Noncovariant Gauges in Canonical Formalism:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2009
|
Schriftenreihe: | Lecture Notes in Physics
761 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XV, 236 S. |
ISBN: | 9783540699200 9783540699217 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV035147655 | ||
003 | DE-604 | ||
005 | 20090624 | ||
007 | t | ||
008 | 081107s2009 gw |||| 00||| eng d | ||
015 | |a 08,N26,1218 |2 dnb | ||
016 | 7 | |a 989059367 |2 DE-101 | |
020 | |a 9783540699200 |c Gb. : EUR 64.15 (freier Pr.), sfr 99.50 (freier Pr.) |9 978-3-540-69920-0 | ||
020 | |a 9783540699217 |c ebook |9 978-3-540-69921-7 | ||
024 | 3 | |a 9783540699200 | |
028 | 5 | 2 | |a 12320301 |
035 | |a (OCoLC)233934692 | ||
035 | |a (DE-599)DNB989059367 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-355 |a DE-703 |a DE-384 |a DE-11 | ||
050 | 0 | |a QC793.3.G38 | |
082 | 0 | |a 530.14 |2 22/ger | |
084 | |a UD 8220 |0 (DE-625)145543: |2 rvk | ||
084 | |a 530 |2 sdnb | ||
100 | 1 | |a Burnel, André |e Verfasser |0 (DE-588)136454798 |4 aut | |
245 | 1 | 0 | |a Noncovariant Gauges in Canonical Formalism |c André Burnel |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2009 | |
300 | |a XV, 236 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture Notes in Physics |v 761 | |
650 | 4 | |a Gauge fields (Physics) | |
650 | 4 | |a Quantum field theory | |
650 | 4 | |a Renormalization (Physics) | |
650 | 0 | 7 | |a Eichtheorie |0 (DE-588)4122125-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Eichtheorie |0 (DE-588)4122125-4 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Lecture Notes in Physics |v 761 |w (DE-604)BV000003166 |9 761 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016814941&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016814941 |
Datensatz im Suchindex
_version_ | 1804138135478599680 |
---|---|
adam_text | Contents
Canonical Quantization for Constrained Systems
.................. 1
1.1
Canonical Quantization of Mechanical Unconstrained Systems
.... 1
1.1.1
Lagrangian Formalism
................................ 1
1.1.2
Hamiltonian
........................................ 1
1.1.3
Poisson
Brackets
..................................... 2
1.1.4
Quantization
........................................ 2
1.2
Field Theory
............................................... 3
1.2.1
Lagrangian and Lagrangian Density
..................... 3
1.2.2
Hamiltonian
........................................ 3
1.2.3
Poisson
Brackets
..................................... 4
1.2.4
Quantization
........................................ 4
1.2.5
The Free Scalar Field
................................. 5
1.2.6
Solution of the Klein-Gordon Equation
.................. 5
1.3
The Electromagnetic Field
................................... 6
1.4
Primary and Secondary Constraints
........................... 8
1.4.1
Primary Constraints
.................................. 8
1.4.2
Secondary Constraints
................................ 8
1.4.3
First and Second Class Constraints
...................... 9
1.4.4
Quantization in the Presence of Second-Class Constraints
.. 10
1.4.5
Quantization in Presence of First-Class Constraints
........ 11
1.4.6
BRST
Quantization
.................................. 13
1.4.7
Summary
........................................... 14
1.5
Back to the Free Massless Vector Field
........................ 14
1.5.1
Lagrangian and Constraints
............................ 14
1.5.2
Gauge Fixing
....................................... 16
1.6
Covariant Gauge for the Free Massless Vector Field
.............. 16
1.6.1
Commutation Relations for Any Time
................... 18
1.6.2
Creation and Annihilation Operators
.................... 21
1.6.3
The Gupta-Bleuler Formalism
