Introduction to sensors for ranging and imaging:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Raleigh, NC
SciTech Publishing Inc.
2009
|
Schlagworte: | |
Online-Zugang: | Klappentext Inhaltsverzeichnis |
Beschreibung: | XXI, 717 Seiten Illustrationen, Diagramme |
ISBN: | 9781891121746 9789746521062 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035125627 | ||
003 | DE-604 | ||
005 | 20210922 | ||
007 | t | ||
008 | 081028s2009 a||| |||| 00||| eng d | ||
020 | |a 9781891121746 |9 978-1-891121-74-6 | ||
020 | |a 9789746521062 |9 978-9-746521-06-2 | ||
020 | |z 9781901121746 |9 978-1-901121-74-6 | ||
035 | |a (OCoLC)233798872 | ||
035 | |a (DE-599)HBZHT015610743 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-29T | ||
050 | 0 | |a TA165 | |
082 | 0 | |a 621.36/7 |2 22 | |
084 | |a ZQ 3120 |0 (DE-625)158040: |2 rvk | ||
100 | 1 | |a Brooker, Graham |e Verfasser |0 (DE-588)1075230098 |4 aut | |
245 | 1 | 0 | |a Introduction to sensors for ranging and imaging |c Graham Brooker |
264 | 1 | |a Raleigh, NC |b SciTech Publishing Inc. |c 2009 | |
300 | |a XXI, 717 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Detectors |x Scientific applications | |
650 | 4 | |a Imaging systems | |
650 | 4 | |a Radar | |
650 | 0 | 7 | |a Transponder |0 (DE-588)4185921-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Radar |0 (DE-588)4176765-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sensor |0 (DE-588)4038824-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bildsensor |0 (DE-588)4495594-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Radiometer |0 (DE-588)4176837-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bildgebendes Verfahren |0 (DE-588)4006617-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Sensor |0 (DE-588)4038824-4 |D s |
689 | 0 | 1 | |a Radar |0 (DE-588)4176765-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Sensor |0 (DE-588)4038824-4 |D s |
689 | 1 | 1 | |a Bildgebendes Verfahren |0 (DE-588)4006617-4 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Transponder |0 (DE-588)4185921-2 |D s |
689 | 2 | 1 | |a Radiometer |0 (DE-588)4176837-1 |D s |
689 | 2 | 2 | |a Sensor |0 (DE-588)4038824-4 |D s |
689 | 2 | 3 | |a Bildsensor |0 (DE-588)4495594-7 |D s |
689 | 2 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-61353-142-6 |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016793216&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016793216&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016793216 |
Datensatz im Suchindex
_version_ | 1804138105514491904 |
---|---|
adam_text | SENSORS
FOR RANGING AND IMAGING
This comprehensive text-reference provides a solid background in active sensing technology.
It is concerned with active sensing, starting with the basics of time-of-flight sensors (opera¬
tional
principies,
components), and going through the derivation of the radar range equation
and the detection of echo signals, both fundamental to the understanding of radar, sonar
and
lidar
imaging. Several chapters cover signal propagation of both electromagnetic and
acoustic energy, target characteristics, stealth, and clutter. The remainder of the book intro¬
duces the range measurement process, active imaging, with an emphasis on noise and linear
frequency modulation techniques,
Doppler
processing, and target tracking.
KEY FEATURES
For a broad appeal, complicated math¬
ematical derivations are avoided unless
absolutely necessary, and electronic
details of the sensors are limited to block
diagram and algorithm level.
-
Extensive practical examples show the
process of designing a sensor for a
particular application, ranging from the
design of ship-borne fire control radar
to a UAV based
lidar
scanner to detect
locust swarms.
There are
572
figures, including over
100
photographs.
RELATED TITLES
Jeffrey, Tom. Phased-Array Radar
Design: Application of Radar
Fundamentals. (ISBN
9781891121692)
Sullivan, Roger. Radar Foundations
for Imaging and Advanced Concepts.
