A guide to complex variables:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Washington, DC
Math. Assoc. of America
2008
|
Schriftenreihe: | MAA guides
1 Dolciani mathematical expositions 32 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVIII, 181 S. graph. Darst. |
ISBN: | 9780883853382 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV035147837 | ||
003 | DE-604 | ||
005 | 20110909 | ||
007 | t | ||
008 | 081107s2008 d||| |||| 00||| eng d | ||
020 | |a 9780883853382 |9 978-0-8838-5338-2 | ||
035 | |a (OCoLC)229309023 | ||
035 | |a (DE-599)BVBBV035147837 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-824 |a DE-188 | ||
050 | 0 | |a QA331.7 | |
082 | 0 | |a 515.9 | |
084 | |a SK 700 |0 (DE-625)143253: |2 rvk | ||
100 | 1 | |a Krantz, Steven G. |d 1951- |e Verfasser |0 (DE-588)130535907 |4 aut | |
245 | 1 | 0 | |a A guide to complex variables |c Steven G. Krantz |
264 | 1 | |a Washington, DC |b Math. Assoc. of America |c 2008 | |
300 | |a XVIII, 181 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a MAA guides |v 1 | |
490 | 1 | |a Dolciani mathematical expositions |v 32 | |
650 | 4 | |a Functions of complex variables | |
650 | 0 | 7 | |a Funktionentheorie |0 (DE-588)4018935-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Funktionentheorie |0 (DE-588)4018935-1 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a MAA guides |v 1 |w (DE-604)BV035218151 |9 1 | |
830 | 0 | |a Dolciani mathematical expositions |v 32 |w (DE-604)BV001900740 |9 32 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016815121&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016815121 |
Datensatz im Suchindex
_version_ | 1804138135788978176 |
---|---|
adam_text | Contents
Prefă
ce
......................................................... ix
1
The
Complex
Plane
.......................................... 1
1.1
Complex
Arithmetic
..................... 1
1.1.1
The Real Numbers
.................. 1
1.1.2
The Complex Numbers
................ 1
1.1.3
Complex Conjugate
................. 2
1.1.4
Modulus of a Complex Number
........... 2
1.1.5
The Topology of the Complex Plane
......... 3
1.1.6
The Complex Numbers as a Field
.......... 5
1.1.7
The Fundamental Theorem of Algebra
........ 6
1.2
The Exponential and Applications
.............. 6
1.2.1
The Exponential Function
.............. 6
1.2.2
The Exponential Using Power Series
........ 7
1.2.3
Laws of Exponentiation
............... 7
1.2.4
Polar Form of a Complex Number
.......... 7
1.2.5
Roots of Complex Numbers
............. 9
1.2.6
The Argument of a Complex Number
........ 11
1.2.7
Fundamental Inequalities
............... 11
1.3
Holomorphic Functions
................... 12
1.3.1
Continuously Differentiable and Ck Functions
... 12
1.3.2
The Cauchy-Riemann Equations
........... 12
1.3.3
Derivatives
...................... 13
1.3.4
Definition of Holomorphic Function
......... 14
1.3.5
The Complex Derivative
............... 14
1.3.6
Alternative Terminology for Holomorphic Functions
16
1.4
Holomorphic and Harmonic Functions
........... 16
1.4.1
Harmonic Functions
................. 16
хи А
Guide to Complex Variables
1.4.2
How They are Related
................ 17
2
Complex Line Integrals
...................................... 19
2.1
Real and Complex Line Integrals
.............. 19
2.1.1
Curves
........................ 19
2.1.2
ClosedCurves
.................... 20
2.1.3
Differentiable and
Ск
Curves
............ 20
2.1.4
Integrals on Curves
.................. 21
2.1.5
The Fundamental Theorem of Calculus along Curves
21
2.1.6
The Complex Line Integral
.............. 22
2.1.7
Properties of Integrals
................ 23
2.2
Complex Differentiability and Conformality
........ 24
2.2.1
Limits
......................... 24
2.2.2
Holomorphicity and the Complex Derivative
.... 24
2.2.3
Conformality
..................... 24
2.3
The Cauchy Integral Formula and Theorem
......... 27
2.3.1
The Cauchy Integral Theorem, Basic Form
..... 27
2.3.2
The Cauchy Integral Formula
............ 28
2.3.3
More General Forms of the Cauchy Theorems
... 28
2.3.4
Deformability of Curves
............... 30
2.4
The Limitations of the Cauchy Formula
........... 30
3
Applications of the Cauchy Theory
