Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition
This book takes an empirical approach to language processing, based on applying statistical and other machine-learning algorithms to large corpora.Methodology boxes are included in each chapter. Each chapter is built around one or more worked examples to demonstrate the main idea of the chapter. Cov...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Upper Saddle River
Pearson Education International, Prentice Hall
2009
|
Ausgabe: | 2. ed., internat. ed. |
Schriftenreihe: | Prentice-Hall-series in artificial intelligence
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | This book takes an empirical approach to language processing, based on applying statistical and other machine-learning algorithms to large corpora.Methodology boxes are included in each chapter. Each chapter is built around one or more worked examples to demonstrate the main idea of the chapter. Covers the fundamental algorithms of various fields, whether originally proposed for spoken or written language to demonstrate how the same algorithm can be used for speech recognition and word-sense disambiguation. Emphasis on web and other practical applications. Emphasis on scientific evaluation. Useful as a reference for professionals in any of the areas of speech and language processing. |
Beschreibung: | Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | 1024 S. Ill., graph. Darst. |
ISBN: | 0135041961 9780135041963 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035148790 | ||
003 | DE-604 | ||
005 | 20160404 | ||
007 | t | ||
008 | 081110s2009 ad|| |||| 00||| eng d | ||
020 | |a 0135041961 |9 0-13-504196-1 | ||
020 | |a 9780135041963 |9 978-0-13-504196-3 | ||
035 | |a (OCoLC)253202803 | ||
035 | |a (DE-599)BVBBV035148790 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-384 |a DE-19 |a DE-20 |a DE-29 |a DE-29T |a DE-634 |a DE-91 |a DE-739 |a DE-188 |a DE-706 |a DE-1051 |a DE-11 |a DE-2070s |a DE-83 |a DE-703 |a DE-91G |a DE-M382 | ||
050 | 0 | |a P98 | |
082 | 0 | |a 410.285 |2 22 | |
084 | |a ES 900 |0 (DE-625)27926: |2 rvk | ||
084 | |a ST 306 |0 (DE-625)143654: |2 rvk | ||
084 | |a DAT 710f |2 stub | ||
100 | 1 | |a Jurafsky, Dan |d 1962- |e Verfasser |0 (DE-588)140274952 |4 aut | |
245 | 1 | 0 | |a Speech and language processing |b an introduction to natural language processing, computational linguistics, and speech recognition |c Daniel Jurafsky ; James H. Martin |
250 | |a 2. ed., internat. ed. | ||
264 | 1 | |a Upper Saddle River |b Pearson Education International, Prentice Hall |c 2009 | |
300 | |a 1024 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Prentice-Hall-series in artificial intelligence | |
500 | |a Hier auch später erschienene, unveränderte Nachdrucke | ||
520 | 3 | |a This book takes an empirical approach to language processing, based on applying statistical and other machine-learning algorithms to large corpora.Methodology boxes are included in each chapter. Each chapter is built around one or more worked examples to demonstrate the main idea of the chapter. Covers the fundamental algorithms of various fields, whether originally proposed for spoken or written language to demonstrate how the same algorithm can be used for speech recognition and word-sense disambiguation. Emphasis on web and other practical applications. Emphasis on scientific evaluation. Useful as a reference for professionals in any of the areas of speech and language processing. | |
650 | 4 | |a Automatic speech recognition | |
650 | 4 | |a Computational linguistics | |
650 | 4 | |a Parsing (Computer grammar) | |
650 | 0 | 7 | |a Automatische Spracherkennung |0 (DE-588)4003961-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Computerlinguistik |0 (DE-588)4035843-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Digitale Sprachverarbeitung |0 (DE-588)4233857-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Natürlichsprachiges System |0 (DE-588)4284757-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Digitale Sprachverarbeitung |0 (DE-588)4233857-8 |D s |
689 | 0 | 1 | |a Computerlinguistik |0 (DE-588)4035843-4 |D s |
689 | 0 | 2 | |a Automatische Spracherkennung |0 (DE-588)4003961-4 |D s |
689 | 0 | 3 | |a Natürlichsprachiges System |0 (DE-588)4284757-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Martin, James H. |d 1959- |e Verfasser |0 (DE-588)140275231 |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016956060&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016956060 |
Datensatz im Suchindex
_version_ | 1804138305863811072 |
---|---|
adam_text | Contents
Foreword
23
Preface
25
About the Authors
31
1
Introduction
35
1.1
Knowledge in Speech and Language Processing
........... 36
1.2
Ambiguity
............................... 38
1.3
Models and Algorithms
........................ 39
1.4
Language, Thought, and Understanding
................ 40
1.5
The State of the Art
.......................... 42
1.6
Some Brief History
.......................... 43
1.6.1
Foundational Insights:
1940s
and
1950s........... 43
1.6.2
The Two Camps:
1957-1970................. 44
1.6.3
Four Paradigms:
1970-1983................. 45
1.6.4
Empiricism and Finite-State Models Redux:
1983-1993 .. 46
1.6.5
The Field Comes Together:
1994-1999........... 46
1.6.6
The Rise of Machine Learning:
2000-2008......... 46
1.6.7
On Multiple Discoveries
................... 47
1.6.8
A Final Brief Note on Psychology
.............. 48
1.7
Summary
................................ 48
Bibliographical and Historical Notes
..................... 49
1 Words
2
Regular Expressions and Automata
51
2.1
Regular Expressions
.......................... 51
2.1.1
Basic Regular Expression Patterns
.............. 52
2.1.2
Disjunction, Grouping, and Precedence
........... 55
2.1.3
A Simple Example
...................... 56
2.1.4
A More Complex Example
.................. 57
2.1.5
Advanced Operators
..................... 58
2.1.6
Regular Expression Substitution, Memory, and ELIZA
... 59
2.2
Finite-State Automata
......................... 60
2.2.1
Use of an
FSA
to Recognize Sheeptalk
........... 61
2.2.2
Formal Languages
...................... 64
2.2.3
Another Example
....................... 65
2.2.4
Non-Deterministic FSAs
................... 66
2.2.5
Use of an NFSA to Accept Strings
.............. 67
2.2.6
Recognition as Search
.................... 69
2.2.7
Relation of Deterministic and Non-Deterministic Automata
72
2.3
Regular Languages and FSAs
..................... 72
2.4
Summary
................................ 75
10 Contents
Bibliographical and Historical Notes
..................... 76
Exercises
................................... 76
Words and Transducers
79
3.1
Survey of (Mostly) English Morphology
............... 81
3.1.1
Inflectional Morphology
................... 82
3.1.2
Derivational Morphology
................... 84
3.1.3
Cliticization
.......................... 85
3.1.4
Non-Concatenative Morphology
............... 85
3.1.5
Agreement
.......................... 86
3.2
Finite-State Morphological Parsing
.................. 86
3.3
Construction of a Finite-State Lexicon
................ 88
3.4
Finite-State Transducers
........................ 91
3.4.1
Sequential Transducers and Determinism
.......... 93
3.5
FSTs for Morphological Parsing
................... 94
3.6
Transducers and Orthographic Rules
................. 96
3.7
The Combination of an FST Lexicon and Rules
........... 99
3.8
Lexicon-Free FSTs: The Porter
Stemmer............... 102
3.9
Word and Sentence Tokenization
................... 102
3.9.1
Segmentation in Chinese
................... 104
3.10
Detection and Correction of Spelling Errors
............. 106
3.11
Minimum Edit Distance
........................ 107
3.12
Human Morphological Processing
..................
