Nanofluidics: nanoscience and nanotechnology
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Cambridge
RSC Publ.
2009
|
Schriftenreihe: | RSC nanoscience & nanotechnology
6 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XI, 198 S. Ill., graph. Darst. |
ISBN: | 9780854041473 |
Internformat
MARC
LEADER | 00000nam a22000002cb4500 | ||
---|---|---|---|
001 | BV035140429 | ||
003 | DE-604 | ||
005 | 20091029 | ||
007 | t | ||
008 | 081104s2009 ad|| |||| 00||| eng d | ||
020 | |a 9780854041473 |9 978-0-85404-147-3 | ||
035 | |a (OCoLC)244653150 | ||
035 | |a (DE-599)BSZ283425954 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-29T |a DE-634 |a DE-M347 | ||
050 | 0 | |a TJ853 | |
082 | 0 | |a 629.8042 |2 22 | |
084 | |a UF 4500 |0 (DE-625)145585: |2 rvk | ||
084 | |a ZN 3700 |0 (DE-625)157333: |2 rvk | ||
245 | 1 | 0 | |a Nanofluidics |b nanoscience and nanotechnology |c ed. by Joshua B. Edel ... |
264 | 1 | |a Cambridge |b RSC Publ. |c 2009 | |
300 | |a XI, 198 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a RSC nanoscience & nanotechnology |v 6 | |
650 | 7 | |a Dispositifs fluidiques |2 ram | |
650 | 7 | |a Dispositifs électromécaniques |2 ram | |
650 | 7 | |a Microfluidique |2 ram | |
650 | 7 | |a Nanofluides |2 ram | |
650 | 4 | |a Fluidic devices | |
650 | 4 | |a Nanoelectromechanical systems | |
650 | 4 | |a Nanotechnology | |
650 | 0 | 7 | |a Mikrofluidik |0 (DE-588)4803438-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nanotechnologie |0 (DE-588)4327470-5 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |D s |
689 | 0 | 1 | |a Nanotechnologie |0 (DE-588)4327470-5 |D s |
689 | 0 | 2 | |a Mikrofluidik |0 (DE-588)4803438-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Edel, Joshua B. |e Sonstige |0 (DE-588)137518323 |4 oth | |
830 | 0 | |a RSC nanoscience & nanotechnology |v 6 |w (DE-604)BV035798085 |9 6 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016807817&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016807817 |
Datensatz im Suchindex
_version_ | 1804138124474843137 |
---|---|
adam_text | Contents
Chapter
1 Transport
of Ions,
DNA Polymers,
and Microtubules in the
Nanofluidic Regime
Derek
Stein, Martin Van Den
Heuvel, and
Cees
Dekker
1.1
Introduction
1
1.2
Ionic Transport
2
1.2.1
Electrically Driven Ion Transport
2
1.2.2
Streaming Currents
5
1.2.3
Streaming Currents as a Probe of Charge Inversion
6
1.2.4
Electrokinetic Energy Conversion in Nanofluidic Channels
7
1.3
Polymer Transport
9
1.3.1
Pressure-Driven Polymer Transport
10
1.3.1.1
Pressure-Driven
DNA
Mobility
10
1.3.1.2
Dispersion of
DNA
Polymers in a
Pressure-Driven Flow
12
1.3.2
Electrokinetic
DNA
Concentration in
Nanofluidic Channels
13
1.3.3 DNA
Conformations and Dynamics in
Slit-Like Nanochannels
15
1.4
Microtubule Transport in Nanofluidic Channels
Driven By Electric Fields and By Kinesin Biomolecular Motors
16
1.4.1
Electrical Manipulation of Kinesin-Driven
Microtubule Transport
17
A2 Mechanical Properties of Microtubules