........................... 33
3.1
The Derivatives of a Holomorphic Function
......... 33
3.1.1
A Formula for the Derivative
............. 33
3.1.2
The Cauchy Estimates
................ 33
3.1.3
Entire Functions and Liouville s Theorem
...... 34
3.1.4
The Fundamental Theorem of Algebra
........ 35
3.1.5
Sequences of Holomorphic Functions and their
Derivatives
...................... 36
3.1.6
The Power Series Representation of a Holomorphic
Function
....................... 36
3.2
The Zeros of a Holomorphic Function
............ 39
3.2.1
The Zero Set of a Holomorphic Function
...... 39
3.2.2
Discreteness of the Zeros of a Holomorphic Function
39
3.2.3
Discrete Sets and Zero Sets
............. 39
3.2.4
Uniqueness of Analytic Continuation
........ 40
CONTENTS
ХНІ
4 Laurent
Series
.............................................. 43
4.1
Behavior Near an Isolated Singularity
............ 43
4.1.1
Isolated Singularities
................. 43
4.1.2
A Holomorphic Function on a Punctured Domain
. . 44
4.1.3
Classification of Singularities
............ 44
4.1.4
Removable Singularities, Poles, and
Essential Singularities
................ 44
4.1.5
The Riemann Removable Singularities Theorem
.. 45
4.1.6
The Casorati-
Weierstrass
Theorem
.......... 45
4.2
Expansion around Singular Points
.............. 46
4.2.1
Laurent Series
.................... 46
4.2.2
Convergence of a Doubly Infinite Series
....... 46
4.2.3
Annulus of Convergence
............... 46
4.2.4
Uniqueness of the Laurent Expansion
........ 47
4.2.5
The Cauchy Integral Formula for an Annulus
.... 48
4.2.6
Existence of Laurent Expansions
........... 48
4.2.7
Holomorphic Functions with Isolated Singularities
. 49
4.2.8
Classification of Singularities in Terms of Laurent
Series
......................... 49
4.3
Examples of Laurent Expansions
.............. 50
4.3.1
Principal Part of a Function
............. 50
4.3.2
Algorithm for Calculating the Coefficients of the
Laurent Expansion
.................. 52
4.4
The Calculus of Residues
.................. 52
4.4.1
Functions with Multiple Singularities
........ 52
4.4.2
The Residue Theorem
................ 52
4.4.3
Residues
....................... 53
4.4.4
The Index or Winding Number of a Curve about a Point
53
4.4.5
Restatement of the Residue Theorem
........ 54
4.4.6
Method for Calculating Residues
.......... 55
4.4.7
Summary Charts of Laurent Series and Residues
. . 55
4.5
Applications to Integrals
................... 55
4.5.1
The Evaluation of Definite Integrals
......... 55
4.5.2
A Basic Example of the Indefinite Integral
..... 56
4.5.3
Complexification of the Integrand
.......... 58
4.5.4
An Example with a More Subtle Choice of Contour
. 59
4.5.5
Making the Spurious Part of the Integral Disappear
. 62
4.5.6
The Use of the Logarithm
.............. 64
4.5.7
Summing a Series Using Residues
.......... 66
XIV
A Guide
то
complex Variables
4.6
Singularities at Infinity
.................... 67
4.6.1
Meromorphic Functions
............... 67
4.6.2
Definition of Meromorphic Function
......... 67
4.6.3
Examples of Meromorphic Functions
........ 68
4.6.4
Meromorphic Functions with Infinitely Many Poles
. 68
4.6.5
Singularities at Infinity
................ 68
4.6.6
The Laurent Expansion at Infinity
.......... 69
4.6.7
Meromorphic at Infinity
............... 69
4.6.8
Meromorphic Functions in the Extended Plane
... 70
5
The Argument Principle
..................................... 71
5.1
Counting Zeros and Poles
.................. 71
5.1.1
Local Geometric Behavior of a Holomorphic Function
71
5.1.2
Locating the Zeros of a Holomorphic Function
... 71
5.1.3
Zero of Order
и
.................... 72
5.1.4
Counting the Zeros of a Holomorphic Function
... 72
5.1.5
The Argument Principle
............... 73
5.1.6
Location of Poles
.................. 74
5.1.7
The Argument Principle for Meromorphic Functions
74
5.2
The Local Geometry of Holomorphic Functions
....... 75
5.2.1
The Open Mapping Theorem
............ 75
5.3
Further Results
........................ 76
5.3.1
Rouché s
Theorem
.................. 76
5.3.2
Typical Application of
Rouché s
Theorem
..... 77
5.3.3
Rouché s
Theorem and the Fundamental Theorem of
Algebra
....................... 77
5.3.4
