 | |a Springer Series in Materials Science |v 111 |w (DE-604)BV000683335 |9 111 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016960384&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016960384 |
Datensatz im Suchindex
_version_ | 1804138312341913600 |
---|---|
adam_text | Contents
Preface
.......................................................
V
List of Contributors
..........................................XVII
List of Abbreviations
......................................... XXI
1
Historical Overview and Fundamental Aspects of Molecular
Catalysts for Energy Conversion
T. Okada, T. Abe, and M. Kaneko
................................ 1
1.1
Introduction: Why Molecular Catalysts? A New Era of Biomimetic
Approach Toward Efficient Energy Conversion Systems
.......... 1
1.2
Molecular Catalysts for Fuel Cell Reactions
.................... 2
1.2.1
Oxygen Reduction Catalysts
........................... 3
1.2.2
Fuel Oxidation Catalysts
.............................. 13
1.3
Molecular Catalysts for Artificial Photosynthetic Reaction
....... 17
1.3.1
Water Oxidation Catalyst
............................. 18
1.3.2
Reduction Catalyst
................................... 18
1.3.3 Photodevices
for Photoinduced Chemical Reaction
in the Water Phase
................................... 25
1.4
Summary
.................................................. 29
References
..................................................... 30
2
Charge Transport in Molecular Catalysis
in a Heterogeneous Phase
M. Kaneko and T. Okada
........................................ 37
2.1
Introduction
............................................... 37
2.2
Charge Transport (CT) by Molecules in a Heterogeneous Phase
. . 38
2.2.1
General Overview
.................................... 38
2.2.2
Mechanism of Charge Transport
........................ 39
2.3
Charge Transfer by Molecules Under Photoexcited State
in a Heterogeneous Phase
................................... 46
X
Contents
2.3.1
Overview
............................................ 46
2.3.2
Mechanism of Charge Transfer at Photoexcited State
in a Heterogeneous Phase
............................. 47
2.4
Charge Transfer and Electrochemical Reactions in Metal
Complexes
................................................. 50
2.4.1
Charge Transfer in Metal Complexes
.................... 50
2.4.2
Charge Transfer at Electrode Surfaces
.................. 53
2.4.3
Oxygen Reduction Reaction at Metal
Macrocycles
........ 55
2.5
Proton Transport in Polymer Electrolytes
..................... 59
2.5.1
Proton Transfer Reactions
............................. 59
2.5.2
Proton Transport in Polymer Electrolytes
............... 60
2.6
Summary
.................................................. 62
References
..................................................... 63
3
Electrochemical Methods for Catalyst Evaluation in Fuel
Cells and Solar Cells
T. Okada and M. Kaneko
........................................ 67
3.1
Introduction
............................................... 67
3.2
Electrochemical Measuring System for Catalyst Research
in Fuel Cells
............................................... 68
3.2.1
Reference Electrode
.................................. 68
3.2.2
Rotating Ring-Disk Electrode
.......................... 69
3.2.3
Gas Electrodes of Half-Cell Configuration
............... 74
3.2.4
Fuel Cell Test Station
................................. 76
3.2.5
Electrochemical Methods for Electrocatalysts
............ 79
3.3
Electrochemical Measuring System for Heterogeneous Charge
Transport and Solar Cells
................................... 86
3.3.1
Testing Method of Charge Transport
in Heterogeneous Systems
............................. 86
3.3.2
Evaluation of Charge Transport by
Redox
Molecules
Incorporated in a Heterogeneous Phase
................. 88
3.3.3
AC Impedance Spectroscopy to Evaluate Charge
Transport, Conductivity, Double-Layer Capacitance,
and Electrode Reaction
............................... 89
3.3.4
I-V Characteristics of Solar Cells
....................... 93
3.3.5
Impedance Spectroscopy to Evaluate Multistep Charge
Transport of a Dye-Sensitized Solar Cell
................. 94
3.4
Summary
.................................................. 97
References
..................................................... 101
4
Molecular Catalysts for Fuel Cell Anodes
T. Okada
...................................................... 103
4.1
Introduction
............................................... 103
4.2
Concept of Composite Electrocatalysts in Fuel Cells
............ 105
4.3 Methanol
Oxidation Reaction
................................ 107
Contents
XI
4.3.1
Mechanism of
Methanol
Oxidation Reaction
............. 107
4.3.2
New Electrocatalysts for
Methanol
Oxidation Reaction
.... 108
4.3.3
Structure of Composite Catalysts
....................... 112
4.4
Formic Acid Oxidation Reaction
............................. 118
4.4.1
Mechanism of Formic Acid Oxidation
................... 118
4.4.2
Formic Acid Oxidation on Composite Catalysts
.......... 119
4.5
CO-Tolerant Electrocatalysts for Hydrogen Oxidation Reaction