......................... 22
References
..................................................... 23
Contents
Quantization of the Free Electromagnetic Field in General Class III
Linear Gauges
................................................. 25
2.1
Introduction
............................................... 25
2.2
Lagrangian and Field Equations
.............................. 26
2.2.1
The Lagrangian
...................................... 26
2.2.2
Euler-Lagrange Equations
............................. 26
2.2.3
Derived Field Equations
.............................. 28
2.2.4
Sketching the Solution of the Cauchy Problem
............ 28
2.2.5
Particular Cases of Interest
............................ 30
2.2.6
Planar-Type Gauges
.................................. 31
2.3
Constraint Analysis
......................................... 32
2.3.1
Canonical Momenta and Primary Constraints
............. 32
2.3.2
The Hamiltonian
..................................... 33
2.3.3
Constraint Chains
.................................... 33
2.4
Singular Frames
............................................ 33
2.5
Commutation Relations for Any Time
......................... 34
2.5.1
Canonical Commutation Relations
...................... 34
2.5.2
Commutation Relations Involving the
S
Field
............. 34
2.5.3
Commutation Relations Involving the S Field
............ 36
2.5.4
Commutation Relations Involving B=d -A
.............. 38
2.5.5
Commutation Relations Between
Ад ѕ
................... 42
2.5.6
Summary of the Commutation Relations for Any Time
..... 44
2.6
Creation and Annihilation Operators
........................... 45
2.6.1
Momentum Space Expansion of the Fields
............... 45
2.6.2
Commutation Relations Between Creation
and Annihilation Operators
............................ 50
2.6.3
Summary of the Algebra of Creation
and Annihilation Operators
............................ 55
2.7
The Gupta-Bleuler Formalism
................................ 55
2.8
Covariance Problems
....................................... 56
2.8.1
Translation
Invariance
................................ 56
2.8.2
Lorentz
Transformations
.............................. 58
References
..................................................... 60
Quantization of the Free Electromagnetic Field in Class II Axial
Gauges
........................................................ 61
3.1
Introduction
............................................... 61
3.2
Lagrangian and Field Equations
.............................. 61
3.2.1
The Lagrangian
...................................... 61
3.2.2
Euler-Lagrange Equations
............................. 62
3.2.3
Derived Field Equations
.............................. 63
3.2.4
Summary of the Field Equations
........................ 63
3.3
Constraint Analysis and Effective Hamiltonian
.................. 63
3.4
Solution of Field Equations
.................................. 65
3.4.1
Solution of
η
dS = Q
................................. 65
Contents xi
3.4.2
Solutíonof
(п-д+к)Ѕ = 0
........................... 66
3.4.3
Solution of
и
· dB =
(η2
-a)S......................... 67
3.4.4
Elementary Solution of
и
·
дОА
=
О
..................... 67
3.4.5
Solution of the Cauchy Problem for DA(x~z)
=
LxDn(x-z)
70
3.4.6
Elementary Solution of (n
·
d)2DA
=0.................. 70
3.5
Commutation Relations
..................................... 71
3.5.1
Equal Time Commutators
............................. 71
3.5.2
Commutation Relations Involving the
i-Field
............ 72
3.5.3
Commutation Relations Involving the S -Field
............ 72
3.5.4
Commutation Relations Involving
д
■
A
.................. 73
3.5.5
Commutation Relations
[Αμ(χ), Αν(ζ)
................... 74
3.6
Association of a Feynman Propagator
with the Operator
η
·
д ......................................