Hurwitz s Theorem
................. 78
5.4
The Maximum Principle
................... 78
5.4.1
The Maximum Modulus Principle
.......... 78
5.4.2
Boundary Maximum Modulus Theorem
...... 79
5.4.3
The Minimum Principle
............... 80
5.4.4
The Maximum Principle on an Unbounded Domain
80
5.5
The
Schwarz
Lemma
..................... 81
5.5.1
Schwarz s Lemma
.................. 81
5.5.2
The Schwarz-Pick Lemma
.............. 82
6
The Geometric Theory
....................................... 83
6.1
The Idea of
a Conformai
Mapping
.............. 83
6.1.1
Conformai
Mappings
................. 83
6.1.2
Conformai
Self-Maps of the Plane
.......... 83
Contents
xv
6.2 Linear
Fractional Transformations
.............. 86
6.2.1 Linear
Fractional Mappings
............. 86
6.2.2
The Topology of the Extended Plane
......... 87
6.2.3
The Riemann Sphere
................. 87
6.2.4
Conformai
Self-Maps of the Riemann Sphere
.... 89
6.2.5
The Cayley Transform
................ 89
6.2.6
Generalized Circles and Lines
............ 89
6.2.7
The Cayley Transform Revisited
........... 89
6.2.8
Summary Chart of Linear Fractional Transformations
90
6.3
The Riemann Mapping Theorem
............... 91
6.3.1
The Concept of Homeomorphism
.......... 91
6.3.2
The Riemann Mapping Theorem
........... 91
6.3.3
The Riemann Mapping Theorem: Second Formulation
91
6.4
Conformai
Mappings of
Annuli............... 92
6.4.1
A Riemann Mapping Theorem for
Annuli...... 92
6.4.2
Conformai
Equivalence of
Annuli.......... 93
6.4.3
Classification of Planar Domains
........... 93
7
Harmonic Functions
......................................... 95
7.1
Basic Properties of Harmonic Functions
........... 95
7.1.1
The Laplace Equation
................ 95
7.1.2
Definition of Harmonic Function
........... 95
7.1.3
Real-and Complex-Valued Harmonic Functions
. . 96
7.1.4
Harmonic Functions as the Real Parts of
Holomorphic Functions
............... 96
7.1.5
Smoothness of Harmonic Functions
......... 97
7.2
The Maximum Principle and the Mean Value Property
... 97
7.2.1
The Maximum Principle for Harmonic Functions
. . 97
7.2.2
The Minimum Principle for Harmonic Functions
. . 97
7.2.3
The Boundary Maximum and Minimum Principles
. 98
7.2.4
The Mean Value Property
.............. 98
7.2.5
Boundary Uniqueness for Harmonic Functions
... 99
7.3
The
Poisson
Integral Formula
................ 99
7.3.1
The
Poisson
Integral
................. 99
7.3.2
The
Poisson
Kernel
.................. 99
7.3.3
The Dirichlet Problem
................ 100
7.3.4
The Solution of the Dirichlet Problem on the Disc
. 100
7.3.5
The Dirichlet Problem on a General Disc
...... 101
xvi
A Guide
то
Complex Variables
7.4
Regularity of Harmonic Functions
.............. 101
7.4.1
The Mean Value Property on Circles
......... 101
7.4.2
The Limit of a Sequence of Harmonic Functions
. . 102
7.5
The
Schwarz
Reflection Principle
.............. 102
7.5.1
Reflection of Harmonic Functions
.......... 102
7.5.2 Schwarz
Reflection Principle for Harmonic Functions
102
7.5.3
The
Schwarz
Reflection Principle for
Holomorphic Functions
............... 103
7.5.4
More General Versions of the
Schwarz
Reflection Principle
................. 103
7.6
Harnack s Principle
...................... 104
7.6.1
The Harnack Inequality
............... 104
7.6.2
Harnack s Principle
.................. 104
7.7
The Dirichlet Problem
.................... 104
7.7.1
The Dirichlet Problem
................ 104
7.7.2
Conditions for Solving the Dirichlet Problem
.... 105
7.7.3
Motivation for Subharmonic Functions
....... 105
7.7.4
Definition of Subharmonic Function
......... 106
7.7.5
Other Characterizations of Subharmonic Functions
. 106
7.7.6
The Maximum Principle
............... 107
7.7.7
Lack of A Minimum Principle
............ 107
7.7.8
Basic Properties of Subharmonic Functions
..... 107
7.7.9
The Concept of a Barrier
............... 108
7.8
The General Solution of the Dirichlet Problem
....... 109
7.8.1
Enunciation of the Solution of the Dirichlet Problem
109
8
Infinite Series and Products
..................................
Ill
8.1
Basic Concepts
........................
Ill
8.1.1
Uniform Convergence of a Sequence
........
Ill
8.1.2
The Cauchy Condition for a Sequence of Functions
.