Measured from Electric Field-Induced Bending
20
1.4.3
Electrophoresis of Individual Microtubules
in Microfluidic Channels
23
1.5
Acknowledgements
25
References 26
Chapter
2
Biomolecule
Separation, Concentration, and Detection using
Nanofluidic Channels
Jongyoon Han
2.1
Introduction
2.2
Fabrication Techniques for Nanofluidic Channels
2.2.1
Etching
&
Substrate Bonding Methods 3
2.2.2
Sacrificial Layer Etching Techniques ^
2.2.3
Other Fabrication Methods
2.3
Biomolecule
Separation Using Nanochannels
2.3.1
Molecular Sieving using Nanofluidic Filters
2.3.1
Molecular Sieving g
2.3.2
Computational Modelling of Nanofilter
Sieving Phenomena
Biomolecule
Concentration Using Nanocha
2.4.1
Biomolecule Pre-concentration
using
Cop ^
Sieving Phenomena
„
2.4
Biomolecule
Concentration Using Nanochannels
i
i
Contents
Nanochannels and Nanomaterials 38
2.4.2 Non-Linear Electrokinetic
Phenomena
near
Nanochannels 40
2.5
Confinement of Biomolecules Using
Nanochannels 41
2.5.1 Nanochannel
Confinement of
Biomolecules 41
2.5.2 Enhancement
of Binding Assays using
Molecule Confinement in Nanochannels
43
2.6
Conclusions and Future Directions
43
2.7
Acknowledgements
44
References
44
Chapter
3
Particle Transport in Micro and Nanostructured Arrays: Asymmetric
Low Reynolds Number Flow
Jason Puchella and Robert Austin
3.1
An Introduction to Hydrodynamics
47
and Particles Moving in Flow Fields
3.2
Potential Functions in Low Reynolds Number Flow
50
3.3
Arrays Of Obstacles And How Particles Move in Them:
Puzzles and Paradoxes in Low Re Flow
53
References
62
Chapter
4
Molecular Transport and Fluidic Manipulation in Three Dimensional
Integrated Nanofluidic Networks
T.L. King X. Jin
N.
Aluru and P.W. Bohn
4.1
Introduction
65
4.2
Experimental Characterization of Nanofluidic Flow
68
4.2.1
Surface Charge
68
4.2.2
Debye Length
69
43
Integrated Nanofluidic Systems
71
4.3.1
Molecular Sampling (Digital Fluidic Manipulation)
71
4.3.2
Sample Pre-Concentration
73
4.4
Theory and Simulations
74
4.4.1
Theory 76
4.4.2
Ion Accumulation and Depletion
on
4.4.3
Ionic Currents w
4.4.4
Induced Flow 81
4.5
Conclusions
4.6
Acknowledgements °
References 86
Chapter
5
Fabrication of Silica Nanofluidic Tubing for Single Molecule Detection
Miao
Wang and
Jun
Kameoka
SQ.
5.1
Introduction
j
5.2
Fabrication of Silica Nanofluidic Tubes w
Contents
5.2.1
5.2.2
Concepts
Electrospinning
5.2.2.1 Basics
of
Electrospinning
5.2.2.2
Nano-Scale
Silica Fibers and Hollow
Tubing Structures
5.2.2.3
Characterization of the Scanned
Coaxial Electrospinning Process
5.2.3
Heat-Induced Stretching Method
5.3
Analysis of Single Molecules Using Nanofluidic Tubes
5.3.1
Experimental Setup
5.3.2
Detection and Measurement of Single Molecules
in Nanofluidic Channels
5.3.3
Electrokinetic Molecule Transport in Nanofluidic Tubing
5.4
Conclusions
5.5
Acknowledgements
References
90
92
92
94
98
101
104
104
104
106
107
108
108
Chapter
6
Single Molecule Analysis Using Single Nanopores
Min Jun
Kim, Joseph
W.
