Solid state gas sensing:
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer
2009
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | XV, 337 S. Ill., graph. Darst. |
ISBN: | 9780387096643 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035125712 | ||
003 | DE-604 | ||
005 | 20090203 | ||
007 | t | ||
008 | 081028s2009 gw ad|| |||| 00||| eng d | ||
015 | |a 08,N24,1306 |2 dnb | ||
016 | 7 | |a 988846551 |2 DE-101 | |
020 | |a 9780387096643 |c Gb. : ca. EUR 93.04 (freier Pr.), ca. sfr 144.50 (freier Pr.) |9 978-0-387-09664-3 | ||
024 | 3 | |a 9780387096643 | |
028 | 5 | 2 | |a 11916895 |
035 | |a (OCoLC)316212314 | ||
035 | |a (DE-599)DNB988846551 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-703 | ||
084 | |a ZQ 3750 |0 (DE-625)158077: |2 rvk | ||
084 | |a 620 |2 sdnb | ||
245 | 1 | 0 | |a Solid state gas sensing |c Elisabetta Comini ... ed. |
264 | 1 | |a New York, NY |b Springer |c 2009 | |
300 | |a XV, 337 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Gassensor |0 (DE-588)4156050-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Gassensor |0 (DE-588)4156050-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Comini, Elisabetta |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-0-387-09665-0 |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016793300&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016793300&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-016793300 |
Datensatz im Suchindex
_version_ | 1804138105691701248 |
---|---|
adam_text | Contents
1
Micro-Fabrication
of Gas Sensors
........................... 1
Jan Spannhake. Andreas
Helwig.
Olaľ
Schulz,
and Gerhard Müller
1.1
Introduction
...................................... 1
1.2 Gas Sensors
and M
EMS Miniaturization
Techniques
.......................................
З
1.2.1
Silicon as a Sensor Material
.................... 3
1.2.2
Thermal Sensors and Actuators
................. 4
1.2.3
Thermal
Microstructures
....................... 6
1.3
Specific Sensor Examples
............................ 11
1.3.1
Heat Conductivity Sensors
..................... 12
1.3.2
Metal-Oxide-Based Gas Sensors
................. 16
1.3.3
Field-Elïect
Gas Sensors
....................... 19
1.3.4
Thermal Infrared Emitters
..................... 21
1.4
Gas-Sensing Microsystems
........................... 22
1.4.1
Low False-Alarm-Rate Fire Detection
............ 23
1.4.2
Air Quality Monitoring and Leak Detection
....... 27
1.5
Industrialization Issues
.............................. 34
1.5.1
Initiating a System-Level Innovation
............. 34
1.5.2
Building Added-Value Lines
.................... 34
1.5.3
Mastering the MEMS Challenge
................. 36
1.5.4
Cooperation Across Technical and Economic
Interfaces
................................... 37
1.5.5
Creating Higher Added Value
................... 40
1.6
Conclusions and Outlook
............................ 40
References
............................................. 41
2
Electrical-Based Gas Sensing
............................... 47
Elisabetta Comini.