Ill
3.13
Summary
................................ 113
Bibliographical and Historical Notes
..................... 114
Exercises
................................... 115
JV-Grams
117
4.1
Word Counting in Corpora
...................... 119
4.2
Simple (Unsmoothed) N-Grams
.................... 120
4.3
Training and Test Sets
......................... 125
4.3.1
iV-Gram Sensitivity to the Training Corpus
......... 126
4.3.2
Unknown Words: Open Versus Closed Vocabulary Tasks
. . 129
4.4
Evaluating N-Grams: Perplexity
................... 129
4.5
Smoothing
............................... 131
4.5.1
Laplace Smoothing
...................... 132
4.5.2
Good-Turing Discounting
.................. 135
4.5.3
Some Advanced Issues in Good-Turing Estimation
..... 136
4.6
Interpolation
.............................. 138
4.7
Backoff
................................. 139
4.7.1
Advanced: Details of Computing Katz Backoff
α
and P*
. . 141
4.8
Practical Issues: Toolkits and Data Formats
.............. 142
4.9
Advanced Issues in Language Modeling
............... 143
4.9.1
Advanced Smoothing Methods: Kneser-Ney Smoothing
. . 143
4.9.2
Class-Based
tf-Grams.................... 145
4.9.3
Language Model Adaptation and Web Use
......... 146
Contents 11
4.9.4
Using Longer-Distance Information: A Brief Summary
. . . 146
4.10
Advanced: Information Theory Background
............. 148
4.10.1
Cross-Entropy for Comparing Models
............ 150
4.11
Advanced: The Entropy of English and Entropy Rate Constancy
. . 152
4.12
Summary
................................ 153
Bibliographical and Historical Notes
..................... 154
Exercises
................................... 155
Part-of-Speech Tagging
157
5.1
(Mostly) English Word Classes
.................... 158
5.2
Tagsets
for English
........................... 164
5.3
Part-of-Speech Tagging
........................ 167
5.4
Rule-Based Part-of-Speech Tagging
.................. 169
5.5
HMM
Part-of-Speech Tagging
.................... 173
5.5.1
Computing the Most Likely Tag Sequence: An Example
. . 176
5.5.2
Formalizing Hidden Markov Model Taggers
........ 178
5.5.3
Using the Viterbi Algorithm for
HMM
Tagging
....... 179
5.5.4
Extending the
HMM
Algorithm to Trigrams
......... 183
5.6
Transformation-Based Tagging
.................... 185
5.6.1
How TBL Rules Are Applied
................ 186
5.6.2
How TBL Rules Are Learned
................ 186
5.7
Evaluation and Error Analysis
..................... 187
5.7.1
Error Analysis
........................ 190
5.8
Advanced Issues in Part-of-Speech Tagging
............. 191
5.8.1
Practical Issues: Tag Indeterminacy and Tokenization
. . . . 191
5.8.2
Unknown Words
....................... 192
5.8.3
Part-of-Speech Tagging for Other Languages
........ 194
5.8.4
Tagger Combination
..................... 197
5.9
Advanced: The Noisy Channel Model for Spelling
.......... 197
5.9.1
Contextual Spelling Error Correction
............ 201
5.10
Summary
................................ 202
Bibliographical and Historical Notes
..................... 203
Exercises
................................... 205
Hidden Markov and Maximum Entropy Models
207
6.1
Markov Chains
............................. 208
6.2
The Hidden Markov Model
...................... 210
6.3
Likelihood Computation: The Forward Algorithm
.......... 213
6.4
Decoding: The Viterbi Algorithm
................... 218
6.5
HMM
Training: The Forward-Backward Algorithm
......... 220
6.6
Maximum Entropy Models: Background
............... 227
6.6.1
Linear Regression
...................... 228
6.6.2
Logistic Regression
..................... 231
6.6.3
Logistic Regression: Classification
............. 233
6.6.4
Advanced: Learning in Logistic Regression
......... 234
6.7
Maximum Entropy Modeling
..................... 235
12 Contents
6.7.1
Why We Call It
Maximum
Entropy
............. 239
6.8
Maximum Entropy Markov Models
.................. 241
6.8.1
Decoding and Learning in MEMMs
............. 244
6.9
Summary
................................ 245
Bibliographical and Historical Notes
..................... 246
Exercises
................................... 247
II Speech
7
Phonetics
249
7.1
Speech Sounds and Phonetic Transcription
.............. 250
7.2
Articulatory Phonetics
......................... 251
7.2.1
The Vocal Organs
....................... 252
7.2.2
Consonants: Place of Articulation
.............. 254
7.2.3
Consonants: Manner of Articulation
............. 255
7.2.4
Vowels
............................ 256
7.2.5
Syllables
........................... 257
7.3
Phonological Categories and Pronunciation Variation
........ 259
7.3.1
Phonetic Features
....................... 261
7.3.2
Predicting Phonetic Variation
................ 262
7.3.3
Factors Influencing Phonetic Variation
............ 263
7.4
Acoustic Phonetics and Signals
.................... 264
7.4.1
Waves
............................. 264
7.4.2
Speech Sound Waves
..................... 265
7.4.3
Frequency and Amplitude; Pitch and Loudness
....... 267
7.4.4
Interpretation of Phones from a Waveform
......... 270
7.4.5
Spectra and the Frequency Domain
............. 270
7.4.6
The Source-Filter Model
................... 274
7.5
Phonetic Resources
.......................... 275
7.6
Advanced. Articulatory and Gestural Phonology
........... 278
7.7
Summary
................................ 279
Bibliographical and Historical Notes
..................... 280
Exercises
................................... 281
8
Speech Synthesis
283
8.1
Text Normalization
.......................... 285
8.1.1
Sentence Tokenization
.................... 285
8.1.2
Non-Standard Words
..................... 286
8.1.3
Homograph Disambiguation
................. 290
8.2
Phonetic Analysis
........................... 291
8.2.1
Dictionary Lookup
...................... 291
8.2.2
Names
............................ 292
8.2.3
Grapheme-to-Phoneme Conversion
............. 293
8.3
Prosodie
Analysis
........................... 296
8.3.1
Prosodie
Structure
...................... 296
8.3.2
Prosodie
Prominence
..................... 297
Contents 13
8.3.3
Tune
............................. 299
8.3.4
More Sophisticated Models: ToBI
.............. 300
8.3.5
Computing Duration from
Prosodie
Labels
......... 302
8.3.6
Computing F0 from
Prosodie
Labels
............. 303
8.3.7
Final Result of Text Analysis: Internal Representation
. . . 305
8.4
Diphone Waveform Synthesis
..................... 306
8.4.1
Steps for Building a Diphone Database
........... 306
8.4.2
Diphone Concatenation and TD-PSOLA for Prosody
.... 308
8.5
Unit Selection (Waveform) Synthesis
................. 310
8.6
Evaluation
............................... 314
Bibliographical and Historical Notes
..................... 315
Exercises
................................... 318
9
Automatic Speech Recognition
319
9.1
Speech Recognition Architecture
................... 321
9.2
The Hidden Markov Model Applied to Speech
............ 325
9.3
Feature Extraction: MFCC Vectors
.................. 329
9.3.1
Preemphasis
......................... 330
9.3.2
Windowing
.......................... 330
9.3.3
Discrete Fourier Transform
.................. 332
9.3.4
Mel Filter Bank and Log
................... 333
9.3.5
The Cepstram: Inverse Discrete Fourier Transform
..... 334
9.3.6
Deltas and Energy
...................... 336
9.3.7
Summary: MFCC
...................... 336
9.4
Acoustic Likelihood Computation
................... 337
9.4.1
Vector Quantization
..................... 337
9.4.2
Gaussian PDFs
........................ 340
9.4.3
Probabilities, Log-Probabilities, and Distance Functions
. . 347
9.5
The Lexicon and Language Model
.................. 348
9.6
Search and Decoding
......................... 348
9.7
Embedded Training
.......................... 358
9.8
Evaluation: Word Error Rate
..................... 362
9.9
Summary
................................ 364
Bibliographical and Historical Notes
..................... 365
Exercises
................................... 367
10
Speech Recognition: Advanced Topics
369
10.1
Multipass Decoding: N-Best Lists and Lattices
............ 369
10.2
A* ( Stack ) Decoding
........................ 375
10.3
Context-Dependent Acoustic Models: Triphones
........... 379
10.4
Discriminative Training
........................ 383
10.4.1
Maximum Mutual Information Estimation
.......... 384
10.4.2
Acoustic Models Based on Posterior Classifiers
....... 385
10.5
Modeling Variation
.......................... 386
10.5.1
Environmental Variation and Noise
............. 386
10.5.2
Speaker Variation and Speaker Adaptation
......... 387
14 Contents
10.5.3
Pronunciation Modeling: Variation Due to Genre
...... 388
10.6
Metadata: Boundaries, Punctuation, and Disfluencies
........ 390
10.7
Speech Recognition by Humans
.................... 392
10.8
Summary
................................ 393
Bibliographical and Historical Notes
..................... 393
Exercises
................................... 394
II
Computational Phonology
395
11.1
Finite-State Phonology
........................ 395
11.2
Advanced Finite-State Phonology
................... 399
11.2.1
Harmony
........................... 399
11.2.2
Templatic Morphology
.................... 400
11.3
Computational Optimality Theory
................... 401
11.3.1
Finite-State Transducer Models of Optimality Theory
. ... 403
11.3.2
Stochastic Models of Optimality Theory
........... 404
11.4
Syllabification
............................. 406
11.5
Learning Phonology and Morphology
................. 409
11.5.1
Learning Phonological Rules
................. 409
11.5.2
Learning Morphology
.................... 411
11.5.3
Learning in Optimality Theory
................ 414
11.6
Summary
................................ 415
Bibliographical and Historical Notes
..................... 415
Exercises
................................... 417
III Syntax
12
Formal Grammars of English
419
12.1
Constituency
.............................. 420
12.2
Context-Free Grammars
........................ 421
12.2.1
Formal Definition of Context-Free Grammar
........ 425
12.3
Some Grammar Rules for English
................... 426
12.3.1
Sentence-Level Constructions
................ 426
12.3.2
Clauses and Sentences
.................... 428
12.3.3
TheNounPhrase
....................... 428
12.3.4
Agreement
.......................... 432
12.3.5
The Verb Phrase and Subcategorization
........... 434
12.3.6
Auxiliaries
.......................... 436
12.3.7
Coordination
......................... 437
12.4
Treebanks
............................... 438