76
3.7
Associating Creation and Annihilation Operators with Fields
...... 77
3.7.1
TheS-Field
......................................... 78
3.7.2
Other Fields
......................................... 78
3.8
Correct Momentum Space Expansion of the Fields
............... 80
3.8.1
The S-Field
......................................... 80
3.8.2
The B-Field
......................................... 80
3.8.3
The S -Field
......................................... 82
3.8.4
The Afield
........................................ 83
3.9
A Toy Model for the Unphysical
5
and
В
Fields
................. 84
3.10
Conclusions
............................................... 85
3.11
Interpolating Between Axial and Relativistic Gauges
............. 85
3.12
Summary
................................................. 86
References
..................................................... 86
4
Gauge Fields in Interaction
..................................... 87
4.1
Introduction
............................................... 87
4.2
General Formalism of Gauge
Invariance
....................... 88
4.2.1
General Transformations
.............................. 88
4.2.2
Infinitesimal Transformations
.......................... 89
4.2.3
Remarks
............................................ 90
4.3
Class III Gauges in Yang-Mills Theory
........................ 91
4.3.1
Building the Lagrangian
.............................. 91
4.3.2
Field Equations
...................................... 94
4.3.3
Canonical Momenta and Constraints
.................... 94
4.3.4
The Hamiltonian
..................................... 95
4.3.5
TheBRSTCharge
................................... 95
4.3.6
Ghost Number
....................................... 97
4.3.7
Global Internal Symmetry
............................. 97
4.3.8
Physical States
...................................... 98
4.3.9
Problems of Covariance
............................... 98
References
..................................................... 99
Contents
Perturbation
Theory:
RenormaUzatìon
and
AU
That
...............101
5.1
Introduction
...............................................101
5.2
The S-Matrix
..............................................101
5.2.1
Definition and Properties
..............................101
5.3
Perturbative Expansion
......................................103
5.3.1
Expansion and Consequences of the Unitarity Condition
... 103
5.3.2
Consequences of the Causality Condition
................104
5.3.3
The First Term
7Ί
....................................106
5.3.4
Nonunicity of the Tn
..................................108
5.3.5
The Fixed Part of Tn
..................................108
5.3.6
Wick s Theorem
.....................................109
5.3.7
Feynman Rules
......................................
Ill
5.3.8
Feynman Rules in Momentum Space
....................113
5.4
Divergences, Power Counting and Renormalizability
.............118
5.4.1
Example
............................................118
5.4.2
Power Counting and Superficial Degree of Divergence
.....118
5.4.3
Renormalizability by Power Counting
...................120
5.5
Dimensional Regularization of Covariant Divergent Integrals
......120
5.5.1
A General One-Loop Integral
..........................120
5.5.2
Euclidean Space
.....................................121
5.5.3
Use of the Feynman Formula
..........................121
5.5.4
Elimination of the Denominators
.......................122
5.5.5
Complex Dimension
.................................122
5.5.6
Tensor Integrals
.....................................123
5.6
Extension to General Covariant or Noncovariant Integrals
in a Preferred Frame
........................................124
5.6.1
The General One-Loop Integral
........................124
5.6.2
Euclidean Space
.....................................125
5.6.3
Elimination of the Denominators
.......................126
5.6.4
Calculation of the Derivatives
..........................127
5.6.5
Introduction of the Feynman Variables
..................128
5.6.6
Integration Over A
...................................129
5.6.7
Regularization of Ultraviolet Divergences
................129
5.6.8
Consequences of the Nonsingularity of the B~~
λ
Matrix
.....130
5.7
Computation of the Ghost Loop With Two Legs
.................131
5.8
Renormalization and Counter-Terms
...........................132
5.8.1
Various Renormalization Schemes
......................133
5.8.2
Multiplicative Renormalization
........................134
5.9
Summary
.................................................135
References
.....................................................136
Contents
Slavnov-Taylor
Identities for Yang-Mills Theory
...................137
6.1
Introduction
...............................................137
6.2
The Reduction Formula
.....................................137
6.3
One-Particle Irreducible Vertex Functions
......................138
6.4
Yang-Mills Theory in a General Class III Gauge
.................139
6.4.1
The Lagrangian and Superficially Divergent Processes
.....139
6.4.2
BRST
Symmetry, Field Equations and Canonical
Commutation Relations
...............................141
6.4.3
Commuting Derivatives and Time-Ordered Products
.......143
6.5
The Ward-Takahashi-Slavnov-Taylor Identity for the Gluon
Self-Energy
...............................................143
6.5.1
Covariant Gauges
....................................143
6.5.2
General Gauges
.....................................146
6.5.3
Renormalization
.....................................148
6.6
Identity for the Three-Gluon Vertex Function
...................149
6.6.1
Derivation of the Identity
..............................150
6.6.2
Renormalization
.....................................150
6.7
Ghost Propagator
...........................................151
6.8
Ghost-Ghost-Gluon Vertex
...................................153
6.8.1
Identity in Coordinate Space
...........................153
6.8.2
Momentum Space
....................................153
6.8.3
Remark
............................................154
6.9
Multiplicative Renormalization
...............................154
6.10
Summary
.................................................156
References
.....................................................156
Field Theory Without Infinities
..................................157
7.1
Introduction
...............................................157
7.2
Iterative Construction of the ¿ -Matrix Without Time-Ordering
.....158
7.3
Splitting of Causal Distributions into Advanced and Retarded Parts
. 159
7.3.1
Distribution and Fourier Transform
.....................159
7.3.2
Order of Singularity of a Distribution
...................160
7.3.3
Splitting of Distribution with Negative Order of Singularity
. 161
7.3.4
Nonnegative
Singularity Order
.........................162
7.4
Application to Yang-Mills Theory
.............................164
7.4.1
First Order
..........................................164
7.4.2
Example of a One-Loop Process: The Gluon Self-energy
... 179
7.4.3
Calculation of
1 {ξ; κ)................................