Guido Faglia
and Giorgio Sberveglieri
2.1
Introduction
...................................... 47
2.2
Metal Oxide Semiconductor Surfaces
.................. 49
2.2.1
Geometric Structures
.......................... 49
2.2.2
Electronic Structures
.......................... 50
Contents
2.3
Electrical Properties of Metal Oxide Semiconductor
Surfaces
.......................................... 50
2.3.1
Semiconductor Statistics
....................... 50
2.3.2
Surface States
............................... 52
2.3.3
Surface Space Charge Region
................... 54
2.3.4
Surface Dipoles
.............................. 57
2.4
Conduction Models of Metal Oxides Semiconductor
...... 58
2.4.1
Polycrystalline Materials with Large Grains
........ 60
2.4.2
Polycrystalline Materials with Small Grains
........ 61
2.4.3
Mono-crystalline Materials
..................... 63
2.5
Adsorption over Metal Oxide Semiconductor Surfaces
..... 65
2.5.1
Physical and Chemical Adsorption
............... 65
2.5.2
Surface Reactions Towards Electrical Properties
.... 67
2.5.3
Catalysts and Promoters
....................... 69
2.6
Deposition Techniques
.............................. 70
2.6.1
Three-Dimensional Nanostructures
.............. 70
2.6.2
Two-Dimensional Nanostructures
............... 71
2.6.3
One-Dimensional Materials
.................... 80
2.7
Conductometric Sensor Fabrication
................... 84
2.7.1
Substrate and Heater
.......................... 84
2.7.2
Electrical Contacts
............................ 88
2.7.3
Heating Treatments
........................... 89
2.7.4 Dopings.
Catalysts and Filters
.................. 90
2.8
Transduction Principles and Related Novel Devices
....... 92
2.8.1
DC Resistance
............................... 92
2.8.2
AC Impedance
............................... 94
2.8.3
Response Photoactivation
...................... 95
2.9
Conclusions and Outlook
............................ 99
References
............................................. 99
Capacitive-Type
Relative Humidity Sensor with
Hydrophobie
Polymer Films
.......................................... 109
Yoshihiko Sadaoka
3.1
Introduction
...................................... 109
3.2
Fundamental Aspects
............................... 110
3.2.1 Sorption
Isotherms of Polymers
................. 110
3.2.2
Water
Sorption
Behavior of Polymers
............
Ill
3.2.3
Effects of the
Sorbed
Water on the Dielectric
Properties
...................................
Ill
3.3
Characterization of Polymers
......................... 113
3.3.1 Sorption
Isotherms
........................... 113
3.3.2
FT
IR
Measurement
.......................... 115
3.3.3
Solvatochromism
............................. 117
3.3.4
Capacitance Changes with Water
Sorption......... 120
3.3.5
Cross-Linked Polvmer
......................... 124
Contents
3.4
Humidity-Sensors-Based
Hydrophobie Polymer
Thin
Films....................................... 130
3.4.1 Poly-Methylmethacrylate-Based
Humidity
Sensor..................................... 131
3.4.2
Characteristics of Cross-Linked PMMA-Based
Sensor..................................... 133
3.4.3 Polysulfone-based Sensor...................... 136
3.4.4
Acetylene-Terminated Polyimide-based
Sensor..... 138
3.4.5
Cross-Lined
Fluorinated Polyimide-Based Sensor ... 143
3.4.6
Improvements Using MEMS
Technology......... 145
References
............................................. 149
FET
Gas-Sensing Mechanism, Experimental and Theoretical
Studies
................................................ 153
Anita Lloyd Spetz, Magnus Skoglundh. and
Lars Ojamäe
4.1
Introduction
...................................... 153
4.2
Brief Summary of the Detection Mechanism
of
FET
Devices
.................................... 154
4.3
UHV Studies of
FET
Surface Reactions
................ 157
4.4
ТЕМ
and
SËM
Studies of the Nanostructure
of
FET
Sensing Layers
.............................. 160
4.5
Mass Spectrometry for Atmospheric Pressure Studies
...... 161
4.6
The Scanning Light Pulse Technology
.................. 162
4.7
DRIFT Spectroscopy for In Situ Studies of Adsorbates
.... 163
4.8
Atomistic Modelling of Chemical Reactions
on
FET
Sensor Surfaces
............................. 168
4.9
Nanoparticles as Sensing Layers in
FET
Devices
......... 171
4.10
Summary and Outlook
.............................. 173
References
............................................. 174
Solid-State Electrochemical Gas Sensing
...................... 181
Norio Miura,
Perumal Elumalai.
Vladimir V. Plashnitsa.