12.4.1
Example: The
Penn
Treebank
Project
............ 438
12.4.2
Treebanks
as Grammars
................... 440
12.4.3
Treebank
Searching
..................... 442
12.4.4
Heads and Head Finding
................... 443
12.5
Grammar Equivalence and Normal Form
............... 446
12.6
Finite-State and Context-Free Grammars
............... 447
12.7
Dependency Grammars
........................ 448
Contents 15
12.7.1
The Relationship Between Dependencies and Heads
.... 449
12.7.2
Categorial
Grammar
..................... 451
12.8
Spoken Language Syntax
....................... 451
12.8.1
Disfluencies and Repair
................... 452
12.8.2
Treebanks
for Spoken Language
............... 453
12.9
Grammars and Human Processing
................... 454
12.10
Summary
................................ 455
Bibliographical and Historical Notes
..................... 456
Exercises
................................... 458
13
Syntactic Parsing
461
13.1
Parsing as Search
........................... 462
13.1.1
Top-Down Parsing
...................... 463
13.1.2
Bottom-Up Parsing
...................... 464
13.1.3
Comparing Top-Down and Bottom-Up Parsing
....... 465
13.2
Ambiguity
............................... 466
13.3
Search in the Face of Ambiguity
................... 468
13.4
Dynamic Programming Parsing Methods
............... 469
13.4.1
CKY Parsing
......................... 470
13.4.2
The Earley Algorithm
.................... 477
13.4.3
Chart Parsing
......................... 482
13.5
Partial Parsing
............................. 484
13.5.1
Finite-State Rule-Based Chunking
.............. 486
13.5.2
Machine Learning-Based Approaches to Chunking
..... 486
13.5.3
Chunking-System Evaluations
................ 489
13.6
Summary
................................ 490
Bibliographical and Historical Notes
..................... 491
Exercises
................................... 492
14
Statistical Parsing
493
14.1
Probabilistic Context-Free Grammars
................. 494
14.1.1
PCFGs for Disambiguation
.................. 495
14.1.2
PCFGs for Language Modeling
............... 497
14.2
Probabilistic CKY Parsing of PCFGs
................. 498
14.3
Ways to Learn PCFG Rule Probabilities
............... 501
14.4
Problems with PCFGs
......................... 502
14.4.1
Independence Assumptions Miss Structural Dependencies Be¬
tween Rules
.......................... 502
14.4.2
Lack of Sensitivity to Lexical Dependencies
........ 503
14.5
Improving PCFGs by Splitting Non-Terminals
............ 505
14.6
Probabilistic Lexicalized CFGs
.................... 507
14.6.1
The Collins Parser
...................... 509
14.6.2
Advanced: Further Details of the Coffins Parser
....... 511
14.7
Evaluating Parsers
........................... 513
14.8
Advanced: Discriminative Reranking
................. 515
14.9
Advanced: Parser-Based Language Modeling
............. 516
16 Contents
14.10 Human
Parsing
............................. 517
14.11
Summary
................................ 519
Bibliographical and Historical
Notes..................... 520
Exercises
................................... 522
15
Features and Unification
523
15.1
Feature Structures
........................... 524
15.2
Unification of Feature Structures
................... 526
15.3
Feature Structures in the Grammar
.................. 531
15.3.1
Agreement
.......................... 532
15.3.2
Head Features
........................ 534
15.3.3
Subcategorization
...................... 535
15.3.4
Long-Distance Dependencies
................ 540
15.4
Implementation of Unification
.................... 541
15.4.1
Unification Data Structures
.................. 541
15.4.2
The Unification Algorithm
.................. 543
15.5
Parsing with Unification Constraints
................. 547
15.5.1
Integration of Unification into an Earley Parser
....... 548
15.5.2
Unification-Based Parsing
.................. 553
15.6
Types and Inheritance
......................... 555
15.6.1
Advanced: Extensions to Typing
.............. 558
15.6.2
Other Extensions to Unification
............... 559
15.7
Summary
................................ 559
Bibliographical and Historical Notes
..................... 560
Exercises
................................... 561
16
Language and Complexity
563
16.1
The Chomsky Hierarchy
........................ 564
16.2
Ways to Tell if a Language Isn t Regular
............... 566
16.2.1
The Pumping Lemma
.................... 567
16.2.2
Proofs that Various Natural Languages Are Not Regular
. . 569
16.3
Is Natural Language Context Free?
.................. 571
16.4
Complexity and Human Processing
.................. 573
16.5
Summary
................................ 576
Bibliographical and Historical Notes
..................... 577
Exercises
................................... 578
IV Semantics and Pragmatics
17
The Representation of Meaning
579
17.1
Computational Desiderata for Representations
............ 581
17.1.1
Verifiability
.......................... 581
17.1.2
Unambiguous Representations
................ 582
17.1.3
Canonical Form
....................... 583
17.1.4
Inference and Variables
.................... 584
17.1.5
Expressiveness
........................ 585
Contents 17
17.2
Model-Theoretic Semantics
...................... 586
17.3
First-Order Logic
........................... 589
17.3.1
Basic Elements of First-Order Logic
............. 589
17.3.2
Variables and Quantifiers
................... 591
17.3.3
Lambda Notation
....................... 593
17.3.4
The Semantics of First-Order Logic
............. 594
17.3.5
Inference
........................... 595
17.4
Event and State Representations
.................... 597
17.4.1
Representing Time
...................... 600
17.4.2
Aspect
............................ 603
17.5
Description Logics
........................... 606
17.6
Embodied and Situated Approaches to Meaning
........... 612
17.7
Summary
................................ 614
Bibliographical and Historical Notes
..................... 614
Exercises
................................... 616
18
Computational Semantics
617
18.1
Syntax-Driven Semantic Analysis
................... 617
18.2
Semantic Augmentations to Syntactic Rules
............. 619
18.3
Quantifier Scope Ambiguity and Underspecification
......... 626
18.3.1
Store and Retrieve Approaches
................ 626
18.3.2
Constraint-Based Approaches
................ 629
18.4
Unification-Based Approaches to Semantic Analysis
......... 632
18.5
Integration of Semantics into the Earley Parser
............ 638
18.6
Idioms and Compositionality
..................... 639
18.7
Summary
................................ 641
Bibliographical and Historical Notes
..................... 641
Exercises
................................... 643
19
Lexical Semantics
645
19.1
Word Senses
.............................. 646
19.2
Relations Between Senses
....................... 649
19.2.1
Synonymy and
Antonymy
.................. 649
19.2.2
Hyponymy
.......................... 650
19.2.3
Semantic Fields
........................ 651
19.3
WordNet: A Database of Lexical Relations
.............. 651
19.4
Event Participants
........................... 653
19.4.1
Thematic Roles
........................ 654
19.4.2
Diathesis Alternations
.................... 656
19.4.3
Problems with Thematic Roles
................ 657
19.4.4
The Proposition Bank
.................... 658
19.4.5
FrameNet
........................... 659
19.4.6
Selecţionai
Restrictions
................... 661
19.5
Primitive Decomposition
....................... 663
19.6
Advanced: Metaphor
......................... 665
19.7
Summary
................................ 666
18 Contents
Bibliographical and Historical Notes
..................... 667
Exercises
................................... 668
20
Computational Lexical Semantics
671
20.1
Word Sense Disambiguation: Overview
................ 672
20.2
Supervised Word Sense Disambiguation
............... 673
20.2.1
Feature Extraction for Supervised Learning
......... 674
20.2.2
Naive
Bayes
and Decision List Classifiers
.......... 675
20.3
WSD Evaluation, Baselines, and Ceilings
............... 678
20.4
WSD: Dictionary and Thesaurus Methods
.............. 680
20.4.1
The
Lesk
Algorithm
..................... 680
20.4.2
Selecţionai
Restrictions and
Selecţionai
Preferences
.... 682
20.5
Minimally Supervised WSD: Bootstrapping
............. 684
20.6
Word Similarity: Thesaurus Methods
................. 686
20.7
Word Similarity: Distributional Methods
............... 692
20.7.1
Defining a Word s Co-Occurrence Vectors
.......... 693
20.7.2
Measuring Association with Context
............. 695
20.7.3
Defining Similarity Between Two Vectors
.......... 697
20.7.4
Evaluating Distributional Word Similarity
.......... 701
20.8
Hyponymy and Other Word Relations
................. 701
20.9
Semantic Role Labeling
........................ 704
20.10
Advanced: Unsupervised Sense Disambiguation
........... 708
20.11
Summary
................................ 709
Bibliographical and Historical Notes
..................... 710
Exercises
................................... 713
21
Computational Discourse
715
21.1
Discourse Segmentation
........................ 718
21.1.1
Unsupervised Discourse Segmentation
........... 718
21.1.2
Supervised Discourse Segmentation
............. 720
21.1.3
Discourse Segmentation Evaluation
............. 722
21.2
Text Coherence
............................ 723
21.2.1
Rhetorical Structure Theory
................. 724
21.2.2
Automatic Coherence Assignment
.............. 726
21.3
Reference Resolution
......................... 729
21.4
Reference Phenomena
......................... 732
21.4.1
Five Types of Referring Expressions
............. 732
21.4.2
Information Status
...................... 734
21.5
Features for Pronominal Anaphora Resolution
............ 735
21.5.1
Features for Filtering Potential Referents
.......... 735
21.5.2
Preferences in Pronoun Interpretation
............ 736
21.6
Three Algorithms for Anaphora Resolution
.............. 738
21.6.1
Pronominal Anaphora Baseline: The Hobbs Algorithm
.. 738
21.6.2
A Centering Algorithm for Anaphora Resolution
...... 740
21.6.3
A Log-Linear Model for Pronominal Anaphora Resolution
. 742
21.6.4
Features for Pronominal Anaphora Resolution
....... 743
Contents 19
21.7 Coreference Resolution........................ 744
21.8 Evaluation
of
Coreference Resolution................. 74.6
21.9 Advanced:
Inference-Based Coherence
Resolution.......... 747
21.10
Psycholinguistic Studies of Reference.................