(ISBN
9781891121227)
INTRODUCTION TO SENSORS FOR RANGING AND IMAGING DR. GRAHAM BROOKER S
SCITEOT PUBLISHMEFINC. SCITECH PUBLISHING, INC RALEIGH, NC
WWW.SCITECHPUB.COM TABLE OF CONTENTS INTRODUCTION TO SENSORS FOR RANGING
AND IMAGING CHAPTER 1 INTRODUCTION TO SENSING 1.1 INTRODUCTION 1 1.1.1
ACTIVE SENSORS 1 1.1.2 PASSIVE SENSORS 1 1.2 A BRIEF HISTORY OF SENSING
2 1.2.1 SONAR 2 1.2.2 RADAR 4 1.2.3 LIDAR 10 1.3 PASSIVE INFRARED
SENSING 12 1.4 SENSOR SYSTEMS 14 1.5 FREQUENCY BAND ALLOCATIONS FOR THE
ELECTROMAGNETIC SPECTRUM 1.6 FREQUENCY BAND ALLOCATIONS FOR THE ACOUSTIC
SPECTRUM 19 1.7 REFERENCES 21 CHAPTER 2 SIGNAL PROCESSING AND MODULATION
2.1 THE NATURE OF ELECTRONIC SIGNALS 2 3 2.1.1 STATIC AND QUASI-STATIC
SIGNALS 23 2.1.2 PERIODIC AND REPETITIVE SIGNALS 23 2.1.3 TRANSIENT AND
QUASI TRANSIENT SIGNALS 23 2.2 NOISE 24 2.2.1 THERMAL NOISE 24 2.2.1.1
NOISE POWER SPECTRUM FOR THERMAL NOISE 25 2.2.2 SHOT NOISE 26 2.2.2.1
NOISE POWER SPECTRUM FOR SHOT NOISE 27 2.2.3 1/F NOISE 27 2.2.4
AVALANCHE NOISE 28 2.3 SIGNALS 28 2.4 SIGNALS AND NOISE IN THE FREQUENCY
DOMAIN 28 2.4.1 THE FOURIER SERIES 30 2.5 SAMPLED SIGNALS 33 2.5.1
GENERATING SIGNALS IN MATLAB 35 2.5.2 ALIASING 37 VI TABLE OF CONTENTS
2.6 FILTERING 38 2.6.1 FILTER CATEGORIES 39 2.6.1.1 BUTTERWORTH 40
2.6.1.2 CHEBYSHEV 40 2.6.1.3 BESSEL 40 2.6.1.4 ELLIPTIC 40 2.6.2 FILTER
ROLL-OFF 40 2.6.3 THE EAR AS A FILTER BANK 41 2.7 ANALOG MODULATION AND
DEMODULATION 41 2.7.1 AMPLITUDE MODULATION 42 2.8 FREQUENCY MODULATION
(FM) 45 2.9 LINEAR FREQUENCY MODULATION 50 2.10 PULSE CODED MODULATION
TECHNIQUES 52 2.10.1 PULSE AMPLITUDE MODULATION 52 2.10.2 FREQUENCY
SHIFT KEYING 55 2.10.3 PHASE SHIFT KEYING 57 2.10.4 STEPPED FREQUENCY
MODULATION 60 2.11 CONVOLUTION 61 2.11.1 LINEAR TIME INVARIANT SYSTEMS
61 2.11.2 THE CONVOLUTION SUM 63 2.11.3 WORKED EXAMPLE: PULSED RADAR
ECHO AMPLITUDE 65 2.12 REFERENCES 67 CHAPTER 3 IR RADIOMETERS & IMAGE
INTENSIFIES 69 3.1 INTRODUCTION 69 3.2 THERMAL EMISSION 70 3.2.1
BLACKBODY RADIATION 70 3.2.2 THE PLANCK FUNCTION 70 3.2.3 PROPERTIES OF
THE PLANCK FUNCTION 71 3.2.4 CONFIRMATION OF STEFAN-BOLTZMANN AND
RAYLEIGH-JEAN LAWS 74 3.3 EMISSIVITY AND REFLECTIVITY 76 3.3.1 WORKED
EXAMPLE: BLACK BODY RADIATION FROM HUMAN BODY 78 3.4 DETECTING THERMAL
RADIATION 79 3.4.1 EXTERNAL PHOTOEFFECT 80 3.4.2 INTERNAL PHOTOEFFECT 80
3.4.2.1 PHOTOCONDUCTIVE DETECTORS 80 3.4.2.2 PHOTOVOLTAIC DETECTORS 81
3.5 HEATING 82 3.5.1 BOLOMETERS 82 3.5.2 PYROELECTRIC SENSORS 83 3.5.3
THERMOPILES 84 TABLE OF CONTENTS VII 3.6 PERFORMANCE CRITERIA FOR
DETECTORS 85 3.6.1 RESPONSIVITY 85 3.6.2 NOISE EQUIVALENT POWER (NEP) 87