Ill
8.1.3
Normal Convergence of a Sequence
......... 112
8.1.4
Normal Convergence of a Series
........... 112
8.1.5
The Cauchy Condition for a Series
.......... 112
8.1.6
The Concept of an Infinite Product
.......... 113
8.1.7
Infinite Products of Scalars
.............. 113
8.1.8
Partial Products
.................... 113
8.1.9
Convergence of an Infinite Product
......... 113
8.1.10
The Value of an Infinite Product
........... 114
8.1.11
Products That Are Disallowed
............ 114
Contents
XVII
8.1.12
Condition for Convergence
of
an Infinite
Product
. . 114
8.1.13 Infinite Products
of Holomorphic Functions
..... 116
8.1.14
Vanishing of
an Infinite
Product...........
116
8.1.15 Uniform
Convergence of an
Infinite
Productor
Functions.................
116
8.1.16
Condition for the Uniform Convergence of an
Infinite Product of Functions
............. 117
8.2
The
Weierstrass
Factorization Theorem
........... 117
8.2.1
Prologue
....................... 117
8.2.2
Weierstrass
Factors
.................. 117
8.2.3
Convergence of the
Weierstrass
Product
....... 118
8.2.4
Existence of an Entire Function with Prescribed Zeros
118
8.2.5
The
Weierstrass
Factorization Theorem
....... 119
8.3
Weierstrass
and Mittag-Leffler Theorems
.......... 119
8.3.1
The Concept of Weierstrass s Theorem
....... 119
8.3.2
Weierstrass s Theorem
................ 119
8.3.3
Construction of a Discrete Set
............ 119
8.3.4
Domains of Existence for Holomorphic Functions
. 120
8.3.5
The Field Generated by the Ring of
Holomorphic Functions
............... 120
8.3.6
The Mittag-Leffler Theorem
............. 120
8.3.7
Prescribing Principal Parts
.............. 121
8.4
Normal Families
....................... 122
8.4.1
Normal Convergence
................. 122
8.4.2
Normal Families
................... 122
8.4.3
Montel s Theorem, First Version
........... 122
8.4.4
Montel s Theorem, Second Version
......... 122
8.4.5
Examples of Normal Families
............ 123
9
Analytic Continuation
.......................................125
9.1
Definitionofan
Analytic Function Element
......... 125
9.1.1
Continuation of Holomorphic Functions
....... 125
9.1.2
Examples of Analytic Continuation
......... 125
9.1.3
Function Elements
.................. 129
9.1.4
Direct Analytic Continuation
............. 129
9.1.5
Analytic Continuation of a Function
......... 129
9.1.6
Global Analytic Functions
.............. 129
9.1.7
An Example of Analytic Continuation
........ 130
xviii
A Guide to Complex Variables
9.2
Analytic Continuation along a Curve
............ 131
9.2.1
Continuation on a Curve
............... 131
9.2.2
Uniqueness of Continuation along a Curve
..... 132
9.3
The
Monodramy
Theorem
.................. 132
9.3.1
Unambiguity of Analytic Continuation
....... 132
9.3.2
The Concept of Homotopy
.............. 133
9.3.3
Fixed Endpoint Homotopy
.............. 134
9.3.4
Unrestricted Continuation
.............. 134
9.3.5
The
Monodramy
Theorem
.............. 134
9.3.6
Monodramy
and Globally Defined Analytic Functions
134
9.4
The Idea of a Riemann Surface
............... 135
9.4.1
What is a Riemann Surface?
............. 135
9.4.2
Examples of Riemann Surfaces
........... 136
9.4.3
The Riemann Surface for the Square Root Function
. 138
9.4.4
Holomorphic Functions on a Riemann Surf ace
... 138
9.4.5
The Riemann Surface for the Logarithm
....... 139
9.4.6
Riemann Surfaces in General
............ 139
9.5
Picard s Theorems
...................... 140
9.5.1
Value Distribution for Entire Functions
....... 140
9.5.2
Picard s Little Theorem
............... 140
9.5.3
Picard s Great Theorem
............... 140
9.5.4
The Little Theorem, the Great Theorem, and the
Casorati-
Weierstrass
Theorem
............ 141
Glossary of Terms from Complex Variable Theory and Analysis
.. 143
Bibliography
...................................................175
Index
...........................................................177
About the Author
...............................................182
|
adam_txt |
Contents
Prefă
ce
. ix
1
The
Complex
Plane
. 1
1.1
Complex
Arithmetic
. 1
1.1.1
The Real Numbers
. 1
1.1.2
The Complex Numbers
. 1
1.1.3
Complex Conjugate
. 2
1.1.4