752
21.11
Summary
................................ 753
Bibliographical and Historical Notes
..................... 754
Exercises
................................... 756
V Applications
22
Information Extraction
759
22.1
Named Entity Recognition
...................... 761
22.1.1
Ambiguity in Named Entity Recognition
.......... 763
22.1.2
NER
as Sequence Labeling
................. 763
22.1.3
Evaluation of Named Entity Recognition
.......... 766
22.1.4
Practical
NER
Architectures
................. 768
22.2
Relation Detection and Classification
................. 768
22.2.1
Supervised Learning Approaches to Relation Analysis
. . . 769
22.2.2
Lightly Supervised Approaches to Relation Analysis
.... 772
22.2.3
Evaluation of Relation Analysis Systems
.......... 776
22.3
Temporal and Event Processing
.................... 777
22.3.1
Temporal Expression Recognition
.............. 777
22.3.2
Temporal Normalization
................... 780
22.3.3
Event Detection and Analysis
................ 783
22.3.4
TimeBank
........................... 784
22.4
Template Filling
............................ 786
22.4.1
Statistical Approaches to Template-Filling
......... 786
22.4.2
Finite-State Template-Filling Systems
............ 788
22.5
Advanced:
Biomedical
Information Extraction
............ 791
22.5.1
Biological Named Entity Recognition
............ 792
22.5.2
Gene Normalization
..................... 793
22.5.3
Biological Roles and Relations
................ 794
22.6
Summary
................................ 796
Bibliographical and Historical Notes
..................... 796
Exercises
................................... 797
23
Question Answering and Summarization
799
23.1
Information Retrieval
......................... 801
23.1.1
The Vector Space Model
................... 802
23.1.2
Term Weighting
....................... 804
23.1.3
Term Selection and Creation
................. 806
23.1.4
Evaluation of Information-Retrieval Systems
........ 806
23.1.5
Homonymy, Polysemy, and Synonymy
........... 810
23.1.6
Ways to Improve User Queries
................ 810
23.2
Factoid Question Answering
..................... 812
23.2.1
Question Processing
..................... 813
20 Contents
23.2.2 Passage
Retrieval
....................... 815
23.2.3
Answer
Processing...................... 817
23.2.4 Evaluation
of Factoid Answers
................ 821
23.3
Summarization
............................. 821
23.4
Single-Document Summarization
................... 824
23.4.1
Unsupervised Content Selection
............... 824
23.4.2
Unsupervised Summarization Based on Rhetorical Parsing
. 826
23.4.3
Supervised Content Selection
................ 828
23.4.4
Sentence Simplification
................... 829
23.5
Multi-Document Summarization
................... 830
23.5.1
Content Selection in Multi-Document Summarization
... 831
23.5.2
Information Ordering in Multi-Document Summarization
. 832
23.6
Focused Summarization and Question Answering
.......... 835
23.7
Summarization Evaluation
....................... 839
23.8
Summary
................................ 841
Bibliographical and Historical Notes
..................... 842
Exercises
................................... 844
24
Dialogue and Conversational Agents
847
24.1
Properties of Human Conversations
.................. 849
24.1.1
Turns and Turn-Taking
.................... 849
24.1.2
Language as Action: Speech Acts
.............. 851
24.1.3
Language as Joint Action: Grounding
............ 852
24.1.4
Conversational Structure
................... 854
24.1.5
Conversational Implicature
.................. 855
24.2
Basic Dialogue Systems
........................ 857
24.2.1
ASR Component
....................... 857
24.2.2
NLU Component
....................... 858
24.2.3
Generation and TTS Components
.............. 861
24.2.4
Dialogue Manager
...................... 863
24.2.5
Dealing with Errors: Confirmation and Rejection
...... 867
24.3
VoiceXML
............................... 868
24.4
Dialogue System Design and Evaluation
............... 872
24.4.1
Designing Dialogue Systems
................. 872
24.4.2
Evaluating Dialogue Systems
................ 872
24.5
Information-State and Dialogue Acts
................. 874
24.5.1
Using Dialogue Acts
..................... 876
24.5.2
Interpreting Dialogue Acts
.................. 877
24.5.3
Detecting Correction Acts
.................. 880
24.5.4
Generating Dialogue Acts: Confirmation and Rejection
... 881
24.6
Markov Decision Process Architecture
................ 882
24.7
Advanced: Plan-Based Dialogue Agents
............... 886
24.7.1
Plan-Inferential Interpretation and Production
........ 887
24.7.2
The Intentional Structure of Dialogue
............ 889
24.8
Summary
................................
g9l
Bibliographical and Historical Notes
..................... 892
Contents 21
Exercises
................................... 894
25 Machine Translation 895
25.1
Why
Machine Translation
Is Hard
................... 898
25.1.1
Typology
........................... 898
25.1.2
Other Structural Divergences
................. 900
25.1.3
Lexical Divergences
..................... 901
25.2
Classical MT and the Vauquois Triangle
............... 903
25.2.1
Direct Translation
...................... 904
25.2.2
Transfer
............................ 906
25.2.3
Combined Direct and Transfer Approaches in Classic MT
. 908
25.2.4
The
Interlingua Idea:
Using Meaning
............ 909
25.3
Statistical MT
............................. 910
25.4
P(F
E):
The Phrase-Based Translation Model
............ 913
25.5
Alignment in MT
........................... 915
25.5.1
IBM Model
1......................... 916
25.5.2
HMM
Alignment
....................... 919
25.6
Training Alignment Models
...................... 921
25.6.1
EM for Training Alignment Models
............. 922
25.7
Symmetrizing Alignments for Phrase-Based MT
........... 924
25.8
Decoding for Phrase-Based Statistical MT
.............. 926
25.9
MT Evaluation
............................. 930
25.9.1
Using Human Raters
..................... 930
25.9.2
Automatic Evaluation: BLEU
................ 931
25.10
Advanced: Syntactic Models for MT
................. 934
25.11
Advanced: IBM Model
3
and Fertility
................ 935
25.11.1
Training for Model
3..................... 939
25.12
Advanced: Log-Linear Models for MT
................ 939
25.13
Summary
................................ 940
Bibliographical and Historical Notes
..................... 941
Exercises
................................... 943
Bibliography
945
Author Index
995
Subject Index
1007
|
adam_txt |
Contents
Foreword
23
Preface
25
About the Authors
31
1
Introduction
35
1.1
Knowledge in Speech and Language Processing
. 36
1.2
Ambiguity
. 38
1.3
Models and Algorithms
. 39
1.4
Language, Thought, and Understanding
. 40
1.5
The State of the Art
. 42
1.6
Some Brief History
. 43
1.6.1
Foundational Insights:
1940s
and
1950s. 43
1.6.2
The Two Camps:
1957-1970. 44
1.6.3
Four Paradigms:
1970-1983. 45
1.6.4
Empiricism and Finite-State Models Redux:
1983-1993 . 46
1.6.5
The Field Comes Together:
1994-1999. 46
1.6.6
The Rise of Machine Learning:
2000-2008. 46
1.6.7
On Multiple Discoveries
. 47
1.6.8
A Final Brief Note on Psychology
. 48
1.7
Summary
. 48
Bibliographical and Historical Notes
. 49
1 Words
2
Regular Expressions and Automata
51
2.1
Regular Expressions
. 51
2.1.1
Basic Regular Expression Patterns
. 52
2.1.2
Disjunction, Grouping, and Precedence
. 55
2.1.3
A Simple Example
. 56
2.1.4
A More Complex Example
. 57
2.1.5
Advanced Operators
. 58
2.1.6
Regular Expression Substitution, Memory, and ELIZA
. 59
2.2
Finite-State Automata
. 60
2.2.1
Use of an
FSA
to Recognize Sheeptalk
. 61
2.2.2
Formal Languages
. 64
2.2.3
Another Example
. 65
2.2.4
Non-Deterministic FSAs
. 66
2.2.5
Use of an NFSA to Accept Strings
. 67
2.2.6
Recognition as Search
. 69
2.2.7
Relation of Deterministic and Non-Deterministic Automata
72
2.3
Regular Languages and FSAs
. 72
2.4
Summary
. 75
10 Contents
Bibliographical and Historical Notes
. 76
Exercises
. 76
Words and Transducers
79
3.1
Survey of (Mostly) English Morphology
. 81
3.1.1
Inflectional Morphology
. 82
3.1.2
Derivational Morphology
. 84
3.1.3
Cliticization
. 85
3.1.4
Non-Concatenative Morphology
. 85
3.1.5
Agreement
. 86
3.2
Finite-State Morphological Parsing
. 86
3.3
Construction of a Finite-State Lexicon
. 88
3.4
Finite-State Transducers
. 91
3.4.1
Sequential Transducers and Determinism
. 93
3.5
FSTs for Morphological Parsing
. 94
3.6
Transducers and Orthographic Rules
. 96
3.7
The Combination of an FST Lexicon and Rules
. 99
3.8
Lexicon-Free FSTs: The Porter
Stemmer. 102
3.9
Word and Sentence Tokenization
. 102
3.9.1
Segmentation in Chinese
. 104
3.10
Detection and Correction of Spelling Errors
. 106
3.11
Minimum Edit Distance
. 107
3.12
Human Morphological Processing
.
