A broader view of relativity: general implications of Lorentz and Poincaré invariance
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Singapore [u.a.]
World Scientific
2006
|
Ausgabe: | 2. ed |
Schriftenreihe: | Advanced series on theoretical physical science
10 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | Literaturangaben |
Beschreibung: | XX, 516 S. graph. Darst. |
ISBN: | 9812566511 9789812566515 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV035127670 | ||
003 | DE-604 | ||
005 | 20121213 | ||
007 | t | ||
008 | 081029s2006 d||| |||| 00||| eng d | ||
020 | |a 9812566511 |9 981-256-651-1 | ||
020 | |a 9789812566515 |9 978-981-256-651-5 | ||
035 | |a (OCoLC)427533541 | ||
035 | |a (DE-599)GBV513542280 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-634 |a DE-11 |a DE-19 | ||
050 | 0 | |a QC173.65 | |
082 | 0 | |a 530.11 |2 22 | |
084 | |a UB 2420 |0 (DE-625)145310: |2 rvk | ||
084 | |a UH 8200 |0 (DE-625)145780: |2 rvk | ||
100 | 1 | |a Hsu, Jong-Ping |e Verfasser |4 aut | |
245 | 1 | 0 | |a A broader view of relativity |b general implications of Lorentz and Poincaré invariance |c Jong-Ping Hsu ; Leonardo Hsu |
250 | |a 2. ed | ||
264 | 1 | |a Singapore [u.a.] |b World Scientific |c 2006 | |
300 | |a XX, 516 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Advanced series on theoretical physical science |v 10 | |
500 | |a Literaturangaben | ||
650 | 4 | |a Relatividad (Física) - Historia | |
650 | 4 | |a Relatividad especial (Física) - Historia | |
650 | 0 | 7 | |a Relativitätstheorie |0 (DE-588)4049363-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Poincaré-Invariante |0 (DE-588)4300095-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lorentz-Invarianz |0 (DE-588)4299988-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Relativitätstheorie |0 (DE-588)4049363-5 |D s |
689 | 0 | 1 | |a Lorentz-Invarianz |0 (DE-588)4299988-1 |D s |
689 | 0 | 2 | |a Poincaré-Invariante |0 (DE-588)4300095-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Hsu, Leonardo |e Verfasser |4 aut | |
830 | 0 | |a Advanced series on theoretical physical science |v 10 |w (DE-604)BV012400065 |9 10 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016795226&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016795226&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-016795226 |
Datensatz im Suchindex
_version_ | 1804138108938092544 |
---|---|
adam_text | Contents
Preface
ix
Preface
to the First Edition
xi
(A) The Historical and Physical Context of Relativity Theory
1
1.
Introduction and Overview
3
la. Special relativity is NOT incorrect!
3
lb. Idea
#1 :
Einstein s first postulate of relativity (the principle of
relativity) is the only necessary ingredient of a viable theory
4
lc. Idea
#2:
The principle of relativity is useful as a limiting principle
in the discussion of the physics of accelerated frames
7
2.
Space, Time and
Inerţial
Frames
12
2a. Space
12
2b. Time
13
2c.
Inerţial
frames of reference
14
2d. Coordinate transformations
15
2e. Units of space and time
16
3.
The
Nontrivial
Pursuit of Earth s Absolute Motion
19
3a. Newton s frame of absolute rest
19
3b. Measuring Earth s velocity
22
4.
On the Right Track:
Voigt,
Lorentz,
and Larmor
27
4a. Lorentz s heuristic local time
27
4b. Development of the
Lorentz
transformations
29
5.
The Contributions of
Poincaré
36
5a.
Poincaré s
insight into physical time
36
5b.
Poincaré
and the principle of relativity
38
5c.
Poincaré s
theory of relativity
41
5d.
Conformai
transformations and a frame of absolute rest
47
5e.
Poincaré s
impact on relativity and symmetry principles
51
5f. Retro physics: Past and present views of the ether
54
6.
The Novel Creation of the Young Einstein
64
6a. Fresh thoughts from a young mind
64
6b. The theory of special relativity
65
6c. Derivation of the
Lorentz
transformation
66
6d. Relativity of space and time
68
6e. The completion of special relativity by Minkowski s idea of
4-dimensional spacetime
73
6f. Einstein and
Poincaré
75
(В)
A Broader View of Relativity: The Central Role of the Principle of Relativity
85
7.