F. Robertson, and John J. Kasianowicz
6.1
Introduction
ИЗ
6.2
Fabrication of
Single Nanopores 114
6.2.1 Formation
of
α
-Hemolysin
Pores
on Lipid Bilayers
114
6.2.2 Formation
of
Solid-State Nanopores
on Thin
Films 117
6.2.2.1
Free
Standing
Thin Film Preparation
117
6.2.2.2
Dimensional Structures of Solid-State
Nanopore Using
Tem
Tomography
121
6.2.3
Experimental Setup for Ionic Current Blockade
Measurements on Nanopores
122
6.2.3.1
α
-Hemolysin
Nanopores
122
6.2.3.2
Solid-State Nanopores
123
6.3
Analysis of Nucleic Acids Using Nanopores
124
6.3.1
Characterization of Single Nanopores
124
6.3.1.1
α
-Hemolysin
Nanopores
124
6.3.1.2
Solid-State Nanopores
129
6.3.2
Analysis of Single Molecules Translocating
Through Single Nanopores
130
6.3.2.1
α
-Hemolysin
Nanopores
130
6.3.2.2
Solid-State Nanopores
133
6.4
Conclusions
134
6.5
Acknowledgements
136
References
136
Chapter
7
Nanopore-Based Optofluidic Devices for Single Molecule Sensing
Guillaume
A. T. Chansin, Jongin Hong, Andrew J. Demello
and Joshua B.
Edel
7.1
Introduction
139
Contents
7.2
Light in Sub-Wavelength Pores
142
7.2.1
Evanescent Fields in Waveguides
142
7.2.2
Zero-Mode Waveguides
144
7.3
Design Rules using Real Metals
147
7.3.1
Material Selection
147
7.3.2
Pore Size and Probe Volume
148
7.4
Implementation and Instrumentation
149
7.4.1
Detection with a Confocal Microscope
149
7.4.2
Probing Nanopore Arrays Using A Camera
152
7.5
Conclusions
154
References
154
Chapter
8
Ion-Current Rectification in Nanofluidic Devices
Li-Jing Cheng and L. Jay Guo
8.1
Introduction
157
8.1.1
Analogy between Nanofluidic and Semiconductor Devices
158
8.2
Nanofluidic Devices with Rectifying Effects
159
8.2.1
Asymmetric Channel Geometries
159
8.2.2
Asymmetric Bath Concentrations
161
8.2.3
Asymmetric Surface Charge Distribution
163
8.3
Theory of Rectifying Effect in Nanofluidic Devices
166
8.3.1
Qualitative Interpretation of Ion Rectification
by Solving Poisson-Nernst-Planck Equations
166
8.3.1.1
Conical Nanopores
167
8.3.1.2
Concentration Gradient in Homogeneous
Nanochannels
167
8.3.1.3
Bipolar Nanochannels
170
8.3.2
Qualitative Interpretations of Ion Rectification
in Nanofluidic Devices
171
8.3.3
Comparison of Rectifying Effects in Nanofluidic
Diodes and Semiconductor Diodes
175
8.4
Conclusions
176
References
176
Chapter
9
Nanopillars and Nanoballs for
DNA
Analysis
Noritada
Kaji,
Manabu Tokeshi and Yoshinobu
Baba
9.1
Introduction
179
9.2
Fabrication of Nanopillars and Nanoballs
180
9.2.1
Fabrication of Nanopillars
181
9.2.2
Self-Assembled Nanospheres
181
9.2.3
Synthesis of Pegylated-Latex
182
93
Nanopillars for
DNA
Analysis
183
9.3.1 DNA
Analysis by Tilted Patterned Nanopillar Chips
183
9.3.2
Single
DNA
Molecule Imaging In Tilted Pattern
Nanopillar Chips
185
9.3.3 DNA
Analysis by Square Patterned Nanopillar
Contents
Chips and Nanowall Chips 186
9.3.4 Single DNA
Molecule
Imaging In
Square
Patterned
Nanopillar Chips 186
9.3.5
Mechanism of