186
7.4.4
Calculation of /2(A; Jfj
, κ·,).............................
187
7.4.5
Calculation of the Tensor Distributions
..................188
7.4.6
The Final Result for the Gluon Self-energy
...............190
7.5
Summary
.................................................190
References
.....................................................191
xiv
Contents
8
Gauges with a Singular
С
Matrix
................................193
8.1
Introduction
...............................................193
8.2
The Ghost Loop Contribution
................................194
8.2.1
The
Leibbrandt
Gauges
...............................194
8.2.2
Interpolating Between
Leibbrandt
and Relativistic Gauges
.. 197
8.3
Singularities Generated by the Lack of Power Counting
in Ultra-Violet Divergent Perturbative Theory
...................199
8.3.1
The Loop Integration in a General Gauge
................200
8.3.2
Restriction to Loops with Two External Particles
..........201
8.3.3
Further Restriction for
m
< 6..........................201
8.3.4
Interpolating Between
Leibbrandt
and Relativistic Gauges
.. 205
8.4
Cancellation of Divergences at a
= 0
in the Self-Energy
..........207
References
.....................................................208
9
Conclusion
....................................................209
A Notations
......................................................211
В
A Useful Fourier Transform
.....................................213
С
Generalized Functions
..........................................215
C.I Elementary Solutions of the Klein-Gordon Equation
.............215
C.I.I The A Function
......................................215
С
1.2
The AF Function
....................................216
C.2 The
E
Function
............................................216
C.2.1 Definition
..........................................216
C.2.2 Derivation of the Elementary Solution
...................216
C.2.3 Zero-Time Properties
.................................217
C.2.4 Integration Over
ko
...................................218
C.2.5 The Cauchy Problem Associated with D2
................218
C.3 Generalized Functions Associated with the Dc Operator
..........219
C.3.1 Elementary Solution D^
.............................220
C.3.2 Positive Frequency Part
...............................221
C.3.3 Negative Frequency Part
..............................222
C.3
.4
Elementary Solution with Causal Support
................222
C.3.
5
Generalization with a Mass Parameter
...................223
C.3.6 Analogous of the Feynman Propagator
..................224
C.3.7 Solution of the Cauchy Problem
........................225
C.3.8 Remarks
............................................226
C.4 Generalized Functions Associated with D£
.....................226
C.4.