Relativity Based Solely on the Principle of Relativity
87
7a. Motivation
87
7b. A brief digression: natural units and their physical basis
88
7c. Taiji relativity: A relativity theory based solely on the principle
of relativity
89
7d. Realization of taiji time
92
7e. The conceptual difference between taiji relativity and
special relativity
93
7f. The role of a second postulate
95
8.
Common Relativity
100
8a. A new unit for time
100
8b. Operationalizing the common-second and the equivalence of
inerţial
frames
102
8c. Coordinate transformations in common relativity
104
8d. Physical interpretation of the ligh function
b
106
8e. Implications of common time
109
9.
Experimental Tests I
114
9a. Time intervals versus optical path length
114
9b. The Michelson-Morley experiment
114
9c. The Kennedy-Thorndike experiment
118
9d. The Fizeau experiment
121
10.
Experimental Tests II
128
10a. The Ives-Stilwell experiment
128
10b. Atomic energy levels and
Doppler
shifts in taiji relativity
128
10c. Atomic energy levels and
Doppler
shifts in common relativity
130
lOd. Lifetime dilation of cosmic-ray
muons
133
10e.
The cosmic-ray muon experiment and taiji relativity
134
lOf. Decay-length dilation in quantum field theory
and taiji relativity
135
10g.
Cosmic-ray
muons
and common relativity
138
lOh. Quantum field theory and the decay length in common relativity
140
11.
Group Properties of Taiji Relativity and Common Relativity
143
1
la. General group properties
143
lib.
Lorentz
group properties
146
lic. Poincaré
group properties
152
12.
Invariant Actions in Relativity Theories and
158
Truly Fundamental Constants
12a. Invariant actions for classical electrodynamics in relativity theories
158
12b. Universal constants and invariant actions
163
12c. Dirac s conjecture regarding the fundamental constants
165
12d. Truly fundamental constants
166
13.
Common Relativity and Many-Body Systems
170
13a. Advantages of common time
170
13b. Hamiltonian dynamics in common relativity
173
Contents
13c. Invariant
kinetic theory of
gases
178
13d. Invariant
Liou
ville
equation
182
13e. Invariant entropy, temperature and the Maxwell-Boltzmann
distribution
184
13f. Invariant Boltzmann-
Vlasov
equation
186
13g. Boltzmann s transport equation with 4-dimensional symmetry
192
13h.
Boltzmann s
H
theorem with 4-dimensional symmetry
195
14.
Common Relativity and the 3K Cosmic Microwave Background
200
14a. Implications of an invariant and non-invariant Planck s law for
blackbody
radiation
200
14b. Invariant partition function
200
14c. Covariant thermodynamics
202
14d. The canonical distribution and
blackbody
radiation
205
14e. The question of Earth s absolute motion relative to the 3K
cosmic microwave background
208
15.
Common Relativity and Quantum Mechanics
213
15a. Fuzziness at short distances and the invariant genergy
213
15b. Fuzzy quantum mechanics with an inherent fuzziness in
the position of a point particle
215
15c. Fuzzy point and modified Coulomb potential at short distances
220
15d. Suppression of the contribution of large momentum states to
physical processes
222
16.
Common Relativity and Fuzzy Quantum Field Theory
225
1
6a. Fuzzy quantum field theories
225
16b. Fuzzy quantum electrodynamics based on common relativity
231
16c. Experimental tests of the 4-dimensional symmetry of special
relativity at very high energies
235
17.
Extended Relativity: A Weaker Postulate for the Speed of Light
240
17a. Four-dimensional symmetry as a guiding principle
240
17b. Edwards transformation with Reichenbach s time
242
17c. Difficulties of Edwards transformation
245
17d. Extended relativity: A 4-dimensional theory with
Reichenbach s time (a universal 2-way speed of light)
247
17e. The two basic postulates of extended relativity
251
17f. Invariant action for a free particle in extended relativity
254
17g. Comparison of extended relativity and
specia)
relativity
256
17h. An unpassable
limit and a non-constant speed of light
258
17i.