Taro
Ueda. Ryotaro
Warna,
and Masahiro Utiyama
5.1
Introduction
...................................... 181
5.2
Mixed-Potential-Type Sensors
........................ 185
5.2.1
High-Temperature-Type NOx Sensors
............ 185
5.2.2
Improvement in NO; Sensitivity by Additives
...... 189
5.2.3
Hydrocarbon (CH,, or CH4) Sensors
............. 191
5.2.4
Use of Nanostructured NiO-Based Materials
....... 192
5.2.5
Nanosized
Au
Thin-Layer for Sensing Electrode
.... 196
5.3
Amperometric Sensors
.............................. 198
5.4
Impedancemetric Sensors
............................ 200
5.4.1
Sensing of Various Gases in
ppm
Level
........... 200
5.4.2
Environmental Monitoring of C,Hf, in ppb
Level
................ ...................... 201
Contents
5.5 Solid-State
Reference Electrode
....................... 204
5.6
Conclusions and Future Prospective
................... 205
References
............................................. 206
Optical Gas Sensing
...................................... 209
Папа
Cacciari and Giancarlo
С
Righini
6.1
Introduction
...................................... 209
6.2
Spectroscopic Detection Schemes
...................... 210
6.3
Ellipsometry
...................................... 213
6.4
Surface Plasmon Resonance
.......................... 216
6.5
Guided-Wave Configurations for Gas Sensing
........... 221
6.5.1
Integrated Optical SPR Sensors
................. 223
6.5.2
Fiber Optic SPR Sensors
....................... 223
6.5.3
Conventional and Microstructured Fibers for Gas
Sensing
..................................... 225
6.6
Conclusions
...................................... 229
References
............................................. 231
Thermometric Gas Sensing
................................. 237
István Bársony. Csaba Dücsű and Péter Fürjes
7.1
Detection of Combustible Gases
...................... 237
7.1.1
Combustion
................................. 237
7.1.2
Thermal Considerations during Combustion
....... 238
7.1.3
Catalysis
.................................... 239
7.1.4
Explosive Mixtures
........................... 240
7.2
Catalytic Sensing
.................................. 241
7.2.1
Pellistors
................................... 242
7.2.2
Microcalorimcters in Enzymatic Reactions
........ 248
7.3
Thermal Conductivity Sensors
........................ 249
7.4
Calorimetrie
Sensors Measuring Adsorption Desorption
Enthalpy
......................................... 251
7.5
MEMS and Silicon Components
...................... 251
7.5.1
Thermal Considerations
....................... 252
7.5.2
Temperature Readout
......................... 254
7.5.3
Integrated
Calorimetrie
Sensors
................. 256
7.6
Sensor Arrays and Electronic Noses
................... 257
References
............................................. 259
Acoustic Wave Gas and Vapor Sensors
....................... 261
Samuel J. Ippolito. Adrian
Trinchi.
David A. Powell.
and
Wojtek
Wlodarski
8.1
Introduction
...................................... 261
8.1.1
Acoustic Waves in Elastic Media
................ 263
8.1.2
Advantages of Acoustic-Wave-Based Gas-Phase
Sensors
..................................... 266
Contents xi
8.2
Thickness Shear Mode
(TSM)-Based
Gas Sensors
........ 267
8.2.1
Quartz Crystal
Microbalance (QCM)-Based
Gas
Sensors
..................................... 268
8.2.2
Thin-Film Resonator (TFR)-Based Gas Sensors
.... 276
8.3
Surface Acoustic Wave (SAWJ-Based Gas Sensors
........ 282
8.3.1
Conventional SAW Gas Sensors
................. 285
8.3.2
Multi-Layered SAW Gas Sensors