Ill
3.13
Summary
. 113
Bibliographical and Historical Notes
. 114
Exercises
. 115
JV-Grams
117
4.1
Word Counting in Corpora
. 119
4.2
Simple (Unsmoothed) N-Grams
. 120
4.3
Training and Test Sets
. 125
4.3.1
iV-Gram Sensitivity to the Training Corpus
. 126
4.3.2
Unknown Words: Open Versus Closed Vocabulary Tasks
. . 129
4.4
Evaluating N-Grams: Perplexity
. 129
4.5
Smoothing
. 131
4.5.1
Laplace Smoothing
. 132
4.5.2
Good-Turing Discounting
. 135
4.5.3
Some Advanced Issues in Good-Turing Estimation
. 136
4.6
Interpolation
. 138
4.7
Backoff
. 139
4.7.1
Advanced: Details of Computing Katz Backoff
α
and P*
. . 141
4.8
Practical Issues: Toolkits and Data Formats
. 142
4.9
Advanced Issues in Language Modeling
. 143
4.9.1
Advanced Smoothing Methods: Kneser-Ney Smoothing
. . 143
4.9.2
Class-Based
tf-Grams. 145
4.9.3
Language Model Adaptation and Web Use
. 146
Contents 11
4.9.4
Using Longer-Distance Information: A Brief Summary
. . . 146
4.10
Advanced: Information Theory Background
. 148
4.10.1
Cross-Entropy for Comparing Models
. 150
4.11
Advanced: The Entropy of English and Entropy Rate Constancy
. . 152
4.12
Summary
. 153
Bibliographical and Historical Notes
. 154
Exercises
. 155
Part-of-Speech Tagging
157
5.1
(Mostly) English Word Classes
. 158
5.2
Tagsets
for English
. 164
5.3
Part-of-Speech Tagging
. 167
5.4
Rule-Based Part-of-Speech Tagging
. 169
5.5
HMM
Part-of-Speech Tagging
. 173
5.5.1
Computing the Most Likely Tag Sequence: An Example
. . 176
5.5.2
Formalizing Hidden Markov Model Taggers
. 178
5.5.3
Using the Viterbi Algorithm for
HMM
Tagging
. 179
5.5.4
Extending the
HMM
Algorithm to Trigrams
. 183
5.6
Transformation-Based Tagging
. 185
5.6.1
How TBL Rules Are Applied
. 186
5.6.2
How TBL Rules Are Learned
. 186
5.7
Evaluation and Error Analysis
. 187
5.7.1
Error Analysis
. 190
5.8
Advanced Issues in Part-of-Speech Tagging
. 191
5.8.1
Practical Issues: Tag Indeterminacy and Tokenization
. . . . 191
5.8.2
Unknown Words
. 192
5.8.3
Part-of-Speech Tagging for Other Languages
. 194
5.8.4
Tagger Combination
. 197
5.9
Advanced: The Noisy Channel Model for Spelling
. 197
5.9.1
Contextual Spelling Error Correction
. 201
5.10
Summary
. 202
Bibliographical and Historical Notes
. 203
Exercises
. 205
Hidden Markov and Maximum Entropy Models
207
6.1
Markov Chains
. 208
6.2
The Hidden Markov Model
. 210
6.3
Likelihood Computation: The Forward Algorithm
. 213
6.4
Decoding: The Viterbi Algorithm
. 218
6.5
HMM
Training: The Forward-Backward Algorithm
. 220
6.6
Maximum Entropy Models: Background
. 227
6.6.1
Linear Regression
. 228
6.6.2
Logistic Regression
. 231
6.6.3
Logistic Regression: Classification
. 233
6.6.4
Advanced: Learning in Logistic Regression
. 234
6.7
Maximum Entropy Modeling
. 235
12 Contents
6.7.1
Why We Call It
Maximum
Entropy
. 239
6.8
Maximum Entropy Markov Models
. 241
6.8.1
Decoding and Learning in MEMMs
. 244
6.9
Summary
. 245
Bibliographical and Historical Notes
. 246
Exercises
. 247
II Speech
7
Phonetics
249
7.1
Speech Sounds and Phonetic Transcription
. 250
7.2
Articulatory Phonetics
. 251
7.2.1
The Vocal Organs
. 252
7.2.2
Consonants: Place of Articulation
. 254
7.2.3
Consonants: Manner of Articulation
. 255
7.2.4
Vowels
. 256
7.2.5
Syllables
. 257
7.3
Phonological Categories and Pronunciation Variation
. 259
7.3.1
Phonetic Features
. 261
7.3.2
Predicting Phonetic Variation
. 262
7.3.3
Factors Influencing Phonetic Variation
. 263
7.4
Acoustic Phonetics and Signals
. 264
7.4.1
Waves
. 264
7.4.2
Speech Sound Waves
. 265
7.4.3
Frequency and Amplitude; Pitch and Loudness
. 267
7.4.4
Interpretation of Phones from a Waveform
. 270
7.4.5
Spectra and the Frequency Domain
. 270
7.4.6
The Source-Filter Model
. 274
7.5
Phonetic Resources
. 275
7.6
Advanced." Articulatory and Gestural Phonology
. 278
7.7
Summary
. 279
Bibliographical and Historical Notes
. 280
Exercises
. 281
8
Speech Synthesis
283
8.1
Text Normalization
. 285
8.1.1
Sentence Tokenization
. 285
8.1.2
Non-Standard Words
. 286
8.1.3
Homograph Disambiguation
. 290
8.2
Phonetic Analysis
. 291
8.2.1
Dictionary Lookup
. 291
8.2.2
Names
. 292
8.2.3
Grapheme-to-Phoneme Conversion
. 293
8.3
Prosodie
Analysis
. 296
8.3.1
Prosodie
Structure
. 296
8.3.2
Prosodie
Prominence
. 297
Contents 13
8.3.3
Tune
. 299
8.3.4
More Sophisticated Models: ToBI
. 300
8.3.5
Computing Duration from
Prosodie
Labels
. 302
8.3.6
Computing F0 from
Prosodie
Labels
. 303
8.3.7
Final Result of Text Analysis: Internal Representation
. . . 305
8.4
Diphone Waveform Synthesis
. 306
8.4.1
Steps for Building a Diphone Database
. 306
8.4.2
Diphone Concatenation and TD-PSOLA for Prosody
. 308
8.5
Unit Selection (Waveform) Synthesis
. 310
8.6
Evaluation
. 314
Bibliographical and Historical Notes
. 315
Exercises
. 318
9
Automatic Speech Recognition
319
9.1
Speech Recognition Architecture
. 321
9.2
The Hidden Markov Model Applied to Speech
. 325
9.3
Feature Extraction: MFCC Vectors
. 329
9.3.1
Preemphasis
. 330
9.3.2
Windowing
. 330
9.3.3
Discrete Fourier Transform
. 332
9.3.4
Mel Filter Bank and Log
. 333
9.3.5
The Cepstram: Inverse Discrete Fourier Transform
. 334
9.3.6
Deltas and Energy
. 336
9.3.7
Summary: MFCC
. 336
9.4
Acoustic Likelihood Computation
. 337
9.4.1