Lorentz
group and the space-lightime transformations
259
17j. Decay rate and lifetime dilation of unstable particles
261
(C) The Role of the Principle of Relativity in the Physics of Accelerated Frames
265
18.
The Principle of Limiting
Lorentz
and
Poincaré Invariance
267
18a. An answer to the young Einstein s question and its implications
267
1
8b. Generalizing
Lorentz
transformations from
inerţial
frames to
accelerated frames
271
Contents
18c. Physical time and spacetime clocks in linearly accelerated frames
274
18d. M0ller s gravitational approach to accelerated transformations
275
1
8e.
Accelerated transformations with the limiting
Lorentz
and
Poincaré invariance
279
19.
Extended
Lorentz
Transformations for Frames with
Constant-Linear-Accelerations
284
19a. Generalized
M0ller-Wu-Lee
transformation
284
19b. Minimal generalization of the
Lorentz
transformation:
The Wu transformations
288
19c. A comparison of the generalized MWL andWu transformations
290
19d. Four-momentum and constant-linear-acceleration
of an accelerated particle
292
19e. Experiments on Wu-Doppler effects of waves emitted from
accelerated atoms
294
20.
Physical Properties of Spacetime in Accelerated Frames
297
20a. A general transformation for a CLA frame with an arbitrary
ß(w) 297
20b. The singular wall and horizons in the Wu transformation
300
20c. Generalized N^ller-Wu-Lee transformation for
an accelerated frame
305
20d. Decay-length dilations due to particle acceleration
310
20e. Discussions
314
21.
Extended
Lorentz
Transformations for Accelerated Frames and
a Resolution to the Two-Spaceship Paradox
319
21a. The two-spaceship paradox
319
21b. Generalized M0ller and Wu transformations
321
21c. Motion and length contraction involving accelerations
324
2
Id. Discussion
326
22.
Dynamics of Classical and Quantum Particles in
Constant-Linear-Acceleration Frames
330
22a. Classical electrodynamics in constant-linear-acceleration frames
330
22b. Quantum particles and Dirac s equation in a CLA frame
334
22c. Stability of atomic levels against constant accelerations
336
22d. Electromagnetic fields produced by a charge with a constant-
linear-acceleration
340
22e. Covariant radiative reaction force in special relativity and
common relativity
349
23.
Quantizations of Scalar, Spinor, and Electromagnetic Fields
In Constant-Linear-Acceleration Frames
356
23a. Scalar field in constant-linear-acceleration frames
356
23b. Quantization of scalar fields in CLA frames
359
23c. Quantization of spinor fields in CLA frames
366
23d. Quantization of the electromagnetic field in CLA frames
373
24.
Group and Lie Algebra Properties of Accelerated
Spacetime Transformations
378
24a. The Wu transformation with acceleration in an
arbitrary direction
378
Contents
24b. Generators
of the Wu transformation in cotangent spacetime
380
24c. The Wu algebra in a modified momentum space and the
classification of particles
384
25.
Coordinate Transformations for Frames with a
General-Linear Acceleration
389
25a. Spacetime transformations based on
limiting
Lorentz
and
Poincaré
invariance
389
25b. Physical implications and discussion
396
26.
A Taiji Rotational Transformation with
Limiting 4-Dimensional Symmetry
402
26a. A smooth connection between rotational and
inerţial
frames
402
26b. A taiji rotational transformation with limiting 4-dimensional
symmetry
403
26c. Physical properties of the taiji rotational transformation
406
26d. The metric tensors for the spacetime of rotating frames
408
26e. The invariant action for electromagnetic fields and charged
particles in rotating frames and truly fundamental constants
410
26f. The 4-momentum and the lifetime dilation of a particle
at rest in a rotating frame
412
27.
Epilogue
416
(D) Appendices
423
A. Systems of Units and the Development of
Relativity Theories
425
Aa. Units, convenience and physical necessity
425
Ab.
Tíme,
length and mass
426
Ac. Other SI base units
430
Ad. Other units
434
Ae. Status of the fundamental constants
434
Af. Discussion and conclusion
436
B. Can one Derive the
Lorentz
Transformation from
Precision Experiments?
441
Ba. Introduction
442
Bb. Three classical tests of special relativity
443
Be. Deriving the
Lorentz
transformation?