................ 286
8.3.3
Gas and Vapor Sensitivity
...................... 286
8.3.4
SAW Device Gas Sensor Performance
............ 291
8.4
Concluding Remarks
............................... 296
References
............................................. 296
9
Cantilever-Based Gas Sensing
.............................. 305
Hans Peter Lang
9.1
Introduction to Microcantilcver-Based Sensing
........... 305
9.1.1
Early Approaches to Mechanical Sensing
.......... 305
9.1.2
Cantilever Sensors
............................ 306
9.1.3
Deflection Measurement
....................... 307
9.2
Modes of Operation
................................ 310
9.2.1
Static Mode
................................. 310
9.2.2
Dynamic Mode
.............................. 311
9.3
Functionalization
.................................. 312
9.4
Example of an Optical Beam-Deflection Setup
........... 313
9.4.1
General Description
.......................... 313
9.4.2
Cantilever-Based Electronic Nose Application
...... 314
9.5
Applications of Cantilever-Based Gas Sensors
........... 316
9.5.1
Gas Sensing
................................. 316
9.5.2
Chemical Vapor Detection
..................... 318
9.5.3
Explosives Detection
.......................... 319
9.5.4
Gas Pressure and Flow Sensing
.................. 321
9.6
Other Techniques
.................................. 322
9.6.1
Metal Oxide Gas Sensors
...................... 322
9.6.2
Quartz Crystal
Microbalance
................... 323
9.6.3
Conducting
Poh
mer
Sensors
.................... 323
9.6.4
Surface Acoustic Waves
....................... 323
9.6.5
Field Effect Transistor Sensors Devices
........... 324
References
............................................. 3-5
Index
..................................................... 329
Elisabetta Comini
Guido Faglia
Giorgio Sberveglieri
Editors
Solid State Gas Sensing
Solid State Gas Sensing offers insight into the principles,
applications, and new trends in gas sensor technology.
Developments in this field are rapidly advancing due to the
recent and continuing impact of nanotechnology, and this book
addresses the demand for small, reliable, inexpensive and
portable systems for monitoring environmental concerns,
indoor air quality, food quality, and many other specific
applications. Working principles, including electrical,
permittivity, field effect, electrochemical, optical, thermometric
and mass (both quartz and cantilever types), are discussed,
making the book valuable and accessible to a variety of
researchers and engineers in the field of material science.
|
adam_txt |
Contents
1
Micro-Fabrication
of Gas Sensors
. 1
Jan Spannhake. Andreas
Helwig.
Olaľ
Schulz,
and Gerhard Müller
1.1
Introduction
. 1
1.2 Gas Sensors
and M
EMS Miniaturization
Techniques
.
З
1.2.1
Silicon as a Sensor Material
. 3
1.2.2
Thermal Sensors and Actuators
. 4
1.2.3
Thermal
Microstructures
. 6
1.3
Specific Sensor Examples
. 11
1.3.1
Heat Conductivity Sensors
. 12
1.3.2
Metal-Oxide-Based Gas Sensors
. 16
1.3.3
Field-Elïect
Gas Sensors
. 19
1.3.4
Thermal Infrared Emitters
. 21
1.4
Gas-Sensing Microsystems
. 22
1.4.1
Low False-Alarm-Rate Fire Detection
. 23
1.4.2
Air Quality Monitoring and Leak Detection
. 27
1.5
Industrialization Issues
. 34
1.5.1
Initiating a System-Level Innovation
. 34
1.5.2
Building Added-Value Lines
. 34
1.5.3
Mastering the MEMS Challenge
. 36
1.5.4
Cooperation Across Technical and Economic
Interfaces
. 37
1.5.5
Creating Higher Added Value
. 40
1.6
Conclusions and Outlook
. 40
References
. 41
2
Electrical-Based Gas Sensing
. 47
Elisabetta Comini.