Modulus of a Complex Number
. 2
1.1.5
The Topology of the Complex Plane
. 3
1.1.6
The Complex Numbers as a Field
. 5
1.1.7
The Fundamental Theorem of Algebra
. 6
1.2
The Exponential and Applications
. 6
1.2.1
The Exponential Function
. 6
1.2.2
The Exponential Using Power Series
. 7
1.2.3
Laws of Exponentiation
. 7
1.2.4
Polar Form of a Complex Number
. 7
1.2.5
Roots of Complex Numbers
. 9
1.2.6
The Argument of a Complex Number
. 11
1.2.7
Fundamental Inequalities
. 11
1.3
Holomorphic Functions
. 12
1.3.1
Continuously Differentiable and Ck Functions
. 12
1.3.2
The Cauchy-Riemann Equations
. 12
1.3.3
Derivatives
. 13
1.3.4
Definition of Holomorphic Function
. 14
1.3.5
The Complex Derivative
. 14
1.3.6
Alternative Terminology for Holomorphic Functions
16
1.4
Holomorphic and Harmonic Functions
. 16
1.4.1
Harmonic Functions
. 16
хи А
Guide to Complex Variables
1.4.2
How They are Related
. 17
2
Complex Line Integrals
. 19
2.1
Real and Complex Line Integrals
. 19
2.1.1
Curves
. 19
2.1.2
ClosedCurves
. 20
2.1.3
Differentiable and
Ск
Curves
. 20
2.1.4
Integrals on Curves
. 21
2.1.5
The Fundamental Theorem of Calculus along Curves
21
2.1.6
The Complex Line Integral
. 22
2.1.7
Properties of Integrals
. 23
2.2
Complex Differentiability and Conformality
. 24
2.2.1
Limits
. 24
2.2.2
Holomorphicity and the Complex Derivative
. 24
2.2.3
Conformality
. 24
2.3
The Cauchy Integral Formula and Theorem
. 27
2.3.1
The Cauchy Integral Theorem, Basic Form
. 27
2.3.2
The Cauchy Integral Formula
. 28
2.3.3
More General Forms of the Cauchy Theorems
. 28
2.3.4
Deformability of Curves
. 30
2.4
The Limitations of the Cauchy Formula
. 30
3
Applications of the Cauchy Theory
. 33
3.1
The Derivatives of a Holomorphic Function
. 33
3.1.1
A Formula for the Derivative
. 33
3.1.2
The Cauchy Estimates
. 33
3.1.3
Entire Functions and Liouville's Theorem
. 34
3.1.4
The Fundamental Theorem of Algebra
. 35
3.1.5
Sequences of Holomorphic Functions and their
Derivatives
. 36
3.1.6
The Power Series Representation of a Holomorphic
Function
. 36
3.2
The Zeros of a Holomorphic Function
. 39
3.2.1
The Zero Set of a Holomorphic Function
. 39
3.2.2
Discreteness of the Zeros of a Holomorphic Function
39
3.2.3
Discrete Sets and Zero Sets
. 39
3.2.4
Uniqueness of Analytic Continuation
. 40
CONTENTS
ХНІ
4 Laurent
Series
. 43
4.1
Behavior Near an Isolated Singularity
. 43
4.1.1
Isolated Singularities
. 43
4.1.2
A Holomorphic Function on a Punctured Domain
. . 44
4.1.3
Classification of Singularities
. 44
4.1.4
Removable Singularities, Poles, and
Essential Singularities
. 44
4.1.5
The Riemann Removable Singularities Theorem
. 45
4.1.6
The Casorati-
Weierstrass
Theorem
. 45
4.2
Expansion around Singular Points
. 46
4.2.1
Laurent Series
. 46
4.2.2
Convergence of a Doubly Infinite Series
. 46
4.2.3
Annulus of Convergence
. 46
4.2.4
Uniqueness of the Laurent Expansion
. 47
4.2.5
The Cauchy Integral Formula for an Annulus
. 48
4.2.6
Existence of Laurent Expansions
. 48
4.2.7
Holomorphic Functions with Isolated Singularities
. 49
4.2.8
Classification of Singularities in Terms of Laurent
Series
. 49
4.3
Examples of Laurent Expansions
. 50
4.3.1
Principal Part of a Function
. 50
4.3.2
Algorithm for Calculating the Coefficients of the
Laurent Expansion
. 52
4.4
The Calculus of Residues
. 52
4.4.1
Functions with Multiple Singularities
. 52
4.4.2
The Residue Theorem
. 52
4.4.3
Residues
. 53
4.4.4
The Index or Winding Number of a Curve about a Point
53
4.4.5
Restatement of the Residue Theorem
. 54
4.4.6
Method for Calculating Residues
. 55
4.4.7
Summary Charts of Laurent Series and Residues
. . 55
4.5
Applications to Integrals
. 55
4.5.1
The Evaluation of Definite Integrals
. 55
4.5.2
A Basic Example of the Indefinite Integral
. 56
4.5.3
Complexification of the Integrand
. 58
4.5.4
An Example with a More Subtle Choice of Contour
. 59
4.5.5
Making the Spurious Part of the Integral Disappear
. 62
4.5.6
The Use of the Logarithm
. 64
4.5.7
Summing a Series Using Residues
. 66
XIV
A Guide
то
complex Variables
4.6
Singularities at Infinity
. 67
4.6.1
Meromorphic Functions
. 67
4.6.2
Definition of Meromorphic Function
. 67
4.6.3
Examples of Meromorphic Functions