. . 123
4.5.1
Electrochemical and Fuel Cell Testing
................... 123
4.5.2
Durability Testing
.................................... 127
4.5.3
Structural Characterization
............................ 129
4.6
Summary
.................................................. 134
References
..................................................... 135
5
Macrocycles
for Fuel Cell Cathodes
K. Oyaizu, H.
Murata,
and M. Yuasa
.............................. 139
5.1
Introduction
............................................... 139
5.2
Molecular Design of
Macrocycles
for Fuel Cell Cathodes
...................................... 141
5.3
Diporphyrin Cobalt Complexes and Related Catalysts
........... 142
5.3.1
Diporphyrin Cobalt Complexes
......................... 142
5.3.2
Polypyrrole Cobalt Complexes
......................... 144
5.3.3
Cobalt Thienylporphyrins
............................. 149
5.4 Porphyrin
Assemblies Based on Intermolecular Interaction
....... 153
5.5
Multinuclear Complexes as Electron Reservoirs
................. 158
5.6
Summary
.................................................. 159
References
..................................................... 160
6
Platinum-Free Catalysts for Fuel Cell Cathode
N.
Koshino and H. Higashimura
.................................. 163
6.1
Introduction
............................................... 163
6.2
Drawbacks of Using Pt as Catalysts in PEFC
.................. 164
6.3
Mechanistic Aspects of Oxygen Reduction by Cathode Catalyst
. . 165
6.4
Platinum-Free Catalysts for Fuel Cell Cathode
................. 166
6.4.1
Metal Particles
....................................... 167
6.4.2
Metal Oxides, Carbides, Nitrides, and Chalcogenides
...... 168
6.4.3
Carbon Materials
.................................... 171
6.4.4
Metal Complex-Based Catalysts
........................ 172
6.4.5
Catalysts Designed from Dinuclear Metal Complexes
...... 177
6.5
Summary
.................................................. 180
References
..................................................... 181
7
Novel Support Materials for Fuel Cell Catalysts
J. Nakamura
................................................... 185
7.1
Introduction
............................................... 185
7.2
Performance of Electrocatalysts Using Carbon Nanotubes
....... 187
7.2.1
H2-O2 Fuel Cell
...................................... 187
XII Contents
7.2.2
DMFC
.............................................. 191
7.3
Why Is Carbon Nanotube So Effective as Support Material?
..... 194
References
..................................................... 197
8
Molecular Catalysts for Electrochemical Solar Cells
and Artificial Photosynthesis
M. Kaneko
..................................................... 199
8.1
Introduction
............................................... 199
8.2
Overview on Principles of Molecule-Based Solar Cells
........... 200
8.2.1
Photon Absorption
................................... 201
8.2.2
Suppression of Charge Recombination to Achieve
Effective Charge Separation
........................... 201
8.2.3
Diffusion of Separated Charges
......................... 202
8.2.4
Electrode Reaction
................................... 202
8.3
Dye-Sensitized Solar Cell (DSSC)
............................. 202
8.4
Artificial Photosynthesis
.................................... 208
8.5
Dark Catalysis for Artificial Photosynthesis
.................... 211
8.5.1
Dark Catalysis for Water Oxidation
.................... 212
8.5.2
Dark Catalysis for Proton Reduction
................... 213
8.6
Conclusion and Future Scopes
............................... 213
References
..................................................... 214
9
Molecular Design of Sensitizers for Dye-Sensitized Solar
Cells
К. Нага
....................................................... 217
9.1
Introduction
............................................... 217
9.2
Metal-Complex Sensitizers
................................... 219
9.2.1
Molecular Structures of Ru-Complex Sensitizers
.......... 219
9.2.2
Electron-Transfer Processes
............................ 224
9.2.3
Performance of DSSCs Based on Ru Complexes
.......... 226
9.2.4
Other Metal-Complex Sensitizers for DSSCs
............. 229
9.3
Porphyrins and Phthalocyanines
.............................. 230
9.4
Organic Dyes
.............................................. 231
9.4.1
Molecular Structures of Organic-Dye Sensitizers
for DSSCs
........................................... 231
9.4.2
Performance of DSSCs Based on Organic Dyes
........... 236
9.4.3
Electron Transfer from Organic Dyes to TiO2
............ 237
9.4.4
Electron Diffusion Length
............................. 240
9.5
Stability
.................................................. 242
9.5.1
Photochemical and Thermal Stability of Sensitizers
....... 242
9.5.2
Long-Term
Stability of Solar-Cell Performance
........... 243
9.6
Summary and Perspectives
.................................. 244
References
..................................................... 245
Contents XIII
10
Fabrication
of
Charge Carrier
Paths for High Efficiency
Cells
T.
Kogo,
Y.
Ogomi, and
S.