446
Bd. A more general form
455
Be. Discussions and conclusions
462
C. Quantum Electrodynamics in Both Linearly Accelerated and
Inertia! Frames
465
Ca. Quantum electrodynamics based on taiji relativity
465
Cb. Experimental measurements of dilations of decay-lengths and
decay-lifetimes in
inerţial
frames
470
Cc. Quantum electrodynamics of bosons in accelerated and
inerţial
frames
470
Contents
Cd. Feynman
rules for QED with
fermions
in both
CLA
and
inerţial
frames
476
Ce.
Some QED results in both
CLA
and
inerţial
frames
478
D. Yang-Mills Gravity with Translation Gauge Symmetry in
Inertia! and Non-inertial Frames
483
Da. Translation gauge transformations and an effective metric tensor
in flat spacetime
483
Db.
Yang-Mills theory with translation gauge symmetry
489
Dc. Gravitational action with quadratic gauge-curvature
490
Dd. Linearized equations of the tensor field and the Hamilton-Jacobi
equation for particles
492
De.
The gauge field equation in
inerţial
and non-inertial frames
494
Df. Perihelion shifts and bending of light
498
Dg. The Yang-Mills gravitational force
504
Author Index
509
Subject Index
513
Contents
A Broader View of Relativity
General Implications of
Lorentz
and
Poincaré
Invariance
2nd
Edition
A Broader View of Relativity shows that there is still new life in old physics. The book examines
the historical context and theoretical underpinnings of Einstein s theory of special relativity
and describes Broad Relativity, a generalized theory of coordinate transformations between
inerţial
reference frames that includes Einstein s special relativity as a special case. It shows
how the principle of relativity is compatible with multiple concepts of physical time and how
these different procedures for clock synchronization can be useful for thinking about different
physical problems, including many-body systems and the development of a Lorentz-invariant
thermodynamics. Broad relativity also provides new answers to old questions such as the
necessity of postulating the constancy of the speed of light and the viability of Reichenbach s
general concept of time. The book also draws on the idea of limiting-four-dimensional symmetry
to describe coordinate transformations and the physics of particles and fields in non-inertial
frames, particularly those with constant linear accelerations. This new edition expands the
discussion on the role that human conventions and unit systems have played in the historical
development of relativity theories and includes new results on the implications of broad
relativity for clarifying the status of constants that are truly fundamental and inherent properties
of our universe.
|
adam_txt |
Contents
Preface
ix
Preface
to the First Edition
xi
(A) The Historical and Physical Context of Relativity Theory
1
1.
Introduction and Overview
3
la. Special relativity is NOT incorrect!
3
lb. Idea
#1 :
Einstein's first postulate of relativity (the principle of
relativity) is the only necessary ingredient of a viable theory
4
lc. Idea
#2:
The principle of relativity is useful as a limiting principle
in the discussion of the physics of accelerated frames
7
2.
Space, Time and
Inerţial
Frames
12
2a. Space
12
2b. Time
13
2c.
Inerţial
frames of reference
14
2d. Coordinate transformations
15
2e. Units of space and time
16
3.
The
Nontrivial
Pursuit of Earth's Absolute Motion
19
3a. Newton's frame of absolute rest
19
3b. Measuring Earth's velocity
22
4.
On the Right Track:
Voigt,
Lorentz,
and Larmor
27
4a. Lorentz's heuristic local time
27
4b. Development of the
Lorentz
transformations
29
5.
The Contributions of
Poincaré
36
5a.
Poincaré's
insight into physical time
36
5b.
Poincaré
and the principle of relativity
38
5c.
Poincaré's
theory of relativity
41
5d.
Conformai
transformations and a frame of 'absolute rest'
47
5e.
Poincaré's
impact on relativity and symmetry principles
51
5f. Retro physics: Past and present views of the ether
54
6.
The Novel Creation of the Young Einstein
64
6a. Fresh thoughts from a young mind
64
6b. The theory of special relativity
65
6c. Derivation of the
Lorentz
transformation
66
6d. Relativity of space and time
68
6e. The completion of special relativity by Minkowski's idea of
4-dimensional spacetime
73
6f. Einstein and
Poincaré
75
(В)
A Broader View of Relativity: The Central Role of the Principle of Relativity
85
7.