. 68
4.6.4
Meromorphic Functions with Infinitely Many Poles
. 68
4.6.5
Singularities at Infinity
. 68
4.6.6
The Laurent Expansion at Infinity
. 69
4.6.7
Meromorphic at Infinity
. 69
4.6.8
Meromorphic Functions in the Extended Plane
. 70
5
The Argument Principle
. 71
5.1
Counting Zeros and Poles
. 71
5.1.1
Local Geometric Behavior of a Holomorphic Function
71
5.1.2
Locating the Zeros of a Holomorphic Function
. 71
5.1.3
Zero of Order
и
. 72
5.1.4
Counting the Zeros of a Holomorphic Function
. 72
5.1.5
The Argument Principle
. 73
5.1.6
Location of Poles
. 74
5.1.7
The Argument Principle for Meromorphic Functions
74
5.2
The Local Geometry of Holomorphic Functions
. 75
5.2.1
The Open Mapping Theorem
. 75
5.3
Further Results
. 76
5.3.1
Rouché's
Theorem
. 76
5.3.2
Typical Application of
Rouché's
Theorem
. 77
5.3.3
Rouché's
Theorem and the Fundamental Theorem of
Algebra
. 77
5.3.4
Hurwitz's Theorem
. 78
5.4
The Maximum Principle
. 78
5.4.1
The Maximum Modulus Principle
. 78
5.4.2
Boundary Maximum Modulus Theorem
. 79
5.4.3
The Minimum Principle
. 80
5.4.4
The Maximum Principle on an Unbounded Domain
80
5.5
The
Schwarz
Lemma
. 81
5.5.1
Schwarz's Lemma
. 81
5.5.2
The Schwarz-Pick Lemma
. 82
6
The Geometric Theory
. 83
6.1
The Idea of
a Conformai
Mapping
. 83
6.1.1
Conformai
Mappings
. 83
6.1.2
Conformai
Self-Maps of the Plane
. 83
Contents
xv
6.2 Linear
Fractional Transformations
. 86
6.2.1 Linear
Fractional Mappings
. 86
6.2.2
The Topology of the Extended Plane
. 87
6.2.3
The Riemann Sphere
. 87
6.2.4
Conformai
Self-Maps of the Riemann Sphere
. 89
6.2.5
The Cayley Transform
. 89
6.2.6
Generalized Circles and Lines
. 89
6.2.7
The Cayley Transform Revisited
. 89
6.2.8
Summary Chart of Linear Fractional Transformations
90
6.3
The Riemann Mapping Theorem
. 91
6.3.1
The Concept of Homeomorphism
. 91
6.3.2
The Riemann Mapping Theorem
. 91
6.3.3
The Riemann Mapping Theorem: Second Formulation
91
6.4
Conformai
Mappings of
Annuli. 92
6.4.1
A Riemann Mapping Theorem for
Annuli. 92
6.4.2
Conformai
Equivalence of
Annuli. 93
6.4.3
Classification of Planar Domains
. 93
7
Harmonic Functions
. 95
7.1
Basic Properties of Harmonic Functions
. 95
7.1.1
The Laplace Equation
. 95
7.1.2
Definition of Harmonic Function
. 95
7.1.3
Real-and Complex-Valued Harmonic Functions
. . 96
7.1.4
Harmonic Functions as the Real Parts of
Holomorphic Functions
. 96
7.1.5
Smoothness of Harmonic Functions
. 97
7.2
The Maximum Principle and the Mean Value Property
. 97
7.2.1
The Maximum Principle for Harmonic Functions
. . 97
7.2.2
The Minimum Principle for Harmonic Functions
. . 97
7.2.3
The Boundary Maximum and Minimum Principles
. 98
7.2.4
The Mean Value Property
. 98
7.2.5
Boundary Uniqueness for Harmonic Functions
. 99
7.3
The
Poisson
Integral Formula
. 99
7.3.1
The
Poisson
Integral
. 99
7.3.2
The
Poisson
Kernel
. 99
7.3.3
The Dirichlet Problem
. 100
7.3.4
The Solution of the Dirichlet Problem on the Disc
. 100
7.3.5
The Dirichlet Problem on a General Disc
. 101
xvi
A Guide
то
Complex Variables
7.4
Regularity of Harmonic Functions
. 101
7.4.1
The Mean Value Property on Circles
. 101
7.4.2
The Limit of a Sequence of Harmonic Functions
. . 102
7.5
The
Schwarz
Reflection Principle
. 102
7.5.1
Reflection of Harmonic Functions
. 102
7.5.2 Schwarz
Reflection Principle for Harmonic Functions
102
7.5.3
The
Schwarz
Reflection Principle for
Holomorphic Functions
. 103
7.5.4
More General Versions of the
Schwarz
Reflection Principle
. 103
7.6
Harnack's Principle
. 104
7.6.1
The Harnack Inequality
. 104
7.6.2
Harnack's Principle
. 104
7.7
The Dirichlet Problem
. 104
7.7.1
The Dirichlet Problem
. 104
7.7.2
Conditions for Solving the Dirichlet Problem
. 105
7.7.3
Motivation for Subharmonic Functions
. 105
7.7.4
Definition of Subharmonic Function
. 106
7.7.5
Other Characterizations of Subharmonic Functions
. 106
7.7.6
The Maximum Principle
. 107
7.7.7
Lack of A Minimum Principle
. 107
7.7.8
Basic Properties of Subharmonic Functions
. 107
7.7.9
The Concept of a Barrier
. 108
7.8
The General Solution of the Dirichlet Problem
. 109
7.8.1
Enunciation of the Solution of the Dirichlet Problem
109
8
Infinite Series and Products
.