Separation in Nanopillar Chips 186
9.4 Nanoballs
for
DNA
Analysis
187
9.4.1 DNA
Analysis by a Self-Assembled Nanosphere
Solution in a Chip
187
9.4.2 DNA
Analysis by Pegylated-Latex Mixed Polymer
Solution in a Chip
188
9.4.3
Single
DNA
Molecule Imaging In a Nanoball Solution
189
9.5
Conclusions
189
References
190
Subject Index
192
|
adam_txt |
Contents
Chapter
1 Transport
of Ions,
DNA Polymers,
and Microtubules in the
Nanofluidic Regime
Derek
Stein, Martin Van Den
Heuvel, and
Cees
Dekker
1.1
Introduction
1
1.2
Ionic Transport
2
1.2.1
Electrically Driven Ion Transport
2
1.2.2
Streaming Currents
5
1.2.3
Streaming Currents as a Probe of Charge Inversion
6
1.2.4
Electrokinetic Energy Conversion in Nanofluidic Channels
7
1.3
Polymer Transport
9
1.3.1
Pressure-Driven Polymer Transport
10
1.3.1.1
Pressure-Driven
DNA
Mobility
10
1.3.1.2
Dispersion of
DNA
Polymers in a
Pressure-Driven Flow
12
1.3.2
Electrokinetic
DNA
Concentration in
Nanofluidic Channels
13
1.3.3 DNA
Conformations and Dynamics in
Slit-Like Nanochannels
15
1.4
Microtubule Transport in Nanofluidic Channels
Driven By Electric Fields and By Kinesin Biomolecular Motors
16
1.4.1
Electrical Manipulation of Kinesin-Driven
Microtubule Transport
17
\A2 Mechanical Properties of Microtubules
Measured from Electric Field-Induced Bending
20
1.4.3
Electrophoresis of Individual Microtubules
in Microfluidic Channels
23
1.5
Acknowledgements
25
References 26
Chapter
2
Biomolecule
Separation, Concentration, and Detection using
Nanofluidic Channels
Jongyoon Han
2.1
Introduction
2.2
Fabrication Techniques for Nanofluidic Channels
2.2.1
Etching
&
Substrate Bonding Methods 3
2.2.2
Sacrificial Layer Etching Techniques ^
2.2.3
Other Fabrication Methods
2.3
Biomolecule
Separation Using Nanochannels
2.3.1
Molecular Sieving using Nanofluidic Filters
2.3.1
Molecular Sieving g
2.3.2
Computational Modelling of Nanofilter
Sieving Phenomena
Biomolecule
Concentration Using Nanocha
2.4.1
Biomolecule Pre-concentration
using
Cop ^
Sieving Phenomena
„
2.4
Biomolecule
Concentration Using Nanochannels
i
i
Contents
Nanochannels and Nanomaterials 38
2.4.2 Non-Linear Electrokinetic
Phenomena
near
Nanochannels 40
2.5
Confinement of Biomolecules Using
Nanochannels 41
2.5.1 Nanochannel
Confinement of
Biomolecules 41
2.5.2 Enhancement
of Binding Assays using
Molecule Confinement in Nanochannels
43
2.6
Conclusions and Future Directions
43
2.7
Acknowledgements
44
References
44
Chapter
3
Particle Transport in Micro and Nanostructured Arrays: Asymmetric
Low Reynolds Number Flow
Jason Puchella and Robert Austin
3.1
An Introduction to Hydrodynamics
47
and Particles Moving in Flow Fields
3.2
Potential Functions in Low Reynolds Number Flow
50
3.3
Arrays Of Obstacles And How Particles Move in Them:
Puzzles and Paradoxes in Low Re Flow
53
References
62
Chapter
4
Molecular Transport and Fluidic Manipulation in Three Dimensional
Integrated Nanofluidic Networks
T.L. King X. Jin
N.