Relativity Based Solely on the Principle of Relativity
87
7a. Motivation
87
7b. A brief digression: natural units and their physical basis
88
7c. Taiji relativity: A relativity theory based solely on the principle
of relativity
89
7d. Realization of taiji time
92
7e. The conceptual difference between taiji relativity and
special relativity
93
7f. The role of a second postulate
95
8.
Common Relativity
100
8a. A new unit for time
100
8b. Operationalizing the common-second and the equivalence of
inerţial
frames
102
8c. Coordinate transformations in common relativity
104
8d. Physical interpretation of the ligh function
b
106
8e. Implications of common time
109
9.
Experimental Tests I
114
9a. Time intervals versus optical path length
114
9b. The Michelson-Morley experiment
114
9c. The Kennedy-Thorndike experiment
118
9d. The Fizeau experiment
121
10.
Experimental Tests II
128
10a. The Ives-Stilwell experiment
128
10b. Atomic energy levels and
Doppler
shifts in taiji relativity
128
10c. Atomic energy levels and
Doppler
shifts in common relativity
130
lOd. Lifetime dilation of cosmic-ray
muons
133
10e.
The cosmic-ray muon experiment and taiji relativity
134
lOf. Decay-length dilation in quantum field theory
and taiji relativity
135
10g.
Cosmic-ray
muons
and common relativity
138
lOh. Quantum field theory and the decay length in common relativity
140
11.
Group Properties of Taiji Relativity and Common Relativity
143
1
la. General group properties
143
lib.
Lorentz
group properties
146
lic. Poincaré
group properties
152
12.
Invariant Actions in Relativity Theories and
158
Truly Fundamental Constants
12a. Invariant actions for classical electrodynamics in relativity theories
158
12b. Universal constants and invariant actions
163
12c. Dirac's conjecture regarding the fundamental constants
165
12d. Truly fundamental constants
166
13.
Common Relativity and Many-Body Systems
170
13a. Advantages of common time
170
13b. Hamiltonian dynamics in common relativity
173
Contents
13c. Invariant
kinetic theory of
gases
178
13d. Invariant
Liou
ville
equation
182
13e. Invariant entropy, temperature and the Maxwell-Boltzmann
distribution
184
13f. Invariant Boltzmann-
Vlasov
equation
186
13g. Boltzmann's transport equation with 4-dimensional symmetry
192
13h.
Boltzmann's
H
theorem with 4-dimensional symmetry
195
14.
Common Relativity and the 3K Cosmic Microwave Background
200
14a. Implications of an invariant and non-invariant Planck's law for
blackbody
radiation
200
14b. Invariant partition function
200
14c. Covariant thermodynamics
202
14d. The canonical distribution and
blackbody
radiation
205
14e. The question of Earth's "absolute" motion relative to the 3K
cosmic microwave background
208
15.
Common Relativity and Quantum Mechanics
213
15a. Fuzziness at short distances and the invariant genergy
213
15b. Fuzzy quantum mechanics with an inherent fuzziness in
the position of a point particle
215
15c. Fuzzy point and modified Coulomb potential at short distances
220
15d. Suppression of the contribution of large momentum states to
physical processes
222
16.
Common Relativity and Fuzzy Quantum Field Theory
225
1
6a. Fuzzy quantum field theories
225
16b. Fuzzy quantum electrodynamics based on common relativity
231
16c. Experimental tests of the 4-dimensional symmetry of special
relativity at very high energies
235
17.
Extended Relativity: A Weaker Postulate for the Speed of Light
240
17a. Four-dimensional symmetry as a guiding principle
240
17b. Edwards' transformation with Reichenbach's time
242
17c. Difficulties of Edwards'transformation
245
17d. Extended relativity: A 4-dimensional theory with
Reichenbach's time (a universal 2-way speed of light)
247
17e. The two basic postulates of extended relativity
251
17f. Invariant action for a free particle in extended relativity
254
17g. Comparison of extended relativity and
specia)
relativity
256
17h. An unpassable
limit and a non-constant speed of light
258
17i.
Lorentz
group and the space-lightime transformations
259
17j. Decay rate and "lifetime dilation" of unstable particles
261
(C) The Role of the Principle of Relativity in the Physics of Accelerated Frames
265
18.