Ill
8.1
Basic Concepts
.
Ill
8.1.1
Uniform Convergence of a Sequence
.
Ill
8.1.2
The Cauchy Condition for a Sequence of Functions
.
Ill
8.1.3
Normal Convergence of a Sequence
. 112
8.1.4
Normal Convergence of a Series
. 112
8.1.5
The Cauchy Condition for a Series
. 112
8.1.6
The Concept of an Infinite Product
. 113
8.1.7
Infinite Products of Scalars
. 113
8.1.8
Partial Products
. 113
8.1.9
Convergence of an Infinite Product
. 113
8.1.10
The Value of an Infinite Product
. 114
8.1.11
Products That Are Disallowed
. 114
Contents
XVII
8.1.12
Condition for Convergence
of
an Infinite
Product
. . 114
8.1.13 Infinite Products
of Holomorphic Functions
. 116
8.1.14
Vanishing of
an Infinite
Product.
116
8.1.15 Uniform
Convergence of an
Infinite
Productor
Functions.
116
8.1.16
Condition for the Uniform Convergence of an
Infinite Product of Functions
. 117
8.2
The
Weierstrass
Factorization Theorem
. 117
8.2.1
Prologue
. 117
8.2.2
Weierstrass
Factors
. 117
8.2.3
Convergence of the
Weierstrass
Product
. 118
8.2.4
Existence of an Entire Function with Prescribed Zeros
118
8.2.5
The
Weierstrass
Factorization Theorem
. 119
8.3
Weierstrass
and Mittag-Leffler Theorems
. 119
8.3.1
The Concept of Weierstrass's Theorem
. 119
8.3.2
Weierstrass's Theorem
. 119
8.3.3
Construction of a Discrete Set
. 119
8.3.4
Domains of Existence for Holomorphic Functions
. 120
8.3.5
The Field Generated by the Ring of
Holomorphic Functions
. 120
8.3.6
The Mittag-Leffler Theorem
. 120
8.3.7
Prescribing Principal Parts
. 121
8.4
Normal Families
. 122
8.4.1
Normal Convergence
. 122
8.4.2
Normal Families
. 122
8.4.3
Montel's Theorem, First Version
. 122
8.4.4
Montel's Theorem, Second Version
. 122
8.4.5
Examples of Normal Families
. 123
9
Analytic Continuation
.125
9.1
Definitionofan
Analytic Function Element
. 125
9.1.1
Continuation of Holomorphic Functions
. 125
9.1.2
Examples of Analytic Continuation
. 125
9.1.3
Function Elements
. 129
9.1.4
Direct Analytic Continuation
. 129
9.1.5
Analytic Continuation of a Function
. 129
9.1.6
Global Analytic Functions
. 129
9.1.7
An Example of Analytic Continuation
. 130
xviii
A Guide to Complex Variables
9.2
Analytic Continuation along a Curve
. 131
9.2.1
Continuation on a Curve
. 131
9.2.2
Uniqueness of Continuation along a Curve
. 132
9.3
The
Monodramy
Theorem
. 132
9.3.1
Unambiguity of Analytic Continuation
. 132
9.3.2
The Concept of Homotopy
. 133
9.3.3
Fixed Endpoint Homotopy
. 134
9.3.4
Unrestricted Continuation
. 134
9.3.5
The
Monodramy
Theorem
. 134
9.3.6
Monodramy
and Globally Defined Analytic Functions
134
9.4
The Idea of a Riemann Surface
. 135
9.4.1
What is a Riemann Surface?