Aluru and P.W. Bohn
4.1
Introduction
65
4.2
Experimental Characterization of Nanofluidic Flow
68
4.2.1
Surface Charge
68
4.2.2
Debye Length
69
43
Integrated Nanofluidic Systems
71
4.3.1
Molecular Sampling (Digital Fluidic Manipulation)
71
4.3.2
Sample Pre-Concentration
73
4.4
Theory and Simulations
74
4.4.1
Theory 76
4.4.2
Ion Accumulation and Depletion
' '
on
4.4.3
Ionic Currents w
4.4.4
Induced Flow 81
4.5
Conclusions
"
4.6
Acknowledgements °
References 86
Chapter
5
Fabrication of Silica Nanofluidic Tubing for Single Molecule Detection
Miao
Wang and
Jun
Kameoka
SQ.
5.1
Introduction
j"
5.2
Fabrication of Silica Nanofluidic Tubes w
Contents
5.2.1
5.2.2
Concepts
Electrospinning
5.2.2.1 Basics
of
Electrospinning
5.2.2.2
Nano-Scale
Silica Fibers and Hollow
Tubing Structures
5.2.2.3
Characterization of the Scanned
Coaxial Electrospinning Process
5.2.3
Heat-Induced Stretching Method
5.3
Analysis of Single Molecules Using Nanofluidic Tubes
5.3.1
Experimental Setup
5.3.2
Detection and Measurement of Single Molecules
in Nanofluidic Channels
5.3.3
Electrokinetic Molecule Transport in Nanofluidic Tubing
5.4
Conclusions
5.5
Acknowledgements
References
90
92
92
94
98
101
104
104
104
106
107
108
108
Chapter
6
Single Molecule Analysis Using Single Nanopores
Min Jun
Kim, Joseph
W.
F. Robertson, and John J. Kasianowicz
6.1
Introduction
ИЗ
6.2
Fabrication of
Single Nanopores 114
6.2.1 Formation
of
α
-Hemolysin
Pores
on Lipid Bilayers
114
6.2.2 Formation
of
Solid-State Nanopores
on Thin
Films 117
6.2.2.1
Free
Standing
Thin Film Preparation
117
6.2.2.2
Dimensional Structures of Solid-State
Nanopore Using
Tem
Tomography
121
6.2.3
Experimental Setup for Ionic Current Blockade
Measurements on Nanopores
122
6.2.3.1
α
-Hemolysin
Nanopores
122
6.2.3.2
Solid-State Nanopores
123
6.3
Analysis of Nucleic Acids Using Nanopores
124
6.3.1
Characterization of Single Nanopores
124
6.3.1.1
α
-Hemolysin
Nanopores
124
6.3.1.2
Solid-State Nanopores
129
6.3.2
Analysis of Single Molecules Translocating
Through Single Nanopores
130
6.3.2.1
α
-Hemolysin
Nanopores
130
6.3.2.2
Solid-State Nanopores
133
6.4
Conclusions
134
6.5
Acknowledgements
136
References
136
Chapter
7
Nanopore-Based Optofluidic Devices for Single Molecule Sensing
Guillaume
A. T. Chansin, Jongin Hong, Andrew J. Demello
and Joshua B.