Hayase
................................ 251
10.1
Introduction
............................................... 251
10.2
Fabrication
of Electron-Paths
................................ 252
10.3
Suppression of Black-Dye Aggregation in a Pressurized CO2
Atmosphere
............................................... 255
10.4
Two-Layer TiO2 Structure for Efficient Light Harvesting
........ 256
10.5
TCO-Less Ail-Metal Electrode-Type DSC
..................... 257
10.6
Ion-Path in Quasi-Solid Medium
............................. 257
10.7
Summary
.................................................. 260
References
..................................................... 260
11
Environmental Cleaning by Molecular Photocatalysts
D.
Wöhrle,
M.
Капеко, К.
Nagai,
О.
Suvorova,
and R. Gerdes
....... 263
11.1
Introduction
............................................... 263
11.2
Oxidative Methods for the
Photodegradation
of Pollutants in Wastewater
.................................. 264
11.2.1
Comparison of Different Methods of UV Processes
for Water Cleaning
................................... 264
11.2.2 Photodegradation
of Pollutants with Oxygen
in the Visible Region of Light
.......................... 268
11.3
Visible Light Decomposition of Ammonia to Nitrogen
with Ru(bpy)3 + as Sensitizer
................................ 287
11.3.1
Nitrogen Pollutants and Their Photodecomposition
....... 287
11.3.2
Photochemical Electron Relay with Ammonia
............ 287
11.3.3
Photochemical Decomposition of Ammonia to Dinitrogen
by a Photosensitized Electron Relay
.................... 290
11.4
Visible Light Responsive Organic Semiconductors
as Photocatalysts
........................................... 291
11.4.1
Photoelectrochemical Character of Organic
Semiconductors in Water Phase
........................ 291
11.4.2
Photoelectrochemical Oxidations by Irradiation
with Visible Light
.................................... 292
11.4.3
Photochemical Decomposition of Amines
Using Visible Light and Organic Semiconductors
......... 293
References
..................................................... 294
12
Optical Oxygen Sensor
N.
Asakura and I. Okura
......................................... 299
12.1
Introduction
............................................... 300
12.2
Theoretical Aspect of Optical Oxygen Sensor of Porphyrins
...... 300
12.2.1
Advantage of Optical Oxygen Sensing
................... 300
12.2.2
Principle of Optical Oxygen Sensor
..................... 301
12.2.3
Brief History of Optical Oxygen Sensors
................. 303
XIV Contents
12.3
Optical Oxygen Sensor by Phosphorescence Intensity
........... 304
12.3.1
Phosphorescent Compounds
........................... 304
12.3.2
Immobilization of Phosphorescent Molecules
for Optical Oxygen Sensor and Measurement
System
.............................................. 304
12.3.3
Optical Oxygen Sensor with Platinum Octaethylporphyrin
Polystyrene Film (PtOEP-PS Film)
.................... 307
12.3.4
Optical Oxygen Sensor with PtOEP and Supports
........ 309
12.3.5
Application of Optical Oxygen Sensor
for Air Pressure Measurements
......................... 311
12.4
Optical Oxygen Sensor by Phosphorescence Lifetime
Measurements
............................................. 313
12.4.1
Advantages of Phosphorescence Lifetime Measurement
.... 313
12.4.2
Phosphorescence Lifetime Measurement
................. 314
12.4.3
Distribution of Oxygen Concentration Inside Single Living
Cell by Phosphorescence Lifetime Measurement
.......... 315
12.5
Optical Oxygen Sensor
T
-Т
Absorption
....................... 318
12.5.1
Advantage of Optical Oxygen Sensor Based
on
T
-Т
Absorption
................................... 320
12.5.2
Optical Oxygen Sensor Based on the Photoexcited Triplet
Lifetime Measurement
................................ 320
12.5.3
Optical Oxygen Sensor Based on Stationary
T
-Т
Absorption (Stationary Quenching)
................ 325
12.6
Summary
.................................................. 327
References
..................................................... 327
13
Adsorption and Electrode Processes
H. Shiroishi
.................................................... 329
13.1
Introduction
............................................... 329
13.2
Adsorption Isotherms and Kinetics
........................... 330
13.2.1
Langmuir Isotherms
.................................. 330
13.2.2 Freundlich
Isotherm
.................................. 332
13.2.3
Temkin Isotherm
..................................... 332
13.2.4
Application for Selective Reaction
on Metal Surface by
Adsórbate
......................... 334
13.3
Slab Optical Waveguide Spectroscopy
......................... 339
13.3.1
Principle
............................................ 340
13.3.2
Application of Slab Optical Waveguide Spectroscopy
...... 342
13.4
Methods of Digital Simulation for Electrochemical
Measurements
............................................. 344
13.4.1
Formulation of Electrochemical System
................. 344
13.4.2
Finite Differential Methods
............................ 351
13.5
Digital Simulation for Polymer-Coated Electrodes
.............. 354
13.5.1
Hydrostatic Condition
................................ 355
13.5.2
Hydrodynamic Condition
.............................. 357
Contents
XV
13.6
Classical
Monte Carlo Simulation
for
Charge
Propagation
in
Redox
Polymer.......................................... 358
13.6.1
Visualization of
Charge
Propagation....................