Vector Quantization
. 337
9.4.2
Gaussian PDFs
. 340
9.4.3
Probabilities, Log-Probabilities, and Distance Functions
. . 347
9.5
The Lexicon and Language Model
. 348
9.6
Search and Decoding
. 348
9.7
Embedded Training
. 358
9.8
Evaluation: Word Error Rate
. 362
9.9
Summary
. 364
Bibliographical and Historical Notes
. 365
Exercises
. 367
10
Speech Recognition: Advanced Topics
369
10.1
Multipass Decoding: N-Best Lists and Lattices
. 369
10.2
A* ("Stack") Decoding
. 375
10.3
Context-Dependent Acoustic Models: Triphones
. 379
10.4
Discriminative Training
. 383
10.4.1
Maximum Mutual Information Estimation
. 384
10.4.2
Acoustic Models Based on Posterior Classifiers
. 385
10.5
Modeling Variation
. 386
10.5.1
Environmental Variation and Noise
. 386
10.5.2
Speaker Variation and Speaker Adaptation
. 387
14 Contents
10.5.3
Pronunciation Modeling: Variation Due to Genre
. 388
10.6
Metadata: Boundaries, Punctuation, and Disfluencies
. 390
10.7
Speech Recognition by Humans
. 392
10.8
Summary
. 393
Bibliographical and Historical Notes
. 393
Exercises
. 394
II
Computational Phonology
395
11.1
Finite-State Phonology
. 395
11.2
Advanced Finite-State Phonology
. 399
11.2.1
Harmony
. 399
11.2.2
Templatic Morphology
. 400
11.3
Computational Optimality Theory
. 401
11.3.1
Finite-State Transducer Models of Optimality Theory
. . 403
11.3.2
Stochastic Models of Optimality Theory
. 404
11.4
Syllabification
. 406
11.5
Learning Phonology and Morphology
. 409
11.5.1
Learning Phonological Rules
. 409
11.5.2
Learning Morphology
. 411
11.5.3
Learning in Optimality Theory
. 414
11.6
Summary
. 415
Bibliographical and Historical Notes
. 415
Exercises
. 417
III Syntax
12
Formal Grammars of English
419
12.1
Constituency
. 420
12.2
Context-Free Grammars
. 421
12.2.1
Formal Definition of Context-Free Grammar
. 425
12.3
Some Grammar Rules for English
. 426
12.3.1
Sentence-Level Constructions
. 426
12.3.2
Clauses and Sentences
. 428
12.3.3
TheNounPhrase
. 428
12.3.4
Agreement
. 432
12.3.5
The Verb Phrase and Subcategorization
. 434
12.3.6
Auxiliaries
. 436
12.3.7
Coordination
. 437
12.4
Treebanks
. 438
12.4.1
Example: The
Penn
Treebank
Project
. 438
12.4.2
Treebanks
as Grammars
. 440
12.4.3
Treebank
Searching
. 442
12.4.4
Heads and Head Finding
. 443
12.5
Grammar Equivalence and Normal Form
. 446
12.6
Finite-State and Context-Free Grammars
. 447
12.7
Dependency Grammars
. 448
Contents 15
12.7.1
The Relationship Between Dependencies and Heads
. 449
12.7.2
Categorial
Grammar
. 451
12.8
Spoken Language Syntax
. 451
12.8.1
Disfluencies and Repair
. 452
12.8.2
Treebanks
for Spoken Language
. 453
12.9
Grammars and Human Processing
. 454
12.10
Summary
. 455
Bibliographical and Historical Notes
. 456
Exercises
. 458
13
Syntactic Parsing
461
13.1
Parsing as Search
. 462
13.1.1
Top-Down Parsing
. 463
13.1.2
Bottom-Up Parsing
. 464
13.1.3
Comparing Top-Down and Bottom-Up Parsing
. 465
13.2
Ambiguity
. 466
13.3
Search in the Face of Ambiguity
. 468
13.4
Dynamic Programming Parsing Methods
. 469
13.4.1
CKY Parsing
. 470
13.4.2
The Earley Algorithm
. 477
13.4.3
Chart Parsing
. 482
13.5
Partial Parsing
. 484
13.5.1
Finite-State Rule-Based Chunking
. 486
13.5.2
Machine Learning-Based Approaches to Chunking
. 486
13.5.3
Chunking-System Evaluations
. 489
13.6
Summary
. 490
Bibliographical and Historical Notes
. 491
Exercises
. 492
14
Statistical Parsing
493
14.1
Probabilistic Context-Free Grammars
. 494
14.1.1
PCFGs for Disambiguation
. 495
14.1.2
PCFGs for Language Modeling
. 497
14.2
Probabilistic CKY Parsing of PCFGs
. 498
14.3
Ways to Learn PCFG Rule Probabilities
. 501
14.4
Problems with PCFGs
. 502
14.4.1
Independence Assumptions Miss Structural Dependencies Be¬
tween Rules
. 502
14.4.2
Lack of Sensitivity to Lexical Dependencies
. 503
14.5
Improving PCFGs by Splitting Non-Terminals
. 505
14.6
Probabilistic Lexicalized CFGs
. 507
14.6.1
The Collins Parser
. 509
14.6.2
Advanced: Further Details of the Coffins Parser
. 511
14.7
Evaluating Parsers
. 513
14.8
Advanced: Discriminative Reranking
. 515
14.9
Advanced: Parser-Based Language Modeling
. 516
16 Contents
14.10 Human
Parsing
. 517
14.11
Summary
. 519
Bibliographical and Historical
Notes. 520
Exercises
. 522
15
Features and Unification
523
15.1
Feature Structures
. 524
15.2
Unification of Feature Structures
. 526
15.3
Feature Structures in the Grammar
. 531
15.3.1
Agreement
. 532
15.3.2
Head Features
. 534
15.3.3
Subcategorization
. 535
15.3.4
Long-Distance Dependencies
. 540
15.4
Implementation of Unification
. 541
15.4.1
Unification Data Structures
. 541
15.4.2
The Unification Algorithm
. 543
15.5
Parsing with Unification Constraints
. 547
15.5.1
Integration of Unification into an Earley Parser
. 548
15.5.2
Unification-Based Parsing
. 553
15.6
Types and Inheritance
. 555
15.6.1
Advanced: Extensions to Typing
. 558
15.6.2
Other Extensions to Unification
. 559
15.7
Summary
. 559
Bibliographical and Historical Notes
. 560
Exercises
. 561
16
Language and Complexity
563
16.1
The Chomsky Hierarchy
. 564
16.2
Ways to Tell if a Language Isn't Regular
. 566
16.2.1
The Pumping Lemma
. 567
16.2.2
Proofs that Various Natural Languages Are Not Regular
. . 569
16.3
Is Natural Language Context Free?