The Principle of Limiting
Lorentz
and
Poincaré Invariance
267
18a. An answer to the young Einstein's question and its implications
267
1
8b. Generalizing
Lorentz
transformations from
inerţial
frames to
accelerated frames
271
Contents
18c. Physical time and 'spacetime clocks' in linearly accelerated frames
274
18d. M0ller's gravitational approach to accelerated transformations
275
1
8e.
Accelerated transformations with the limiting
Lorentz
and
Poincaré invariance
279
19.
Extended
Lorentz
Transformations for Frames with
Constant-Linear-Accelerations
284
19a. Generalized
M0ller-Wu-Lee
transformation
284
19b. Minimal generalization of the
Lorentz
transformation:
The Wu transformations
288
19c. A comparison of the generalized MWL andWu transformations
290
19d. Four-momentum and constant-linear-acceleration
of an accelerated particle
292
19e. Experiments on Wu-Doppler effects of waves emitted from
accelerated atoms
294
20.
Physical Properties of Spacetime in Accelerated Frames
297
20a. A general transformation for a CLA frame with an arbitrary
ß(w) 297
20b. The singular wall and horizons in the Wu transformation
300
20c. Generalized N^ller-Wu-Lee transformation for
an accelerated frame
305
20d. Decay-length dilations due to particle acceleration
310
20e. Discussions
314
21.
Extended
Lorentz
Transformations for Accelerated Frames and
a Resolution to the "Two-Spaceship Paradox"
319
21a. The two-spaceship paradox
319
21b. Generalized M0ller and Wu transformations
321
21c. Motion and length contraction involving accelerations
324
2
Id. Discussion
326
22.
Dynamics of Classical and Quantum Particles in
Constant-Linear-Acceleration Frames
330
22a. Classical electrodynamics in constant-linear-acceleration frames
330
22b. Quantum particles and Dirac's equation in a CLA frame
334
22c. Stability of atomic levels against constant accelerations
336
22d. Electromagnetic fields produced by a charge with a constant-
linear-acceleration
340
22e. Covariant radiative reaction force in special relativity and
common relativity
349
23.
Quantizations of Scalar, Spinor, and Electromagnetic Fields
In Constant-Linear-Acceleration Frames
356
23a. Scalar field in constant-linear-acceleration frames
356
23b. Quantization of scalar fields in CLA frames
359
23c. Quantization of spinor fields in CLA frames
366
23d. Quantization of the electromagnetic field in CLA frames
373
24.
Group and Lie Algebra Properties of Accelerated
Spacetime Transformations
378
24a. The Wu transformation with acceleration in an
arbitrary direction
378
Contents
24b. Generators
of the Wu transformation in cotangent spacetime
380
24c. The Wu algebra in a modified momentum space and the
classification of particles
384
25.
Coordinate Transformations for Frames with a
General-Linear Acceleration
389
25a. Spacetime transformations based on
limiting
Lorentz
and
Poincaré
invariance
389
25b. Physical implications and discussion
396
26.
A Taiji Rotational Transformation with
Limiting 4-Dimensional Symmetry
402
26a. A smooth connection between rotational and
inerţial
frames
402
26b. A taiji rotational transformation with limiting 4-dimensional
symmetry
403
26c. Physical properties of the taiji rotational transformation
406
26d. The metric tensors for the spacetime of rotating frames
408
26e. The invariant action for electromagnetic fields and charged
particles in rotating frames and truly fundamental constants
410
26f. The 4-momentum and the 'lifetime dilation' of a particle
at rest in a rotating frame
412
27.
Epilogue
416
(D) Appendices
423
A. Systems of Units and the Development of
Relativity Theories
425
Aa. Units, convenience and physical necessity
425
Ab.
Tíme,
length and mass
426
Ac. Other SI base units
430
Ad. Other units
434
Ae. Status of the fundamental constants
434
Af. Discussion and conclusion
436
B. Can one Derive the
Lorentz
Transformation from
Precision Experiments?
441
Ba. Introduction
442
Bb. Three classical tests of special relativity
443
Be. Deriving the
Lorentz
transformation?