359
13.6.2 Determination
of a
Charge
Hopping Distance
............ 361
References
..................................................... 363
14
Spectroscopie
Studies of Molecular Processes
on Electrocatalysts
A. Kuzume and M.
Ito
.......................................... 367
14.1
Introduction
............................................... 367
14.2
The Preparation and
Spectroscopie
Characterization of Fuel Cell
Catalysts
.................................................. 369
14.2.1
Catalyst Preparation by Electroless Plating
and Direct Hydrogen Reduction Methods: Practical
Application for High Performance PEFC
................ 369
14.2.2
In Situ IRAS Studies of
Methanol
Oxidation
on Fuel Cell Catalysts
................................ 377
14.3
Spectroscopie
Studies of
Methanol
Oxidation on Pt Surfaces
..... 382
14.3.1
Electrooxidation of
Methanol
on Pt(lll) in Acid Solutions:
Effects of Electrolyte Anions during Electrocatalytic
Reactions
........................................... 382
14.3.2
Methanol
Oxidation Mechanisms on Pt(lll) Surfaces
..... 388
14.4
Conclusions
................................................ 392
References
..................................................... 393
15
Strategies for Structural and Energy Calculation
of Molecular Catalysts
S. Tsuzuki and M.
Saito
......................................... 395
15.1
Introduction
............................................... 395
15.2
Computational Methods
..................................... 396
15.3
Basis Set and Electron Correlation Effects on Geometry
and Conformational Energy
.................................. 397
15.4
Intermolecular Forces
....................................... 397
15.5
Basis and Electron Correlation Effects on Intermolecular
Interactions
................................................ 398
15.6
Calculations of Transition Metal Complexes
................... 402
15.7
Examples of the
Ab
Initio Calculation for Molecular Catalysts
.. . 402
15.8
Summary
.................................................. 409
References
..................................................... 409
16
Future Technologies on Molecular Catalysts
T. Okada and M. Kaneko
........................................ 411
16.1
Introduction
............................................... 411
16.2
Road Map for Clean Energy Society
.......................... 412
16.3
Hydrogen Production
....................................... 415
16.3.1
Natural Gas
......................................... 415
XVI Contents
16.3.2
Renewable Energy Source
............................. 415
16.3.3
Biomass
............................................. 417
16.4
Hydrogen Utilization
........................................ 418
16.4.1
Hydrogen Storage
.................................... 419
16.4.2
Energy Conversion
................................... 419
16.5
Biomimetic Approach and Role of Molecular Catalysts
for Energy-Efficient Utilization
............................... 420
16.6
Summary
.................................................. 421
References
..................................................... 422
Index
......................................................... 423
|
adam_txt |
Contents
Preface
.
V
List of Contributors
.XVII
List of Abbreviations
. XXI
1
Historical Overview and Fundamental Aspects of Molecular
Catalysts for Energy Conversion
T. Okada, T. Abe, and M. Kaneko
. 1
1.1
Introduction: Why Molecular Catalysts? A New Era of Biomimetic
Approach Toward Efficient Energy Conversion Systems
. 1
1.2
Molecular Catalysts for Fuel Cell Reactions
. 2
1.2.1
Oxygen Reduction Catalysts
. 3
1.2.2
Fuel Oxidation Catalysts
. 13
1.3
Molecular Catalysts for Artificial Photosynthetic Reaction
. 17
1.3.1
Water Oxidation Catalyst
. 18
1.3.2
Reduction Catalyst
. 18
1.3.3 Photodevices
for Photoinduced Chemical Reaction
in the Water Phase
. 25
1.4
Summary
. 29
References
. 30
2
Charge Transport in Molecular Catalysis