. 571
16.4
Complexity and Human Processing
. 573
16.5
Summary
. 576
Bibliographical and Historical Notes
. 577
Exercises
. 578
IV Semantics and Pragmatics
17
The Representation of Meaning
579
17.1
Computational Desiderata for Representations
. 581
17.1.1
Verifiability
. 581
17.1.2
Unambiguous Representations
. 582
17.1.3
Canonical Form
. 583
17.1.4
Inference and Variables
. 584
17.1.5
Expressiveness
. 585
Contents 17
17.2
Model-Theoretic Semantics
. 586
17.3
First-Order Logic
. 589
17.3.1
Basic Elements of First-Order Logic
. 589
17.3.2
Variables and Quantifiers
. 591
17.3.3
Lambda Notation
. 593
17.3.4
The Semantics of First-Order Logic
. 594
17.3.5
Inference
. 595
17.4
Event and State Representations
. 597
17.4.1
Representing Time
. 600
17.4.2
Aspect
. 603
17.5
Description Logics
. 606
17.6
Embodied and Situated Approaches to Meaning
. 612
17.7
Summary
. 614
Bibliographical and Historical Notes
. 614
Exercises
. 616
18
Computational Semantics
617
18.1
Syntax-Driven Semantic Analysis
. 617
18.2
Semantic Augmentations to Syntactic Rules
. 619
18.3
Quantifier Scope Ambiguity and Underspecification
. 626
18.3.1
Store and Retrieve Approaches
. 626
18.3.2
Constraint-Based Approaches
. 629
18.4
Unification-Based Approaches to Semantic Analysis
. 632
18.5
Integration of Semantics into the Earley Parser
. 638
18.6
Idioms and Compositionality
. 639
18.7
Summary
. 641
Bibliographical and Historical Notes
. 641
Exercises
. 643
19
Lexical Semantics
645
19.1
Word Senses
. 646
19.2
Relations Between Senses
. 649
19.2.1
Synonymy and
Antonymy
. 649
19.2.2
Hyponymy
. 650
19.2.3
Semantic Fields
. 651
19.3
WordNet: A Database of Lexical Relations
. 651
19.4
Event Participants
. 653
19.4.1
Thematic Roles
. 654
19.4.2
Diathesis Alternations
. 656
19.4.3
Problems with Thematic Roles
. 657
19.4.4
The Proposition Bank
. 658
19.4.5
FrameNet
. 659
19.4.6
Selecţionai
Restrictions
. 661
19.5
Primitive Decomposition
. 663
19.6
Advanced: Metaphor
. 665
19.7
Summary
. 666
18 Contents
Bibliographical and Historical Notes
. 667
Exercises
. 668
20
Computational Lexical Semantics
671
20.1
Word Sense Disambiguation: Overview
. 672
20.2
Supervised Word Sense Disambiguation
. 673
20.2.1
Feature Extraction for Supervised Learning
. 674
20.2.2
Naive
Bayes
and Decision List Classifiers
. 675
20.3
WSD Evaluation, Baselines, and Ceilings
. 678
20.4
WSD: Dictionary and Thesaurus Methods
. 680
20.4.1
The
Lesk
Algorithm
. 680
20.4.2
Selecţionai
Restrictions and
Selecţionai
Preferences
. 682
20.5
Minimally Supervised WSD: Bootstrapping
. 684
20.6
Word Similarity: Thesaurus Methods
. 686
20.7
Word Similarity: Distributional Methods
. 692
20.7.1
Defining a Word's Co-Occurrence Vectors
. 693
20.7.2
Measuring Association with Context
. 695
20.7.3
Defining Similarity Between Two Vectors
. 697
20.7.4
Evaluating Distributional Word Similarity
. 701
20.8
Hyponymy and Other Word Relations
. 701
20.9
Semantic Role Labeling
. 704
20.10
Advanced: Unsupervised Sense Disambiguation
. 708
20.11
Summary
. 709
Bibliographical and Historical Notes
. 710
Exercises
. 713
21
Computational Discourse
715
21.1
Discourse Segmentation
. 718
21.1.1
Unsupervised Discourse Segmentation
. 718
21.1.2
Supervised Discourse Segmentation
. 720
21.1.3
Discourse Segmentation Evaluation
. 722
21.2
Text Coherence
. 723
21.2.1
Rhetorical Structure Theory
. 724
21.2.2
Automatic Coherence Assignment
. 726
21.3
Reference Resolution
. 729
21.4
Reference Phenomena
. 732
21.4.1
Five Types of Referring Expressions
. 732
21.4.2
Information Status
. 734
21.5
Features for Pronominal Anaphora Resolution
. 735
21.5.1
Features for Filtering Potential Referents
. 735
21.5.2
Preferences in Pronoun Interpretation
. 736
21.6
Three Algorithms for Anaphora Resolution
. 738
21.6.1
Pronominal Anaphora Baseline: The Hobbs Algorithm
. 738
21.6.2
A Centering Algorithm for Anaphora Resolution
. 740
21.6.3
A Log-Linear Model for Pronominal Anaphora Resolution
. 742
21.6.4
Features for Pronominal Anaphora Resolution
. 743
Contents 19
21.7 Coreference Resolution. 744
21.8 Evaluation
of
Coreference Resolution. 74.6
21.9 Advanced:
Inference-Based Coherence
Resolution. 747
21.10
Psycholinguistic Studies of Reference.
752
21.11
Summary
. 753
Bibliographical and Historical Notes
. 754
Exercises
. 756
V Applications
22
Information Extraction
759
22.1
Named Entity Recognition
. 761
22.1.1
Ambiguity in Named Entity Recognition
. 763
22.1.2
NER
as Sequence Labeling
. 763
22.1.3
Evaluation of Named Entity Recognition
. 766
22.1.4
Practical
NER
Architectures
. 768
22.2
Relation Detection and Classification
. 768
22.2.1
Supervised Learning Approaches to Relation Analysis
. . . 769
22.2.2
Lightly Supervised Approaches to Relation Analysis
. 772
22.2.3
Evaluation of Relation Analysis Systems
. 776
22.3
Temporal and Event Processing
. 777
22.3.1
Temporal Expression Recognition
. 777
22.3.2
Temporal Normalization
. 780
22.3.3
Event Detection and Analysis
. 783
22.3.4
TimeBank
. 784
22.4
Template Filling
. 786
22.4.1
Statistical Approaches to Template-Filling
. 786
22.4.2
Finite-State Template-Filling Systems
. 788
22.5
Advanced:
Biomedical
Information Extraction
. 791
22.5.1
Biological Named Entity Recognition
. 792
22.5.2
Gene Normalization
. 793
22.5.3
Biological Roles and Relations
. 794
22.6
Summary
. 796
Bibliographical and Historical Notes
. 796
Exercises
. 797
23
Question Answering and Summarization
799
23.1
Information Retrieval
. 801
23.1.1
The Vector Space Model
. 802
23.1.2
Term Weighting
. 804
23.1.3
Term Selection and Creation
. 806
23.1.4
Evaluation of Information-Retrieval Systems
. 806
23.1.5
Homonymy, Polysemy, and Synonymy
. 810
23.1.6
Ways to Improve User Queries
. 810
23.2
Factoid Question Answering
. 812
23.2.1
Question Processing
. 813
20 Contents
23.2.2 Passage
Retrieval
. 815
23.2.3
Answer
Processing. 817
23.2.4 Evaluation
of Factoid Answers
. 821
23.3
Summarization
. 821
23.4
Single-Document Summarization
. 824
23.4.1
Unsupervised Content Selection
. 824
23.4.2
Unsupervised Summarization Based on Rhetorical Parsing
. 826
23.4.3
Supervised Content Selection
. 828
23.4.4
Sentence Simplification
. 829
23.5
Multi-Document Summarization
. 830
23.5.1
Content Selection in Multi-Document Summarization
. 831
23.5.2
Information Ordering in Multi-Document Summarization
. 832
23.6
Focused Summarization and Question Answering
. 835
23.7
Summarization Evaluation
. 839
23.8
Summary
. 841
Bibliographical and Historical Notes
. 842
Exercises
. 844
24
Dialogue and Conversational Agents
847
24.1
Properties of Human Conversations
. 849
24.1.1
Turns and Turn-Taking
. 849
24.1.2
Language as Action: Speech Acts
. 851
24.1.3
Language as Joint Action: Grounding
. 852
24.1.4
Conversational Structure
. 854
24.1.5
Conversational Implicature
. 855
24.2
Basic Dialogue Systems
. 857
24.2.1
ASR Component
. 857
24.2.2
NLU Component
. 858
24.2.3
Generation and TTS Components
. 861
24.2.4
Dialogue Manager
. 863
24.2.5
Dealing with Errors: Confirmation and Rejection
. 867
24.3
VoiceXML
. 868
24.4
Dialogue System Design and Evaluation
. 872
24.4.1
Designing Dialogue Systems
. 872
24.4.2
Evaluating Dialogue Systems
. 872
24.5
Information-State and Dialogue Acts
. 874
24.5.1
Using Dialogue Acts
. 876
24.5.2
Interpreting Dialogue Acts
. 877
24.5.3
Detecting Correction Acts
. 880
24.5.4
Generating Dialogue Acts: Confirmation and Rejection
. 881
24.6
Markov Decision Process Architecture
. 882
24.7
Advanced: Plan-Based Dialogue Agents
. 886
24.7.1
Plan-Inferential Interpretation and Production
. 887
24.7.2
The Intentional Structure of Dialogue
. 889
24.8
Summary
.