1
The Elementary Function with Causal Support
............226
C.4.2 Zero Time Properties
.................................227
C.4.3 Integration Over
ko
...................................227
C.4.4 The Cauchy Problem
.................................228
C.5 Generalized Functions Associated with DOc
...................228
Contents xv
C.S.I Elementary Solution with Causal Support
................228
C.5.2 Zero-Time Properties of Fc and its Time Derivatives
.......230
C.5.3 Preferred Frame
.....................................231
C.5.4 The Cauchy Problem
.................................231
C.6 The G-Functions
...........................................232
Index
.............................................................235
|
adam_txt |
Contents
Canonical Quantization for Constrained Systems
. 1
1.1
Canonical Quantization of Mechanical Unconstrained Systems
. 1
1.1.1
Lagrangian Formalism
. 1
1.1.2
Hamiltonian
. 1
1.1.3
Poisson
Brackets
. 2
1.1.4
Quantization
. 2
1.2
Field Theory
. 3
1.2.1
Lagrangian and Lagrangian Density
. 3
1.2.2
Hamiltonian
. 3
1.2.3
Poisson
Brackets
. 4
1.2.4
Quantization
. 4
1.2.5
The Free Scalar Field
. 5
1.2.6
Solution of the Klein-Gordon Equation
. 5
1.3
The Electromagnetic Field
. 6
1.4
Primary and Secondary Constraints
. 8
1.4.1
Primary Constraints
. 8
1.4.2
Secondary Constraints
. 8
1.4.3
First and Second Class Constraints
. 9
1.4.4
Quantization in the Presence of Second-Class Constraints
. 10
1.4.5
Quantization in Presence of First-Class Constraints
. 11
1.4.6
BRST
Quantization
. 13
1.4.7
Summary
. 14
1.5
Back to the Free Massless Vector Field
. 14
1.5.1
Lagrangian and Constraints
. 14
1.5.2
Gauge Fixing
. 16
1.6
Covariant Gauge for the Free Massless Vector Field
. 16
1.6.1
Commutation Relations for Any Time
. 18
1.6.2
Creation and Annihilation Operators
. 21
1.6.3
The Gupta-Bleuler Formalism
. 22
References
. 23
Contents
Quantization of the Free Electromagnetic Field in General Class III
Linear Gauges
. 25
2.1
Introduction
. 25
2.2
Lagrangian and Field Equations
. 26
2.2.1
The Lagrangian
. 26
2.2.2
Euler-Lagrange Equations
. 26
2.2.3
Derived Field Equations
. 28
2.2.4
Sketching the Solution of the Cauchy Problem
. 28
2.2.5
Particular Cases of Interest
. 30
2.2.6
Planar-Type Gauges
. 31
2.3
Constraint Analysis
. 32
2.3.1
Canonical Momenta and Primary Constraints
. 32
2.3.2
The Hamiltonian
. 33
2.3.3
Constraint Chains
. 33
2.4
Singular Frames
. 33
2.5
Commutation Relations for Any Time
. 34
2.5.1
Canonical Commutation Relations
. 34
2.5.2
Commutation Relations Involving the
S
Field
. 34
2.5.3
Commutation Relations Involving the S' Field
. 36
2.5.4
Commutation Relations Involving B=d -A
. 38
2.5.5
Commutation Relations Between
Ад'ѕ
. 42
2.5.6
Summary of the Commutation Relations for Any Time
. 44
2.6
Creation and Annihilation Operators
. 45
2.6.1
Momentum Space Expansion of the Fields
. 45
2.6.2
Commutation Relations Between Creation
and Annihilation Operators
. 50
2.6.3
Summary of the Algebra of Creation
and Annihilation Operators
. 55
2.7
The Gupta-Bleuler Formalism
. 55
2.8
Covariance Problems
. 56
2.8.1
Translation
Invariance
. 56
2.8.2
Lorentz
Transformations
. 58
References
. 60
Quantization of the Free Electromagnetic Field in Class II Axial
Gauges
. 61
3.1
Introduction
. 61
3.2
Lagrangian and Field Equations
. 61
3.2.1
The Lagrangian
. 61
3.2.2
Euler-Lagrange Equations
. 62
3.2.3
Derived Field Equations
. 63
3.2.4
Summary of the Field Equations
. 63
3.3
Constraint Analysis and Effective Hamiltonian
. 63
3.4
Solution of Field Equations
. 65
3.4.1
Solution of
η
dS = Q
. 65
Contents xi
3.4.2
Solutíonof
(п-д+к)Ѕ = 0
. 66
3.4.3
Solution of
и
· dB =
(η2
-a)S. 67
3.4.4
Elementary Solution of
и
·
дОА
=
О
. 67
3.4.5
Solution of the Cauchy Problem for DA(x~z)
=
LxDn(x-z)
70
3.4.6
Elementary Solution of (n
·
d)2DA
=0. 70
3.5
Commutation Relations
. 71
3.5.1
Equal Time Commutators
. 71
3.5.2
Commutation Relations Involving the
i-Field
. 72
3.5.3
Commutation Relations Involving the S'-Field
. 72
3.5.4
Commutation Relations Involving
д
■
A
. 73
3.5.5
Commutation Relations
[Αμ(χ), Αν(ζ)
. 74
3.6
Association of a Feynman Propagator
with the Operator
η
·
д .