in a Heterogeneous Phase
M. Kaneko and T. Okada
. 37
2.1
Introduction
. 37
2.2
Charge Transport (CT) by Molecules in a Heterogeneous Phase
. . 38
2.2.1
General Overview
. 38
2.2.2
Mechanism of Charge Transport
. 39
2.3
Charge Transfer by Molecules Under Photoexcited State
in a Heterogeneous Phase
. 46
X
Contents
2.3.1
Overview
. 46
2.3.2
Mechanism of Charge Transfer at Photoexcited State
in a Heterogeneous Phase
. 47
2.4
Charge Transfer and Electrochemical Reactions in Metal
Complexes
. 50
2.4.1
Charge Transfer in Metal Complexes
. 50
2.4.2
Charge Transfer at Electrode Surfaces
. 53
2.4.3
Oxygen Reduction Reaction at Metal
Macrocycles
. 55
2.5
Proton Transport in Polymer Electrolytes
. 59
2.5.1
Proton Transfer Reactions
. 59
2.5.2
Proton Transport in Polymer Electrolytes
. 60
2.6
Summary
. 62
References
. 63
3
Electrochemical Methods for Catalyst Evaluation in Fuel
Cells and Solar Cells
T. Okada and M. Kaneko
. 67
3.1
Introduction
. 67
3.2
Electrochemical Measuring System for Catalyst Research
in Fuel Cells
. 68
3.2.1
Reference Electrode
. 68
3.2.2
Rotating Ring-Disk Electrode
. 69
3.2.3
Gas Electrodes of Half-Cell Configuration
. 74
3.2.4
Fuel Cell Test Station
. 76
3.2.5
Electrochemical Methods for Electrocatalysts
. 79
3.3
Electrochemical Measuring System for Heterogeneous Charge
Transport and Solar Cells
. 86
3.3.1
Testing Method of Charge Transport
in Heterogeneous Systems
. 86
3.3.2
Evaluation of Charge Transport by
Redox
Molecules
Incorporated in a Heterogeneous Phase
. 88
3.3.3
AC Impedance Spectroscopy to Evaluate Charge
Transport, Conductivity, Double-Layer Capacitance,
and Electrode Reaction
. 89
3.3.4
I-V Characteristics of Solar Cells
. 93
3.3.5
Impedance Spectroscopy to Evaluate Multistep Charge
Transport of a Dye-Sensitized Solar Cell
. 94
3.4
Summary
. 97
References
. 101
4
Molecular Catalysts for Fuel Cell Anodes
T. Okada
. 103
4.1
Introduction
. 103
4.2
Concept of Composite Electrocatalysts in Fuel Cells
. 105
4.3 Methanol
Oxidation Reaction
. 107
Contents
XI
4.3.1
Mechanism of
Methanol
Oxidation Reaction
. 107
4.3.2
New Electrocatalysts for
Methanol
Oxidation Reaction
. 108
4.3.3
Structure of Composite Catalysts
. 112
4.4
Formic Acid Oxidation Reaction
. 118
4.4.1
Mechanism of Formic Acid Oxidation
. 118
4.4.2
Formic Acid Oxidation on Composite Catalysts
. 119
4.5
CO-Tolerant Electrocatalysts for Hydrogen Oxidation Reaction
. . 123
4.5.1
Electrochemical and Fuel Cell Testing
. 123
4.5.2
Durability Testing
. 127
4.5.3
Structural Characterization
. 129
4.6
Summary
. 134
References
. 135
5
Macrocycles
for Fuel Cell Cathodes
K. Oyaizu, H.
Murata,
and M. Yuasa
. 139
5.1
Introduction
. 139
5.2
Molecular Design of
Macrocycles
for Fuel Cell Cathodes
. 141
5.3
Diporphyrin Cobalt Complexes and Related Catalysts
. 142
5.3.1
Diporphyrin Cobalt Complexes
. 142
5.3.2
Polypyrrole Cobalt Complexes
. 144
5.3.3
Cobalt Thienylporphyrins
. 149
5.4 Porphyrin
Assemblies Based on Intermolecular Interaction
. 153
5.5
Multinuclear Complexes as Electron Reservoirs
. 158
5.6
Summary
. 159
References
. 160
6
Platinum-Free Catalysts for Fuel Cell Cathode
N.
Koshino and H. Higashimura
. 163
6.1
Introduction
. 163
6.2
Drawbacks of Using Pt as Catalysts in PEFC
. 164
6.3
Mechanistic Aspects of Oxygen Reduction by Cathode Catalyst
. . 165
6.4
Platinum-Free Catalysts for Fuel Cell Cathode
. 166
6.4.1
Metal Particles
. 167
6.4.2
Metal Oxides, Carbides, Nitrides, and Chalcogenides
. 168
6.4.3
Carbon Materials
. 171
6.4.4
Metal Complex-Based Catalysts
. 172
6.4.5
Catalysts Designed from Dinuclear Metal Complexes
. 177
6.5
Summary
. 180
References
. 181
7
Novel Support Materials for Fuel Cell Catalysts
J. Nakamura
. 185
7.1
Introduction
. 185
7.2
Performance of Electrocatalysts Using Carbon Nanotubes
. 187
7.2.1
H2-O2 Fuel Cell
. 187
XII Contents
7.2.2
DMFC
. 191
7.3
Why Is Carbon Nanotube So Effective as Support Material?