. 135
9.4.2
Examples of Riemann Surfaces
. 136
9.4.3
The Riemann Surface for the Square Root Function
. 138
9.4.4
Holomorphic Functions on a Riemann Surf ace
. 138
9.4.5
The Riemann Surface for the Logarithm
. 139
9.4.6
Riemann Surfaces in General
. 139
9.5
Picard's Theorems
. 140
9.5.1
Value Distribution for Entire Functions
. 140
9.5.2
Picard's Little Theorem
. 140
9.5.3
Picard's Great Theorem
. 140
9.5.4
The Little Theorem, the Great Theorem, and the
Casorati-
Weierstrass
Theorem
. 141
Glossary of Terms from Complex Variable Theory and Analysis
. 143
Bibliography
.175
Index
.177
About the Author
.182 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Krantz, Steven G. 1951- |
author_GND | (DE-588)130535907 |
author_facet | Krantz, Steven G. 1951- |
author_role | aut |
author_sort | Krantz, Steven G. 1951- |
author_variant | s g k sg sgk |
building | Verbundindex |
bvnumber | BV035147837 |
callnumber-first | Q - Science |
callnumber-label | QA331 |
callnumber-raw | QA331.7 |
callnumber-search | QA331.7 |
callnumber-sort | QA 3331.7 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 700 |
ctrlnum | (OCoLC)229309023 (DE-599)BVBBV035147837 |
dewey-full | 515.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.9 |
dewey-search | 515.9 |
dewey-sort | 3515.9 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01532nam a2200397 cb4500</leader><controlfield tag="001">BV035147837</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110909 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081107s2008 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780883853382</subfield><subfield code="9">978-0-8838-5338-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)229309023</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035147837</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA331.7</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.9</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 700</subfield><subfield code="0">(DE-625)143253:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Krantz, Steven G.</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)130535907</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A guide to complex variables</subfield><subfield code="c">Steven G. Krantz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, DC</subfield><subfield code="b">Math. Assoc. of America</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 181 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">MAA guides</subfield><subfield code="v">1</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Dolciani mathematical expositions</subfield><subfield code="v">32</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of complex variables</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">MAA guides</subfield><subfield code="v">1</subfield><subfield code="w">(DE-604)BV035218151</subfield><subfield code="9">1</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Dolciani mathematical expositions</subfield><subfield code="v">32</subfield><subfield code="w">(DE-604)BV001900740</subfield><subfield code="9">32</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016815121&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016815121</subfield></datafield></record></collection> |
id | DE-604.BV035147837 |
illustrated | Illustrated |
index_date | 2024-07-02T22:29:31Z |
indexdate | 2024-07-09T21:23:23Z |
institution | BVB |
isbn | 9780883853382 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016815121 |
oclc_num | 229309023 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-824 DE-188 |
owner_facet | DE-355 DE-BY-UBR DE-824 DE-188 |
physical | XVIII, 181 S. graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Math. Assoc. of America |
record_format | marc |
series | MAA guides Dolciani mathematical expositions |
series2 | MAA guides Dolciani mathematical expositions |
spelling | Krantz, Steven G. 1951- Verfasser (DE-588)130535907 aut A guide to complex variables Steven G. Krantz Washington, DC Math. Assoc. of America 2008 XVIII, 181 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier MAA guides 1 Dolciani mathematical expositions 32 Functions of complex variables Funktionentheorie (DE-588)4018935-1 gnd rswk-swf Funktionentheorie (DE-588)4018935-1 s DE-604 MAA guides 1 (DE-604)BV035218151 1 Dolciani mathematical expositions 32 (DE-604)BV001900740 32 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016815121&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Krantz, Steven G. 1951- A guide to complex variables MAA guides Dolciani mathematical expositions Functions of complex variables Funktionentheorie (DE-588)4018935-1 gnd |
subject_GND | (DE-588)4018935-1 |
title | A guide to complex variables |
title_auth | A guide to complex variables |
title_exact_search | A guide to complex variables |
title_exact_search_txtP | A guide to complex variables |
title_full | A guide to complex variables Steven G. Krantz |
title_fullStr | A guide to complex variables Steven G. Krantz |
title_full_unstemmed | A guide to complex variables Steven G. Krantz |
title_short | A guide to complex variables |
title_sort | a guide to complex variables |
topic | Functions of complex variables Funktionentheorie (DE-588)4018935-1 gnd |
topic_facet | Functions of complex variables Funktionentheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016815121&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV035218151 (DE-604)BV001900740 |
work_keys_str_mv | AT krantzsteveng aguidetocomplexvariables |