76
3.7
Associating Creation and Annihilation Operators with Fields
. 77
3.7.1
TheS-Field
. 78
3.7.2
Other Fields
. 78
3.8
Correct Momentum Space Expansion of the Fields
. 80
3.8.1
The S-Field
. 80
3.8.2
The B-Field
. 80
3.8.3
The S'-Field
. 82
3.8.4
The Afield
. 83
3.9
A Toy Model for the Unphysical
5
and
В
Fields
. 84
3.10
Conclusions
. 85
3.11
Interpolating Between Axial and Relativistic Gauges
. 85
3.12
Summary
. 86
References
. 86
4
Gauge Fields in Interaction
. 87
4.1
Introduction
. 87
4.2
General Formalism of Gauge
Invariance
. 88
4.2.1
General Transformations
. 88
4.2.2
Infinitesimal Transformations
. 89
4.2.3
Remarks
. 90
4.3
Class III Gauges in Yang-Mills Theory
. 91
4.3.1
Building the Lagrangian
. 91
4.3.2
Field Equations
. 94
4.3.3
Canonical Momenta and Constraints
. 94
4.3.4
The Hamiltonian
. 95
4.3.5
TheBRSTCharge
. 95
4.3.6
Ghost Number
. 97
4.3.7
Global Internal Symmetry
. 97
4.3.8
Physical States
. 98
4.3.9
Problems of Covariance
. 98
References
. 99
Contents
Perturbation
Theory:
RenormaUzatìon
and
AU
That
.101
5.1
Introduction
.101
5.2
The S-Matrix
.101
5.2.1
Definition and Properties
.101
5.3
Perturbative Expansion
.103
5.3.1
Expansion and Consequences of the Unitarity Condition
. 103
5.3.2
Consequences of the Causality Condition
.104
5.3.3
The First Term
7Ί
.106
5.3.4
Nonunicity of the Tn
.108
5.3.5
The Fixed Part of Tn
.108
5.3.6
Wick's Theorem
.109
5.3.7
Feynman Rules
.
Ill
5.3.8
Feynman Rules in Momentum Space
.113
5.4
Divergences, Power Counting and Renormalizability
.118
5.4.1
Example
.118
5.4.2
Power Counting and Superficial Degree of Divergence
.118
5.4.3
Renormalizability by Power Counting
.120
5.5
Dimensional Regularization of Covariant Divergent Integrals
.120
5.5.1
A General One-Loop Integral
.120
5.5.2
Euclidean Space
.121
5.5.3
Use of the Feynman Formula
.121
5.5.4
Elimination of the Denominators
.122
5.5.5
Complex Dimension
.122
5.5.6
Tensor Integrals
.123
5.6
Extension to General Covariant or Noncovariant Integrals
in a Preferred Frame
.124
5.6.1
The General One-Loop Integral
.124
5.6.2
Euclidean Space
.125
5.6.3
Elimination of the Denominators
.126
5.6.4
Calculation of the Derivatives
.127
5.6.5
Introduction of the Feynman Variables
.128
5.6.6
Integration Over A
.129
5.6.7
Regularization of Ultraviolet Divergences
.129
5.6.8
Consequences of the Nonsingularity of the B~~
λ
Matrix
.130
5.7
Computation of the Ghost Loop With Two Legs
.131
5.8
Renormalization and Counter-Terms
.132
5.8.1
Various Renormalization Schemes
.133
5.8.2
Multiplicative Renormalization
.134
5.9
Summary
.135
References
.136
Contents
Slavnov-Taylor
Identities for Yang-Mills Theory
.137
6.1
Introduction
.137
6.2
The Reduction Formula
.137
6.3
One-Particle Irreducible Vertex Functions
.138
6.4
Yang-Mills Theory in a General Class III Gauge
.139
6.4.1
The Lagrangian and Superficially Divergent Processes
.139
6.4.2