. 194
References
. 197
8
Molecular Catalysts for Electrochemical Solar Cells
and Artificial Photosynthesis
M. Kaneko
. 199
8.1
Introduction
. 199
8.2
Overview on Principles of Molecule-Based Solar Cells
. 200
8.2.1
Photon Absorption
. 201
8.2.2
Suppression of Charge Recombination to Achieve
Effective Charge Separation
. 201
8.2.3
Diffusion of Separated Charges
. 202
8.2.4
Electrode Reaction
. 202
8.3
Dye-Sensitized Solar Cell (DSSC)
. 202
8.4
Artificial Photosynthesis
. 208
8.5
Dark Catalysis for Artificial Photosynthesis
. 211
8.5.1
Dark Catalysis for Water Oxidation
. 212
8.5.2
Dark Catalysis for Proton Reduction
. 213
8.6
Conclusion and Future Scopes
. 213
References
. 214
9
Molecular Design of Sensitizers for Dye-Sensitized Solar
Cells
К. Нага
. 217
9.1
Introduction
. 217
9.2
Metal-Complex Sensitizers
. 219
9.2.1
Molecular Structures of Ru-Complex Sensitizers
. 219
9.2.2
Electron-Transfer Processes
. 224
9.2.3
Performance of DSSCs Based on Ru Complexes
. 226
9.2.4
Other Metal-Complex Sensitizers for DSSCs
. 229
9.3
Porphyrins and Phthalocyanines
. 230
9.4
Organic Dyes
. 231
9.4.1
Molecular Structures of Organic-Dye Sensitizers
for DSSCs
. 231
9.4.2
Performance of DSSCs Based on Organic Dyes
. 236
9.4.3
Electron Transfer from Organic Dyes to TiO2
. 237
9.4.4
Electron Diffusion Length
. 240
9.5
Stability
. 242
9.5.1
Photochemical and Thermal Stability of Sensitizers
. 242
9.5.2
Long-Term
Stability of Solar-Cell Performance
. 243
9.6
Summary and Perspectives
. 244
References
. 245
Contents XIII
10
Fabrication
of
Charge Carrier
Paths for High Efficiency
Cells
T.
Kogo,
Y.
Ogomi, and
S.
Hayase
. 251
10.1
Introduction
. 251
10.2
Fabrication
of Electron-Paths
. 252
10.3
Suppression of Black-Dye Aggregation in a Pressurized CO2
Atmosphere
. 255
10.4
Two-Layer TiO2 Structure for Efficient Light Harvesting
. 256
10.5
TCO-Less Ail-Metal Electrode-Type DSC
. 257
10.6
Ion-Path in Quasi-Solid Medium
. 257
10.7
Summary
. 260
References
. 260
11
Environmental Cleaning by Molecular Photocatalysts
D.
Wöhrle,
M.
Капеко, К.
Nagai,
О.
Suvorova,
and R. Gerdes
. 263
11.1
Introduction
. 263
11.2
Oxidative Methods for the
Photodegradation
of Pollutants in Wastewater
. 264
11.2.1
Comparison of Different Methods of UV Processes
for Water Cleaning
. 264
11.2.2 Photodegradation
of Pollutants with Oxygen
in the Visible Region of Light
. 268
11.3
Visible Light Decomposition of Ammonia to Nitrogen
with Ru(bpy)3 + as Sensitizer
. 287
11.3.1
Nitrogen Pollutants and Their Photodecomposition
. 287
11.3.2
Photochemical Electron Relay with Ammonia
. 287
11.3.3
Photochemical Decomposition of Ammonia to Dinitrogen
by a Photosensitized Electron Relay
. 290
11.4
Visible Light Responsive Organic Semiconductors
as Photocatalysts
. 291
11.4.1
Photoelectrochemical Character of Organic
Semiconductors in Water Phase
. 291
11.4.2
Photoelectrochemical Oxidations by Irradiation
with Visible Light
. 292
11.4.3
Photochemical Decomposition of Amines
Using Visible Light and Organic Semiconductors
. 293
References
. 294
12
Optical Oxygen Sensor
N.