Guido Faglia
and Giorgio Sberveglieri
2.1
Introduction
. 47
2.2
Metal Oxide Semiconductor Surfaces
. 49
2.2.1
Geometric Structures
. 49
2.2.2
Electronic Structures
. 50
Contents
2.3
Electrical Properties of Metal Oxide Semiconductor
Surfaces
. 50
2.3.1
Semiconductor Statistics
. 50
2.3.2
Surface States
. 52
2.3.3
Surface Space Charge Region
. 54
2.3.4
Surface Dipoles
. 57
2.4
Conduction Models of Metal Oxides Semiconductor
. 58
2.4.1
Polycrystalline Materials with Large Grains
. 60
2.4.2
Polycrystalline Materials with Small Grains
. 61
2.4.3
Mono-crystalline Materials
. 63
2.5
Adsorption over Metal Oxide Semiconductor Surfaces
. 65
2.5.1
Physical and Chemical Adsorption
. 65
2.5.2
Surface Reactions Towards Electrical Properties
. 67
2.5.3
Catalysts and Promoters
. 69
2.6
Deposition Techniques
. 70
2.6.1
Three-Dimensional Nanostructures
. 70
2.6.2
Two-Dimensional Nanostructures
. 71
2.6.3
One-Dimensional Materials
. 80
2.7
Conductometric Sensor Fabrication
. 84
2.7.1
Substrate and Heater
. 84
2.7.2
Electrical Contacts
. 88
2.7.3
Heating Treatments
. 89
2.7.4 Dopings.
Catalysts and Filters
. 90
2.8
Transduction Principles and Related Novel Devices
. 92
2.8.1
DC Resistance
. 92
2.8.2
AC Impedance
. 94
2.8.3
Response Photoactivation
. 95
2.9
Conclusions and Outlook
. 99
References
. 99
Capacitive-Type
Relative Humidity Sensor with
Hydrophobie
Polymer Films
. 109
Yoshihiko Sadaoka
3.1
Introduction
. 109
3.2
Fundamental Aspects
. 110
3.2.1 Sorption
Isotherms of Polymers
. 110
3.2.2
Water
Sorption
Behavior of Polymers
.
Ill
3.2.3
Effects of the
Sorbed
Water on the Dielectric
Properties
.
Ill
3.3
Characterization of Polymers
. 113
3.3.1 Sorption
Isotherms
. 113
3.3.2
FT
IR
Measurement
. 115
3.3.3
Solvatochromism
. 117
3.3.4
Capacitance Changes with Water
Sorption. 120
3.3.5
Cross-Linked Polvmer
. 124
Contents
3.4
Humidity-Sensors-Based
Hydrophobie Polymer
Thin
Films. 130
3.4.1 Poly-Methylmethacrylate-Based
Humidity
Sensor. 131
3.4.2
Characteristics of Cross-Linked PMMA-Based
Sensor. 133
3.4.3 Polysulfone-based Sensor. 136
3.4.4
Acetylene-Terminated Polyimide-based
Sensor. 138
3.4.5
Cross-Lined
Fluorinated Polyimide-Based Sensor . 143
3.4.6
Improvements Using MEMS
Technology. 145
References
. 149
FET
Gas-Sensing Mechanism, Experimental and Theoretical
Studies
. 153
Anita Lloyd Spetz, Magnus Skoglundh. and
Lars Ojamäe
4.1
Introduction
. 153
4.2
Brief Summary of the Detection Mechanism
of
FET
Devices
. 154
4.3
UHV Studies of
FET
Surface Reactions
. 157
4.4
ТЕМ
and
SËM
Studies of the Nanostructure
of
FET
Sensing Layers
. 160
4.5
Mass Spectrometry for Atmospheric Pressure Studies
. 161
4.6
The Scanning Light Pulse Technology
. 162
4.7
DRIFT Spectroscopy for In Situ Studies of Adsorbates
. 163
4.8
Atomistic Modelling of Chemical Reactions
on
FET
Sensor Surfaces
. 168
4.9
Nanoparticles as Sensing Layers in
FET
Devices
. 171
4.10
Summary and Outlook
. 173
References
. 174
Solid-State Electrochemical Gas Sensing
. 181
Norio Miura,
Perumal Elumalai.
Vladimir V. Plashnitsa.