446
Bd. A more general form
455
Be. Discussions and conclusions
462
C. Quantum Electrodynamics in Both Linearly Accelerated and
Inertia! Frames
465
Ca. Quantum electrodynamics based on taiji relativity
465
Cb. Experimental measurements of dilations of decay-lengths and
decay-lifetimes in
inerţial
frames
470
Cc. Quantum electrodynamics of bosons in accelerated and
inerţial
frames
470
Contents
Cd. Feynman
rules for QED with
fermions
in both
CLA
and
inerţial
frames
476
Ce.
Some QED results in both
CLA
and
inerţial
frames
478
D. Yang-Mills Gravity with Translation Gauge Symmetry in
Inertia! and Non-inertial Frames
483
Da. Translation gauge transformations and an 'effective metric tensor'
in flat spacetime
483
Db.
Yang-Mills theory with translation gauge symmetry
489
Dc. Gravitational action with quadratic gauge-curvature
490
Dd. Linearized equations of the tensor field and the Hamilton-Jacobi
equation for particles
492
De.
The gauge field equation in
inerţial
and non-inertial frames
494
Df. Perihelion shifts and bending of light
498
Dg. The Yang-Mills gravitational force
504
Author Index
509
Subject Index
513
Contents
A Broader View of Relativity
General Implications of
Lorentz
and
Poincaré
Invariance
2nd
Edition
A Broader View of Relativity shows that there is still new life in old physics. The book examines
the historical context and theoretical underpinnings of Einstein's theory of special relativity
and describes Broad Relativity, a generalized theory of coordinate transformations between
inerţial
reference frames that includes Einstein's special relativity as a special case. It shows
how the principle of relativity is compatible with multiple concepts of physical time and how
these different procedures for clock synchronization can be useful for thinking about different
physical problems, including many-body systems and the development of a Lorentz-invariant
thermodynamics. Broad relativity also provides new answers to old questions such as the
necessity of postulating the constancy of the speed of light and the viability of Reichenbach's
general concept of time. The book also draws on the idea of limiting-four-dimensional symmetry
to describe coordinate transformations and the physics of particles and fields in non-inertial
frames, particularly those with constant linear accelerations. This new edition expands the
discussion on the role that human conventions and unit systems have played in the historical
development of relativity theories and includes new results on the implications of broad
relativity for clarifying the status of constants that are truly fundamental and inherent properties
of our universe. |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Hsu, Jong-Ping Hsu, Leonardo |
author_facet | Hsu, Jong-Ping Hsu, Leonardo |
author_role | aut aut |
author_sort | Hsu, Jong-Ping |
author_variant | j p h jph l h lh |
building | Verbundindex |
bvnumber | BV035127670 |
callnumber-first | Q - Science |
callnumber-label | QC173 |
callnumber-raw | QC173.65 |
callnumber-search | QC173.65 |
callnumber-sort | QC 3173.65 |
callnumber-subject | QC - Physics |
classification_rvk | UB 2420 UH 8200 |
ctrlnum | (OCoLC)427533541 (DE-599)GBV513542280 |
dewey-full | 530.11 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.11 |
dewey-search | 530.11 |
dewey-sort | 3530.11 |
dewey-tens | 530 - Physics |
discipline | Physik |
discipline_str_mv | Physik |
edition | 2. ed |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02274nam a2200505 cb4500</leader><controlfield tag="001">BV035127670</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20121213 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081029s2006 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812566511</subfield><subfield code="9">981-256-651-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812566515</subfield><subfield code="9">978-981-256-651-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)427533541</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV513542280</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC173.65</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.11</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UB 2420</subfield><subfield code="0">(DE-625)145310:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 8200</subfield><subfield code="0">(DE-625)145780:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hsu, Jong-Ping</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A broader view of relativity</subfield><subfield code="b">general implications of Lorentz and Poincaré invariance</subfield><subfield code="c">Jong-Ping Hsu ; Leonardo Hsu</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore [u.a.]