Asakura and I. Okura
. 299
12.1
Introduction
. 300
12.2
Theoretical Aspect of Optical Oxygen Sensor of Porphyrins
. 300
12.2.1
Advantage of Optical Oxygen Sensing
. 300
12.2.2
Principle of Optical Oxygen Sensor
. 301
12.2.3
Brief History of Optical Oxygen Sensors
. 303
XIV Contents
12.3
Optical Oxygen Sensor by Phosphorescence Intensity
. 304
12.3.1
Phosphorescent Compounds
. 304
12.3.2
Immobilization of Phosphorescent Molecules
for Optical Oxygen Sensor and Measurement
System
. 304
12.3.3
Optical Oxygen Sensor with Platinum Octaethylporphyrin
Polystyrene Film (PtOEP-PS Film)
. 307
12.3.4
Optical Oxygen Sensor with PtOEP and Supports
. 309
12.3.5
Application of Optical Oxygen Sensor
for Air Pressure Measurements
. 311
12.4
Optical Oxygen Sensor by Phosphorescence Lifetime
Measurements
. 313
12.4.1
Advantages of Phosphorescence Lifetime Measurement
. 313
12.4.2
Phosphorescence Lifetime Measurement
. 314
12.4.3
Distribution of Oxygen Concentration Inside Single Living
Cell by Phosphorescence Lifetime Measurement
. 315
12.5
Optical Oxygen Sensor
T
-Т
Absorption
. 318
12.5.1
Advantage of Optical Oxygen Sensor Based
on
T
-Т
Absorption
. 320
12.5.2
Optical Oxygen Sensor Based on the Photoexcited Triplet
Lifetime Measurement
. 320
12.5.3
Optical Oxygen Sensor Based on Stationary
T
-Т
Absorption (Stationary Quenching)
. 325
12.6
Summary
. 327
References
. 327
13
Adsorption and Electrode Processes
H. Shiroishi
. 329
13.1
Introduction
. 329
13.2
Adsorption Isotherms and Kinetics
. 330
13.2.1
Langmuir Isotherms
. 330
13.2.2 Freundlich
Isotherm
. 332
13.2.3
Temkin Isotherm
. 332
13.2.4
Application for Selective Reaction
on Metal Surface by
Adsórbate
. 334
13.3
Slab Optical Waveguide Spectroscopy
. 339
13.3.1
Principle
. 340
13.3.2
Application of Slab Optical Waveguide Spectroscopy
. 342
13.4
Methods of Digital Simulation for Electrochemical
Measurements
. 344
13.4.1
Formulation of Electrochemical System
. 344
13.4.2
Finite Differential Methods
. 351
13.5
Digital Simulation for Polymer-Coated Electrodes
. 354
13.5.1
Hydrostatic Condition
. 355
13.5.2
Hydrodynamic Condition
. 357
Contents
XV
13.6
Classical
Monte Carlo Simulation
for
Charge
Propagation
in
Redox
Polymer. 358
13.6.1
Visualization of
Charge
Propagation.
359
13.6.2 Determination
of a
Charge
Hopping Distance
. 361
References
. 363
14
Spectroscopie
Studies of Molecular Processes
on Electrocatalysts
A. Kuzume and M.
Ito
. 367
14.1
Introduction
. 367
14.2
The Preparation and
Spectroscopie
Characterization of Fuel Cell
Catalysts
. 369
14.2.1
Catalyst Preparation by Electroless Plating
and Direct Hydrogen Reduction Methods: Practical
Application for High Performance PEFC
. 369
14.2.2
In Situ IRAS Studies of
Methanol
Oxidation
on Fuel Cell Catalysts
. 377
14.3
Spectroscopie
Studies of
Methanol
Oxidation on Pt Surfaces
. 382
14.3.1
Electrooxidation of
Methanol
on Pt(lll) in Acid Solutions:
Effects of Electrolyte Anions during Electrocatalytic
Reactions
. 382
14.3.2
Methanol
Oxidation Mechanisms on Pt(lll) Surfaces
. 388
14.4
Conclusions
. 392
References
. 393
15
Strategies for Structural and Energy Calculation
of Molecular Catalysts
S. Tsuzuki and M.
Saito
. 395
15.1
Introduction
. 395
15.2
Computational Methods
. 396
15.3
Basis Set and Electron Correlation Effects on Geometry
and Conformational Energy
. 397
15.4
Intermolecular Forces
. 397
15.5
Basis and Electron Correlation Effects on Intermolecular
Interactions
. 398
15.6
Calculations of Transition Metal Complexes
. 402
15.7
Examples of the
Ab
Initio Calculation for Molecular Catalysts
. . 402
15.8
Summary
. 409
References
. 409
16
Future Technologies on Molecular Catalysts
T. Okada and M. Kaneko
. 411
16.1
Introduction
. 411
16.2
Road Map for Clean Energy Society
. 412
16.3
Hydrogen Production
. 415
16.3.1
Natural Gas
. 415
XVI Contents
16.3.2
Renewable Energy Source
. 415
16.3.3
Biomass
. 417
16.4
Hydrogen Utilization
. 418
16.4.1
Hydrogen Storage
. 419
16.4.2
Energy Conversion
. 419
16.5
Biomimetic Approach and Role of Molecular Catalysts
for Energy-Efficient Utilization
. 420
16.6
Summary
. 421
References
. 422
Index
. 423 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author_GND | (DE-588)136578969 (DE-588)123824516 |
building | Verbundindex |
bvnumber | BV035153167 |
classification_rvk | UQ 1100 VN 6050 ZN 8750 |
classification_tum | CHE 167f ELT 970f |
ctrlnum | (OCoLC)633687907 (DE-599)DNB989198634 |
dewey-full | 621.31242 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.31242 |
dewey-search | 621.31242 |
dewey-sort | 3621.31242 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Chemie / Pharmazie Physik Chemie Chemie-Ingenieurwesen Elektrotechnik Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Chemie / Pharmazie Physik Chemie Chemie-Ingenieurwesen Elektrotechnik Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02231nam a2200529 cb4500</leader><controlfield tag="001">BV035153167</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110817 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081111s2009 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,N27,1009</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">989198634</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540707301</subfield><subfield code="c">Gb. : ca. EUR 160.45 (freier Pr.), ca. sfr 249.00 (freier Pr.)