g9l
Bibliographical and Historical Notes
. 892
Contents 21
Exercises
. 894
25 Machine Translation 895
25.1
Why
Machine Translation
Is Hard
. 898
25.1.1
Typology
. 898
25.1.2
Other Structural Divergences
. 900
25.1.3
Lexical Divergences
. 901
25.2
Classical MT and the Vauquois Triangle
. 903
25.2.1
Direct Translation
. 904
25.2.2
Transfer
. 906
25.2.3
Combined Direct and Transfer Approaches in Classic MT
. 908
25.2.4
The
Interlingua Idea:
Using Meaning
. 909
25.3
Statistical MT
. 910
25.4
P(F
\E):
The Phrase-Based Translation Model
. 913
25.5
Alignment in MT
. 915
25.5.1
IBM Model
1. 916
25.5.2
HMM
Alignment
. 919
25.6
Training Alignment Models
. 921
25.6.1
EM for Training Alignment Models
. 922
25.7
Symmetrizing Alignments for Phrase-Based MT
. 924
25.8
Decoding for Phrase-Based Statistical MT
. 926
25.9
MT Evaluation
. 930
25.9.1
Using Human Raters
. 930
25.9.2
Automatic Evaluation: BLEU
. 931
25.10
Advanced: Syntactic Models for MT
. 934
25.11
Advanced: IBM Model
3
and Fertility
. 935
25.11.1
Training for Model
3. 939
25.12
Advanced: Log-Linear Models for MT
. 939
25.13
Summary
. 940
Bibliographical and Historical Notes
. 941
Exercises
. 943
Bibliography
945
Author Index
995
Subject Index
1007 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Jurafsky, Dan 1962- Martin, James H. 1959- |
author_GND | (DE-588)140274952 (DE-588)140275231 |
author_facet | Jurafsky, Dan 1962- Martin, James H. 1959- |
author_role | aut aut |
author_sort | Jurafsky, Dan 1962- |
author_variant | d j dj j h m jh jhm |
building | Verbundindex |
bvnumber | BV035148790 |
callnumber-first | P - Language and Literature |
callnumber-label | P98 |
callnumber-raw | P98 |
callnumber-search | P98 |
callnumber-sort | P 298 |
callnumber-subject | P - Philology and Linguistics |
classification_rvk | ES 900 ST 306 |
classification_tum | DAT 710f |
ctrlnum | (OCoLC)253202803 (DE-599)BVBBV035148790 |
dewey-full | 410.285 |
dewey-hundreds | 400 - Language |
dewey-ones | 410 - Linguistics |
dewey-raw | 410.285 |
dewey-search | 410.285 |
dewey-sort | 3410.285 |
dewey-tens | 410 - Linguistics |
discipline | Sprachwissenschaft Informatik Literaturwissenschaft |
discipline_str_mv | Sprachwissenschaft Informatik Literaturwissenschaft |
edition | 2. ed., internat. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03166nam a2200541 c 4500</leader><controlfield tag="001">BV035148790</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160404 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081110s2009 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0135041961</subfield><subfield code="9">0-13-504196-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780135041963</subfield><subfield code="9">978-0-13-504196-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)253202803</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035148790</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-2070s</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-M382</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">P98</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">410.285</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ES 900</subfield><subfield code="0">(DE-625)27926:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 306</subfield><subfield code="0">(DE-625)143654:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 710f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jurafsky, Dan</subfield><subfield code="d">1962-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)140274952</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Speech and language processing</subfield><subfield code="b">an introduction to natural language processing, computational linguistics, and speech recognition</subfield><subfield code="c">Daniel Jurafsky ; James H. Martin</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed., internat. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Upper Saddle River</subfield><subfield code="b">Pearson Education International, Prentice Hall</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1024 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Prentice-Hall-series in artificial intelligence</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This book takes an empirical approach to language processing, based on applying statistical and other machine-learning algorithms to large corpora.Methodology boxes are included in each chapter. Each chapter is built around one or more worked examples to demonstrate the main idea of the chapter. Covers the fundamental algorithms of various fields, whether originally proposed for spoken or written language to demonstrate how the same algorithm can be used for speech recognition and word-sense disambiguation. Emphasis on web and other practical applications. Emphasis on scientific evaluation. Useful as a reference for professionals in any of the areas of speech and language processing.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automatic speech recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational linguistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parsing (Computer grammar)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Automatische Spracherkennung</subfield><subfield code="0">(DE-588)4003961-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computerlinguistik</subfield><subfield code="0">(DE-588)4035843-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Digitale Sprachverarbeitung</subfield><subfield code="0">(DE-588)4233857-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Natürlichsprachiges System</subfield><subfield code="0">(DE-588)4284757-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Digitale Sprachverarbeitung</subfield><subfield code="0">(DE-588)4233857-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Computerlinguistik</subfield><subfield code="0">(DE-588)4035843-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Automatische Spracherkennung</subfield><subfield code="0">(DE-588)4003961-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Natürlichsprachiges System</subfield><subfield code="0">(DE-588)4284757-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martin, James H.</subfield><subfield code="d">1959-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)140275231</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016956060&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016956060</subfield></datafield></record></collection> |
id | DE-604.BV035148790 |
illustrated | Illustrated |
index_date | 2024-07-02T22:45:47Z |
indexdate | 2024-07-09T21:26:05Z |
institution | BVB |
isbn | 0135041961 9780135041963 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016956060 |
oclc_num | 253202803 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-384 DE-19 DE-BY-UBM DE-20 DE-29 DE-29T DE-634 DE-91 DE-BY-TUM DE-739 DE-188 DE-706 DE-1051 DE-11 DE-2070s DE-83 DE-703 DE-91G DE-BY-TUM DE-M382 |
owner_facet | DE-355 DE-BY-UBR DE-384 DE-19 DE-BY-UBM DE-20 DE-29 DE-29T DE-634 DE-91 DE-BY-TUM DE-739 DE-188 DE-706 DE-1051 DE-11 DE-2070s DE-83 DE-703 DE-91G DE-BY-TUM DE-M382 |
physical | 1024 S. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Pearson Education International, Prentice Hall |
record_format | marc |
series2 | Prentice-Hall-series in artificial intelligence |
spelling | Jurafsky, Dan 1962- Verfasser (DE-588)140274952 aut Speech and language processing an introduction to natural language processing, computational linguistics, and speech recognition Daniel Jurafsky ; James H. Martin 2. ed., internat. ed. Upper Saddle River Pearson Education International, Prentice Hall 2009 1024 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Prentice-Hall-series in artificial intelligence Hier auch später erschienene, unveränderte Nachdrucke This book takes an empirical approach to language processing, based on applying statistical and other machine-learning algorithms to large corpora.Methodology boxes are included in each chapter. Each chapter is built around one or more worked examples to demonstrate the main idea of the chapter. Covers the fundamental algorithms of various fields, whether originally proposed for spoken or written language to demonstrate how the same algorithm can be used for speech recognition and word-sense disambiguation. Emphasis on web and other practical applications. Emphasis on scientific evaluation. Useful as a reference for professionals in any of the areas of speech and language processing. Automatic speech recognition Computational linguistics Parsing (Computer grammar) Automatische Spracherkennung (DE-588)4003961-4 gnd rswk-swf Computerlinguistik (DE-588)4035843-4 gnd rswk-swf Digitale Sprachverarbeitung (DE-588)4233857-8 gnd rswk-swf Natürlichsprachiges System (DE-588)4284757-6 gnd rswk-swf Digitale Sprachverarbeitung (DE-588)4233857-8 s Computerlinguistik (DE-588)4035843-4 s Automatische Spracherkennung (DE-588)4003961-4 s Natürlichsprachiges System (DE-588)4284757-6 s DE-604 Martin, James H. 1959- Verfasser (DE-588)140275231 aut Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016956060&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Jurafsky, Dan 1962- Martin, James H. 1959- Speech and language processing an introduction to natural language processing, computational linguistics, and speech recognition Automatic speech recognition Computational linguistics Parsing (Computer grammar) Automatische Spracherkennung (DE-588)4003961-4 gnd Computerlinguistik (DE-588)4035843-4 gnd Digitale Sprachverarbeitung (DE-588)4233857-8 gnd Natürlichsprachiges System (DE-588)4284757-6 gnd |
subject_GND | (DE-588)4003961-4 (DE-588)4035843-4 (DE-588)4233857-8 (DE-588)4284757-6 |
title | Speech and language processing an introduction to natural language processing, computational linguistics, and speech recognition |
title_auth | Speech and language processing an introduction to natural language processing, computational linguistics, and speech recognition |
title_exact_search | Speech and language processing an introduction to natural language processing, computational linguistics, and speech recognition |
title_exact_search_txtP | Speech and language processing an introduction to natural language processing, computational linguistics, and speech recognition |
title_full | Speech and language processing an introduction to natural language processing, computational linguistics, and speech recognition Daniel Jurafsky ; James H. Martin |
title_fullStr | Speech and language processing an introduction to natural language processing, computational linguistics, and speech recognition Daniel Jurafsky ; James H. Martin |
title_full_unstemmed | Speech and language processing an introduction to natural language processing, computational linguistics, and speech recognition Daniel Jurafsky ; James H. Martin |
title_short | Speech and language processing |
title_sort | speech and language processing an introduction to natural language processing computational linguistics and speech recognition |
title_sub | an introduction to natural language processing, computational linguistics, and speech recognition |
topic | Automatic speech recognition Computational linguistics Parsing (Computer grammar) Automatische Spracherkennung (DE-588)4003961-4 gnd Computerlinguistik (DE-588)4035843-4 gnd Digitale Sprachverarbeitung (DE-588)4233857-8 gnd Natürlichsprachiges System (DE-588)4284757-6 gnd |
topic_facet | Automatic speech recognition Computational linguistics Parsing (Computer grammar) Automatische Spracherkennung Computerlinguistik Digitale Sprachverarbeitung Natürlichsprachiges System |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016956060&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT jurafskydan speechandlanguageprocessinganintroductiontonaturallanguageprocessingcomputationallinguisticsandspeechrecognition AT martinjamesh speechandlanguageprocessinganintroductiontonaturallanguageprocessingcomputationallinguisticsandspeechrecognition |