Taro
Ueda. Ryotaro
Warna,
and Masahiro Utiyama
5.1
Introduction
. 181
5.2
Mixed-Potential-Type Sensors
. 185
5.2.1
High-Temperature-Type NOx Sensors
. 185
5.2.2
Improvement in NO; Sensitivity by Additives
. 189
5.2.3
Hydrocarbon (CH,, or CH4) Sensors
. 191
5.2.4
Use of Nanostructured NiO-Based Materials
. 192
5.2.5
Nanosized
Au
Thin-Layer for Sensing Electrode
. 196
5.3
Amperometric Sensors
. 198
5.4
Impedancemetric Sensors
. 200
5.4.1
Sensing of Various Gases in
ppm
Level
. 200
5.4.2
Environmental Monitoring of C,Hf, in ppb
Level
.". 201
Contents
5.5 Solid-State
Reference Electrode
. 204
5.6
Conclusions and Future Prospective
. 205
References
. 206
Optical Gas Sensing
. 209
Папа
Cacciari and Giancarlo
С
Righini
6.1
Introduction
. 209
6.2
Spectroscopic Detection Schemes
. 210
6.3
Ellipsometry
. 213
6.4
Surface Plasmon Resonance
. 216
6.5
Guided-Wave Configurations for Gas Sensing
. 221
6.5.1
Integrated Optical SPR Sensors
. 223
6.5.2
Fiber Optic SPR Sensors
. 223
6.5.3
Conventional and Microstructured Fibers for Gas
Sensing
. 225
6.6
Conclusions
. 229
References
. 231
Thermometric Gas Sensing
. 237
István Bársony. Csaba Dücsű and Péter Fürjes
7.1
Detection of Combustible Gases
. 237
7.1.1
Combustion
. 237
7.1.2
Thermal Considerations during Combustion
. 238
7.1.3
Catalysis
. 239
7.1.4
Explosive Mixtures
. 240
7.2
Catalytic Sensing
. 241
7.2.1 "
Pellistors"
. 242
7.2.2
Microcalorimcters in Enzymatic Reactions
. 248
7.3
Thermal Conductivity Sensors
. 249
7.4
Calorimetrie
Sensors Measuring Adsorption Desorption
Enthalpy
. 251
7.5
MEMS and Silicon Components
. 251
7.5.1
Thermal Considerations
. 252
7.5.2
Temperature Readout
. 254
7.5.3
Integrated
Calorimetrie
Sensors
. 256
7.6
Sensor Arrays and Electronic Noses
. 257
References
. 259
Acoustic Wave Gas and Vapor Sensors
. 261
Samuel J. Ippolito. Adrian
Trinchi.
David A. Powell.
and
Wojtek
Wlodarski
8.1
Introduction
. 261
8.1.1
Acoustic Waves in Elastic Media
. 263
8.1.2
Advantages of Acoustic-Wave-Based Gas-Phase
Sensors
. 266
Contents xi
8.2
Thickness Shear Mode
(TSM)-Based
Gas Sensors
. 267
8.2.1
Quartz Crystal
Microbalance (QCM)-Based
Gas
Sensors
. 268
8.2.2
Thin-Film Resonator (TFR)-Based Gas Sensors
. 276
8.3
Surface Acoustic Wave (SAWJ-Based Gas Sensors
. 282
8.3.1
Conventional SAW Gas Sensors
. 285
8.3.2
Multi-Layered SAW Gas Sensors
. 286
8.3.3
Gas and Vapor Sensitivity
. 286
8.3.4
SAW Device Gas Sensor Performance
. 291
8.4
Concluding Remarks
. 296
References
. 296
9
Cantilever-Based Gas Sensing
. 305
Hans Peter Lang
9.1
Introduction to Microcantilcver-Based Sensing
. 305
9.1.1
Early Approaches to Mechanical Sensing
. 305
9.1.2
Cantilever Sensors
. 306
9.1.3
Deflection Measurement
. 307
9.2
Modes of Operation
. 310
9.2.1
Static Mode
. 310
9.2.2
Dynamic Mode
. 311
9.3
Functionalization
. 312
9.4
Example of an Optical Beam-Deflection Setup
. 313
9.4.1
General Description
. 313
9.4.2
Cantilever-Based Electronic Nose Application
. 314
9.5
Applications of Cantilever-Based Gas Sensors
. 316
9.5.1
Gas Sensing
. 316
9.5.2
Chemical Vapor Detection
. 318
9.5.3
Explosives Detection
. 319
9.5.4
Gas Pressure and Flow Sensing
. 321
9.6
Other Techniques
. 322
9.6.1
Metal Oxide Gas Sensors
. 322
9.6.2
Quartz Crystal
Microbalance
. 323
9.6.3
Conducting
Poh
mer
Sensors
. 323
9.6.4
Surface Acoustic Waves
. 323
9.6.5
Field Effect Transistor Sensors Devices
. 324
References
. 3-5
Index
. 329
Elisabetta Comini
Guido Faglia
Giorgio Sberveglieri
Editors
Solid State Gas Sensing
Solid State Gas Sensing offers insight into the principles,
applications, and new trends in gas sensor technology.