BRST
Symmetry, Field Equations and Canonical
Commutation Relations
.141
6.4.3
Commuting Derivatives and Time-Ordered Products
.143
6.5
The Ward-Takahashi-Slavnov-Taylor Identity for the Gluon
Self-Energy
.143
6.5.1
Covariant Gauges
.143
6.5.2
General Gauges
.146
6.5.3
Renormalization
.148
6.6
Identity for the Three-Gluon Vertex Function
.149
6.6.1
Derivation of the Identity
.150
6.6.2
Renormalization
.150
6.7
Ghost Propagator
.151
6.8
Ghost-Ghost-Gluon Vertex
.153
6.8.1
Identity in Coordinate Space
.153
6.8.2
Momentum Space
.153
6.8.3
Remark
.154
6.9
Multiplicative Renormalization
.154
6.10
Summary
.156
References
.156
Field Theory Without Infinities
.157
7.1
Introduction
.157
7.2
Iterative Construction of the ¿'-Matrix Without Time-Ordering
.158
7.3
Splitting of Causal Distributions into Advanced and Retarded Parts
. 159
7.3.1
Distribution and Fourier Transform
.159
7.3.2
Order of Singularity of a Distribution
.160
7.3.3
Splitting of Distribution with Negative Order of Singularity
. 161
7.3.4
Nonnegative
Singularity Order
.162
7.4
Application to Yang-Mills Theory
.164
7.4.1
First Order
.164
7.4.2
Example of a One-Loop Process: The Gluon Self-energy
. 179
7.4.3
Calculation of
1\{ξ; κ).
186
7.4.4
Calculation of /2(A; Jfj
, κ·,).
187
7.4.5
Calculation of the Tensor Distributions
.188
7.4.6
The Final Result for the Gluon Self-energy
.190
7.5
Summary
.190
References
.191
xiv
Contents
8
Gauges with a Singular
С
Matrix
.193
8.1
Introduction
.193
8.2
The Ghost Loop Contribution
.194
8.2.1
The
Leibbrandt
Gauges
.194
8.2.2
Interpolating Between
Leibbrandt
and Relativistic Gauges
. 197
8.3
Singularities Generated by the Lack of Power Counting
in Ultra-Violet Divergent Perturbative Theory
.199
8.3.1
The Loop Integration in a General Gauge
.200
8.3.2
Restriction to Loops with Two External Particles
.201
8.3.3
Further Restriction for
m
< 6.201
8.3.4
Interpolating Between
Leibbrandt
and Relativistic Gauges
. 205
8.4
Cancellation of Divergences at a
= 0
in the Self-Energy
.207
References
.208
9
Conclusion
.209
A Notations
.211
В
A Useful Fourier Transform
.213
С
Generalized Functions
.215
C.I Elementary Solutions of the Klein-Gordon Equation
.215
C.I.I The A Function
.215
С
1.2
The AF Function
.216
C.2 The
E
Function
.216
C.2.1 Definition
.216
C.2.2 Derivation of the Elementary Solution
.216
C.2.3 Zero-Time Properties
.217
C.2.4 Integration Over
ko
.218
C.2.5 The Cauchy Problem Associated with D2
.218
C.3 Generalized Functions Associated with the Dc Operator
.219
C.3.1 Elementary Solution D^
.220
C.3.2 Positive Frequency Part
.221
C.3.3 Negative Frequency Part
.222
C.3
.4
Elementary Solution with Causal Support
.222
C.3.
5
Generalization with a Mass Parameter
.223
C.3.6 Analogous of the Feynman Propagator
.224
C.3.7 Solution of the Cauchy Problem
.225
C.3.8 Remarks
.226
C.4 Generalized Functions Associated with D£
.226
C.4.