</subfield><subfield code="9">978-3-540-70730-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)633687907</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB989198634</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.31242</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 1100</subfield><subfield code="0">(DE-625)146473:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 6050</subfield><subfield code="0">(DE-625)147593:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 8750</subfield><subfield code="0">(DE-625)157645:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 167f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELT 970f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">660</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Molecular catalysts for energy conversion</subfield><subfield code="c">Tatsuhiro Okada ; Masao Kaneko, ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 512 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Springer Series in Materials Science</subfield><subfield code="v">111</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Katalysator</subfield><subfield code="0">(DE-588)4029919-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Organokatalyse</subfield><subfield code="0">(DE-588)7636906-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektrochemische Energieumwandlung</subfield><subfield code="0">(DE-588)4151758-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elektrochemische Energieumwandlung</subfield><subfield code="0">(DE-588)4151758-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Katalysator</subfield><subfield code="0">(DE-588)4029919-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Organokatalyse</subfield><subfield code="0">(DE-588)7636906-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Okada, Tatsuhiro</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)136578969</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaneko, Masao</subfield><subfield code="d">1942-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)123824516</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-540-70758-5</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Springer Series in Materials Science</subfield><subfield code="v">111</subfield><subfield code="w">(DE-604)BV000683335</subfield><subfield code="9">111</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016960384&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016960384</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV035153167 |
illustrated | Illustrated |
index_date | 2024-07-02T22:47:31Z |
indexdate | 2024-07-09T21:26:11Z |
institution | BVB |
isbn | 9783540707301 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016960384 |
oclc_num | 633687907 |
open_access_boolean | |
owner | DE-20 DE-703 DE-11 DE-1046 DE-91G DE-BY-TUM |
owner_facet | DE-20 DE-703 DE-11 DE-1046 DE-91G DE-BY-TUM |
physical | XXII, 512 S. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Springer |
record_format | marc |
series | Springer Series in Materials Science |
series2 | Springer Series in Materials Science |
spelling | Molecular catalysts for energy conversion Tatsuhiro Okada ; Masao Kaneko, ed. Berlin [u.a.] Springer 2009 XXII, 512 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Springer Series in Materials Science 111 Katalysator (DE-588)4029919-3 gnd rswk-swf Organokatalyse (DE-588)7636906-7 gnd rswk-swf Elektrochemische Energieumwandlung (DE-588)4151758-1 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Elektrochemische Energieumwandlung (DE-588)4151758-1 s Katalysator (DE-588)4029919-3 s Organokatalyse (DE-588)7636906-7 s DE-604 Okada, Tatsuhiro Sonstige (DE-588)136578969 oth Kaneko, Masao 1942- Sonstige (DE-588)123824516 oth Erscheint auch als Online-Ausgabe 978-3-540-70758-5 Springer Series in Materials Science 111 (DE-604)BV000683335 111 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016960384&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Molecular catalysts for energy conversion Springer Series in Materials Science Katalysator (DE-588)4029919-3 gnd Organokatalyse (DE-588)7636906-7 gnd Elektrochemische Energieumwandlung (DE-588)4151758-1 gnd |
subject_GND | (DE-588)4029919-3 (DE-588)7636906-7 (DE-588)4151758-1 (DE-588)4143413-4 |
title | Molecular catalysts for energy conversion |
title_auth | Molecular catalysts for energy conversion |
title_exact_search | Molecular catalysts for energy conversion |
title_exact_search_txtP | Molecular catalysts for energy conversion |
title_full | Molecular catalysts for energy conversion Tatsuhiro Okada ; Masao Kaneko, ed. |
title_fullStr | Molecular catalysts for energy conversion Tatsuhiro Okada ; Masao Kaneko, ed. |
title_full_unstemmed | Molecular catalysts for energy conversion Tatsuhiro Okada ; Masao Kaneko, ed. |
title_short | Molecular catalysts for energy conversion |
title_sort | molecular catalysts for energy conversion |
topic | Katalysator (DE-588)4029919-3 gnd Organokatalyse (DE-588)7636906-7 gnd Elektrochemische Energieumwandlung (DE-588)4151758-1 gnd |
topic_facet | Katalysator Organokatalyse Elektrochemische Energieumwandlung Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016960384&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000683335 |
work_keys_str_mv | AT okadatatsuhiro molecularcatalystsforenergyconversion AT kanekomasao molecularcatalystsforenergyconversion |