Edel
7.1
Introduction
139
Contents
7.2
Light in Sub-Wavelength Pores
142
7.2.1
Evanescent Fields in Waveguides
142
7.2.2
Zero-Mode Waveguides
144
7.3
Design Rules using Real Metals
147
7.3.1
Material Selection
147
7.3.2
Pore Size and Probe Volume
148
7.4
Implementation and Instrumentation
149
7.4.1
Detection with a Confocal Microscope
149
7.4.2
Probing Nanopore Arrays Using A Camera
152
7.5
Conclusions
154
References
154
Chapter
8
Ion-Current Rectification in Nanofluidic Devices
Li-Jing Cheng and L. Jay Guo
8.1
Introduction
157
8.1.1
Analogy between Nanofluidic and Semiconductor Devices
158
8.2
Nanofluidic Devices with Rectifying Effects
159
8.2.1
Asymmetric Channel Geometries
159
8.2.2
Asymmetric Bath Concentrations
161
8.2.3
Asymmetric Surface Charge Distribution
163
8.3
Theory of Rectifying Effect in Nanofluidic Devices
166
8.3.1
Qualitative Interpretation of Ion Rectification
by Solving Poisson-Nernst-Planck Equations
166
8.3.1.1
Conical Nanopores
167
8.3.1.2
Concentration Gradient in Homogeneous
Nanochannels
167
8.3.1.3
Bipolar Nanochannels
170
8.3.2
Qualitative Interpretations of Ion Rectification
in Nanofluidic Devices
171
8.3.3
Comparison of Rectifying Effects in Nanofluidic
Diodes and Semiconductor Diodes
175
8.4
Conclusions
176
References
176
Chapter
9
Nanopillars and Nanoballs for
DNA
Analysis
Noritada
Kaji,
Manabu Tokeshi and Yoshinobu
Baba
9.1
Introduction
179
9.2
Fabrication of Nanopillars and Nanoballs
180
9.2.1
Fabrication of Nanopillars
181
9.2.2
Self-Assembled Nanospheres
181
9.2.3
Synthesis of Pegylated-Latex
182
93
Nanopillars for
DNA
Analysis
183
9.3.1 DNA
Analysis by Tilted Patterned Nanopillar Chips
183
9.3.2
Single
DNA
Molecule Imaging In Tilted Pattern
Nanopillar Chips
185
9.3.3 DNA
Analysis by Square Patterned Nanopillar
Contents
Chips and Nanowall Chips 186
9.3.4 Single DNA
Molecule
Imaging In
Square
Patterned
Nanopillar Chips 186
9.3.5
Mechanism of
Separation in Nanopillar Chips 186
9.4 Nanoballs
for
DNA
Analysis
187
9.4.1 DNA
Analysis by a Self-Assembled Nanosphere
Solution in a Chip
187
9.4.2 DNA
Analysis by Pegylated-Latex Mixed Polymer
Solution in a Chip
188
9.4.3
Single
DNA
Molecule Imaging In a Nanoball Solution
189
9.5
Conclusions
189
References
190
Subject Index
192 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author_GND | (DE-588)137518323 |
building | Verbundindex |
bvnumber | BV035140429 |
callnumber-first | T - Technology |
callnumber-label | TJ853 |
callnumber-raw | TJ853 |
callnumber-search | TJ853 |
callnumber-sort | TJ 3853 |
callnumber-subject | TJ - Mechanical Engineering and Machinery |
classification_rvk | UF 4500 ZN 3700 |
ctrlnum | (OCoLC)244653150 (DE-599)BSZ283425954 |
dewey-full | 629.8042 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.8042 |
dewey-search | 629.8042 |
dewey-sort | 3629.8042 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Elektrotechnik / Elektronik / Nachrichtentechnik Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
discipline_str_mv | Physik Elektrotechnik / Elektronik / Nachrichtentechnik Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02034nam a22005172cb4500</leader><controlfield tag="001">BV035140429</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20091029 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081104s2009 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780854041473</subfield><subfield code="9">978-0-85404-147-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)244653150</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ283425954</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-M347</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ853</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.8042</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 4500</subfield><subfield code="0">(DE-625)145585:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 3700</subfield><subfield code="0">(DE-625)157333:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nanofluidics</subfield><subfield code="b">nanoscience and nanotechnology</subfield><subfield code="c">ed. by Joshua B. Edel ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">RSC Publ.