1
The Elementary Function with Causal Support
.226
C.4.2 Zero Time Properties
.227
C.4.3 Integration Over
ko
.227
C.4.4 The Cauchy Problem
.228
C.5 Generalized Functions Associated with DOc
.228
Contents xv
C.S.I Elementary Solution with Causal Support
.228
C.5.2 Zero-Time Properties of Fc and its Time Derivatives
.230
C.5.3 Preferred Frame
.231
C.5.4 The Cauchy Problem
.231
C.6 The G-Functions
.232
Index
.235 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Burnel, André |
author_GND | (DE-588)136454798 |
author_facet | Burnel, André |
author_role | aut |
author_sort | Burnel, André |
author_variant | a b ab |
building | Verbundindex |
bvnumber | BV035147655 |
callnumber-first | Q - Science |
callnumber-label | QC793 |
callnumber-raw | QC793.3.G38 |
callnumber-search | QC793.3.G38 |
callnumber-sort | QC 3793.3 G38 |
callnumber-subject | QC - Physics |
classification_rvk | UD 8220 |
ctrlnum | (OCoLC)233934692 (DE-599)DNB989059367 |
dewey-full | 530.14 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.14 |
dewey-search | 530.14 |
dewey-sort | 3530.14 |
dewey-tens | 530 - Physics |
discipline | Physik |
discipline_str_mv | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01762nam a2200481 cb4500</leader><controlfield tag="001">BV035147655</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090624 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081107s2009 gw |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,N26,1218</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">989059367</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540699200</subfield><subfield code="c">Gb. : EUR 64.15 (freier Pr.), sfr 99.50 (freier Pr.)</subfield><subfield code="9">978-3-540-69920-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540699217</subfield><subfield code="c">ebook</subfield><subfield code="9">978-3-540-69921-7</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540699200</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12320301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)233934692</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB989059367</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC793.3.G38</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.14</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UD 8220</subfield><subfield code="0">(DE-625)145543:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Burnel, André</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136454798</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Noncovariant Gauges in Canonical Formalism</subfield><subfield code="c">André Burnel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 236 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture Notes in Physics</subfield><subfield code="v">761</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gauge fields (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum field theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Renormalization (Physics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eichtheorie</subfield><subfield code="0">(DE-588)4122125-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Eichtheorie</subfield><subfield code="0">(DE-588)4122125-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture Notes in Physics</subfield><subfield code="v">761</subfield><subfield code="w">(DE-604)BV000003166</subfield><subfield code="9">761</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016814941&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016814941</subfield></datafield></record></collection> |
id | DE-604.BV035147655 |
illustrated | Not Illustrated |
index_date | 2024-07-02T22:29:26Z |
indexdate | 2024-07-09T21:23:23Z |
institution | BVB |
isbn | 9783540699200 9783540699217 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016814941 |
oclc_num | 233934692 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-703 DE-384 DE-11 |
owner_facet | DE-355 DE-BY-UBR DE-703 DE-384 DE-11 |
physical | XV, 236 S. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Springer |
record_format | marc |
series | Lecture Notes in Physics |
series2 | Lecture Notes in Physics |
spelling | Burnel, André Verfasser (DE-588)136454798 aut Noncovariant Gauges in Canonical Formalism André Burnel Berlin [u.a.] Springer 2009 XV, 236 S. txt rdacontent n rdamedia nc rdacarrier Lecture Notes in Physics 761 Gauge fields (Physics) Quantum field theory Renormalization (Physics) Eichtheorie (DE-588)4122125-4 gnd rswk-swf Eichtheorie (DE-588)4122125-4 s DE-604 Lecture Notes in Physics 761 (DE-604)BV000003166 761 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016814941&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Burnel, André Noncovariant Gauges in Canonical Formalism Lecture Notes in Physics Gauge fields (Physics) Quantum field theory Renormalization (Physics) Eichtheorie (DE-588)4122125-4 gnd |
subject_GND | (DE-588)4122125-4 |
title | Noncovariant Gauges in Canonical Formalism |
title_auth | Noncovariant Gauges in Canonical Formalism |
title_exact_search | Noncovariant Gauges in Canonical Formalism |
title_exact_search_txtP | Noncovariant Gauges in Canonical Formalism |
title_full | Noncovariant Gauges in Canonical Formalism André Burnel |
title_fullStr | Noncovariant Gauges in Canonical Formalism André Burnel |
title_full_unstemmed | Noncovariant Gauges in Canonical Formalism André Burnel |
title_short | Noncovariant Gauges in Canonical Formalism |
title_sort | noncovariant gauges in canonical formalism |
topic | Gauge fields (Physics) Quantum field theory Renormalization (Physics) Eichtheorie (DE-588)4122125-4 gnd |
topic_facet | Gauge fields (Physics) Quantum field theory Renormalization (Physics) Eichtheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016814941&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000003166 |
work_keys_str_mv | AT burnelandre noncovariantgaugesincanonicalformalism |