</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 516 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Advanced series on theoretical physical science</subfield><subfield code="v">10</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Relatividad (Física) - Historia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Relatividad especial (Física) - Historia</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Relativitätstheorie</subfield><subfield code="0">(DE-588)4049363-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Poincaré-Invariante</subfield><subfield code="0">(DE-588)4300095-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lorentz-Invarianz</subfield><subfield code="0">(DE-588)4299988-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Relativitätstheorie</subfield><subfield code="0">(DE-588)4049363-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lorentz-Invarianz</subfield><subfield code="0">(DE-588)4299988-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Poincaré-Invariante</subfield><subfield code="0">(DE-588)4300095-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hsu, Leonardo</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Advanced series on theoretical physical science</subfield><subfield code="v">10</subfield><subfield code="w">(DE-604)BV012400065</subfield><subfield code="9">10</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016795226&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016795226&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016795226</subfield></datafield></record></collection> |
id | DE-604.BV035127670 |
illustrated | Illustrated |
index_date | 2024-07-02T22:23:30Z |
indexdate | 2024-07-09T21:22:57Z |
institution | BVB |
isbn | 9812566511 9789812566515 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016795226 |
oclc_num | 427533541 |
open_access_boolean | |
owner | DE-703 DE-634 DE-11 DE-19 DE-BY-UBM |
owner_facet | DE-703 DE-634 DE-11 DE-19 DE-BY-UBM |
physical | XX, 516 S. graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | World Scientific |
record_format | marc |
series | Advanced series on theoretical physical science |
series2 | Advanced series on theoretical physical science |
spelling | Hsu, Jong-Ping Verfasser aut A broader view of relativity general implications of Lorentz and Poincaré invariance Jong-Ping Hsu ; Leonardo Hsu 2. ed Singapore [u.a.] World Scientific 2006 XX, 516 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Advanced series on theoretical physical science 10 Literaturangaben Relatividad (Física) - Historia Relatividad especial (Física) - Historia Relativitätstheorie (DE-588)4049363-5 gnd rswk-swf Poincaré-Invariante (DE-588)4300095-2 gnd rswk-swf Lorentz-Invarianz (DE-588)4299988-1 gnd rswk-swf Relativitätstheorie (DE-588)4049363-5 s Lorentz-Invarianz (DE-588)4299988-1 s Poincaré-Invariante (DE-588)4300095-2 s DE-604 Hsu, Leonardo Verfasser aut Advanced series on theoretical physical science 10 (DE-604)BV012400065 10 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016795226&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016795226&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Hsu, Jong-Ping Hsu, Leonardo A broader view of relativity general implications of Lorentz and Poincaré invariance Advanced series on theoretical physical science Relatividad (Física) - Historia Relatividad especial (Física) - Historia Relativitätstheorie (DE-588)4049363-5 gnd Poincaré-Invariante (DE-588)4300095-2 gnd Lorentz-Invarianz (DE-588)4299988-1 gnd |
subject_GND | (DE-588)4049363-5 (DE-588)4300095-2 (DE-588)4299988-1 |
title | A broader view of relativity general implications of Lorentz and Poincaré invariance |
title_auth | A broader view of relativity general implications of Lorentz and Poincaré invariance |
title_exact_search | A broader view of relativity general implications of Lorentz and Poincaré invariance |
title_exact_search_txtP | A broader view of relativity general implications of Lorentz and Poincaré invariance |
title_full | A broader view of relativity general implications of Lorentz and Poincaré invariance Jong-Ping Hsu ; Leonardo Hsu |
title_fullStr | A broader view of relativity general implications of Lorentz and Poincaré invariance Jong-Ping Hsu ; Leonardo Hsu |
title_full_unstemmed | A broader view of relativity general implications of Lorentz and Poincaré invariance Jong-Ping Hsu ; Leonardo Hsu |
title_short | A broader view of relativity |
title_sort | a broader view of relativity general implications of lorentz and poincare invariance |
title_sub | general implications of Lorentz and Poincaré invariance |
topic | Relatividad (Física) - Historia Relatividad especial (Física) - Historia Relativitätstheorie (DE-588)4049363-5 gnd Poincaré-Invariante (DE-588)4300095-2 gnd Lorentz-Invarianz (DE-588)4299988-1 gnd |
topic_facet | Relatividad (Física) - Historia Relatividad especial (Física) - Historia Relativitätstheorie Poincaré-Invariante Lorentz-Invarianz |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016795226&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016795226&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV012400065 |
work_keys_str_mv | AT hsujongping abroaderviewofrelativitygeneralimplicationsoflorentzandpoincareinvariance AT hsuleonardo abroaderviewofrelativitygeneralimplicationsoflorentzandpoincareinvariance |