</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 198 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">RSC nanoscience & nanotechnology</subfield><subfield code="v">6</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dispositifs fluidiques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dispositifs électromécaniques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Microfluidique</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nanofluides</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluidic devices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanoelectromechanical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanotechnology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mikrofluidik</subfield><subfield code="0">(DE-588)4803438-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanotechnologie</subfield><subfield code="0">(DE-588)4327470-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nanotechnologie</subfield><subfield code="0">(DE-588)4327470-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mikrofluidik</subfield><subfield code="0">(DE-588)4803438-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Edel, Joshua B.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)137518323</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">RSC nanoscience & nanotechnology</subfield><subfield code="v">6</subfield><subfield code="w">(DE-604)BV035798085</subfield><subfield code="9">6</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016807817&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016807817</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV035140429 |
illustrated | Illustrated |
index_date | 2024-07-02T22:26:58Z |
indexdate | 2024-07-09T21:23:12Z |
institution | BVB |
isbn | 9780854041473 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016807817 |
oclc_num | 244653150 |
open_access_boolean | |
owner | DE-703 DE-29T DE-634 DE-M347 |
owner_facet | DE-703 DE-29T DE-634 DE-M347 |
physical | XI, 198 S. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | RSC Publ. |
record_format | marc |
series | RSC nanoscience & nanotechnology |
series2 | RSC nanoscience & nanotechnology |
spelling | Nanofluidics nanoscience and nanotechnology ed. by Joshua B. Edel ... Cambridge RSC Publ. 2009 XI, 198 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier RSC nanoscience & nanotechnology 6 Dispositifs fluidiques ram Dispositifs électromécaniques ram Microfluidique ram Nanofluides ram Fluidic devices Nanoelectromechanical systems Nanotechnology Mikrofluidik (DE-588)4803438-1 gnd rswk-swf Nanostrukturiertes Material (DE-588)4342626-8 gnd rswk-swf Nanotechnologie (DE-588)4327470-5 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Nanostrukturiertes Material (DE-588)4342626-8 s Nanotechnologie (DE-588)4327470-5 s Mikrofluidik (DE-588)4803438-1 s DE-604 Edel, Joshua B. Sonstige (DE-588)137518323 oth RSC nanoscience & nanotechnology 6 (DE-604)BV035798085 6 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016807817&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Nanofluidics nanoscience and nanotechnology RSC nanoscience & nanotechnology Dispositifs fluidiques ram Dispositifs électromécaniques ram Microfluidique ram Nanofluides ram Fluidic devices Nanoelectromechanical systems Nanotechnology Mikrofluidik (DE-588)4803438-1 gnd Nanostrukturiertes Material (DE-588)4342626-8 gnd Nanotechnologie (DE-588)4327470-5 gnd |
subject_GND | (DE-588)4803438-1 (DE-588)4342626-8 (DE-588)4327470-5 (DE-588)4143413-4 |
title | Nanofluidics nanoscience and nanotechnology |
title_auth | Nanofluidics nanoscience and nanotechnology |
title_exact_search | Nanofluidics nanoscience and nanotechnology |
title_exact_search_txtP | Nanofluidics nanoscience and nanotechnology |
title_full | Nanofluidics nanoscience and nanotechnology ed. by Joshua B. Edel ... |
title_fullStr | Nanofluidics nanoscience and nanotechnology ed. by Joshua B. Edel ... |
title_full_unstemmed | Nanofluidics nanoscience and nanotechnology ed. by Joshua B. Edel ... |
title_short | Nanofluidics |
title_sort | nanofluidics nanoscience and nanotechnology |
title_sub | nanoscience and nanotechnology |
topic | Dispositifs fluidiques ram Dispositifs électromécaniques ram Microfluidique ram Nanofluides ram Fluidic devices Nanoelectromechanical systems Nanotechnology Mikrofluidik (DE-588)4803438-1 gnd Nanostrukturiertes Material (DE-588)4342626-8 gnd Nanotechnologie (DE-588)4327470-5 gnd |
topic_facet | Dispositifs fluidiques Dispositifs électromécaniques Microfluidique Nanofluides Fluidic devices Nanoelectromechanical systems Nanotechnology Mikrofluidik Nanostrukturiertes Material Nanotechnologie Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016807817&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV035798085 |
work_keys_str_mv | AT edeljoshuab nanofluidicsnanoscienceandnanotechnology |