Developments in this field are rapidly advancing due to the
recent and continuing impact of nanotechnology, and this book
addresses the demand for small, reliable, inexpensive and
portable systems for monitoring environmental concerns,
indoor air quality, food quality, and many other specific
applications. Working principles, including electrical,
permittivity, field effect, electrochemical, optical, thermometric
and mass (both quartz and cantilever types), are discussed,
making the book valuable and accessible to a variety of
researchers and engineers in the field of material science. |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Comini, Elisabetta |
author2_role | edt |
author2_variant | e c ec |
author_facet | Comini, Elisabetta |
building | Verbundindex |
bvnumber | BV035125712 |
classification_rvk | ZQ 3750 |
ctrlnum | (OCoLC)316212314 (DE-599)DNB988846551 |
discipline | Maschinenbau / Maschinenwesen Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
discipline_str_mv | Maschinenbau / Maschinenwesen Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01695nam a2200409 c 4500</leader><controlfield tag="001">BV035125712</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090203 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081028s2009 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,N24,1306</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">988846551</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387096643</subfield><subfield code="c">Gb. : ca. EUR 93.04 (freier Pr.), ca. sfr 144.50 (freier Pr.)</subfield><subfield code="9">978-0-387-09664-3</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780387096643</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11916895</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316212314</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB988846551</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZQ 3750</subfield><subfield code="0">(DE-625)158077:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">620</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solid state gas sensing</subfield><subfield code="c">Elisabetta Comini ... ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 337 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gassensor</subfield><subfield code="0">(DE-588)4156050-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gassensor</subfield><subfield code="0">(DE-588)4156050-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Comini, Elisabetta</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-0-387-09665-0</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016793300&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016793300&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016793300</subfield></datafield></record></collection> |
id | DE-604.BV035125712 |
illustrated | Illustrated |
index_date | 2024-07-02T22:22:50Z |
indexdate | 2024-07-09T21:22:54Z |
institution | BVB |
isbn | 9780387096643 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016793300 |
oclc_num | 316212314 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | XV, 337 S. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Springer |
record_format | marc |
spelling | Solid state gas sensing Elisabetta Comini ... ed. New York, NY Springer 2009 XV, 337 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Gassensor (DE-588)4156050-4 gnd rswk-swf Gassensor (DE-588)4156050-4 s DE-604 Comini, Elisabetta edt Erscheint auch als Online-Ausgabe 978-0-387-09665-0 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016793300&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016793300&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Solid state gas sensing Gassensor (DE-588)4156050-4 gnd |
subject_GND | (DE-588)4156050-4 |
title | Solid state gas sensing |
title_auth | Solid state gas sensing |
title_exact_search | Solid state gas sensing |
title_exact_search_txtP | Solid state gas sensing |
title_full | Solid state gas sensing Elisabetta Comini ... ed. |
title_fullStr | Solid state gas sensing Elisabetta Comini ... ed. |
title_full_unstemmed | Solid state gas sensing Elisabetta Comini ... ed. |
title_short | Solid state gas sensing |
title_sort | solid state gas sensing |
topic | Gassensor (DE-588)4156050-4 gnd |
topic_facet | Gassensor |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016793300&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016793300&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT cominielisabetta solidstategassensing |