3.6.3 DETECTIVITY AND SPECIFIC DETECTIVITY 87 3.7 NOISE PROCESSES AND
EFFECTS 88 3.8 APPLICATIONS 89 3.8.1 PASSIVE ULTRAVIOLET SENSOR
(EXTERNAL PHOTOEFFECT) 89 3.8.2 RADIATION THERMOMETER (INTERNAL
PHOTOEFFECT: THERMOPILE) 90 3.8.3 PASSIVE INFRARED SENSOR (INTERNAL
PHOTOEFFECT: PYROELECTRIC) 91 3.8.4 CROOKES RADIOMETER 92 3.9
INTRODUCTION TO THERMAL IMAGING SYSTEMS 93 3.9.1 SCATTERING AND
ABSORPTION 93 3.9.2 SCANNING MECHANISMS AND ARRAYS 95 3.9.3
MICRO-BOLOMETER ARRAYS 96 3.9.4 KEY OPTICAL PARAMETERS 97 3.10
PERFORMANCE MEASURES FOR INFRARED IMAGERS 98 3.10.1 DETECTOR FIELD OF
VIEW 98 3.10.2 SPATIAL FREQUENCY 100 3.10.3 SIGNAL TO NOISE RATIO FOR A
POINT TARGET 102 3.10.4 WORKED EXAMPLE: IRST SYSTEM SNR 103 3.10.5
SIGNAL TO NOISE RATIO FOR A TARGET IN GROUND CLUTTER 104 3.10.6 NOISE
EQUIVALENT TEMPERATURE DIFFERENCE (NETD) 105 3.10.7 EXAMPLE 105 3.10.8
THE MINIMUM RESOLVABLE TEMPERATURE DIFFERENCE (MRTD) 107 3.11 TARGET
DETECTION AND RECOGNITION 107 3.11.1 EXAMPLE OF FLIR DETECTION 109 3.12
THERMAL IMAGING APPLICATIONS 112 3.13 IMAGE INTENSIFIERS 114 3.13.1
FIRST GENERATION TUBES 114 3.13.2 SECOND GENERATION TUBES 115 3.13.3
LIMITATIONS OF MICROCHANNEL PLATES 116 3.13.4 THIRD GENERATION TUBES 117
3.13.5 SPECTRAL CHARACTERISTICS OF DIE SCENE 117 3.13.6 TIME GATING
MICROCHANNEL PLATES 117 3.14 REFERENCES 119 CHAPTER 4 MILLIMETER WAVE
RADIOMETERS 4.1 ANTENNA POWER TEMPERATURE CORRESPONDENCE 121 4.1.1
EXAMPLE OF POWER RECEIVED FROM A BLACKBODY 123 121 TABLE OF CONTENTS 4.2
BRIGHTNESS TEMPERATURE 123 4.3 APPARENT TEMPERATURE 123 4.4 ATMOSPHERIC
EFFECTS 125 4.4.1 ATTENUATION 125 4.4.2 DOWNWELLING RADIATION 125 4.4.3
UPWELLING RADIATION 125 4.5 TERRAIN BRIGHTNESS 127 4.6 WORKED EXAMPLE:
SPACE-BASED RADIOMETER 127 4.6.1 TEMPERATURE CONTRAST 128 4.7 ANTENNA
CONSIDERATIONS 128 4.7.1 BEAMWIDTH 128 4.7.2 EFFICIENCY 128 4.7.3 FILL
RATIO 129 4.8 RECEIVER CONSIDERATIONS 129 4.8.1 MIXER IMPLEMENTATIONS
FOR MICROWAVE RECEIVERS 129 4.8.1.1 MIXER SPECIFICATIONS 130 4.8.2 NOISE
FIGURE 130 4.9 THE SYSTEM NOISE TEMPERATURE 131 4.10 RADIOMETER
TEMPERATURE SENSITIVITY 131 4.11 RADIOMETER IMPLEMENTATION 133 4.11.1
TOTAL POWER RADIOMETER 134 4.11.2 DICKE RADIOMETER 135 4.11.3
PERFORMANCE COMPARISON BETWEEN RADIOMETER TYPES 135 4.12 INTERMEDIATE
FREQUENCY AND VIDEO GAIN REQUIREMENTS 135 4.13 WORKED EXAMPLE: ANTI TANK
SUBMUNITION SENSOR DESIGN 135 4.13.1 RADIOMETER IMPLEMENTATION 142
4.13.2 RECEIVER NOISE TEMPERATURE 142 4.13.3 MINIMUM DETECTABLE
TEMPERATURE DIFFERENCE 143 4.14 RADIOMETRIC IMAGING 144 4.14.1 IMAGE
PROCESSING 144 4.15 APPLICATIONS 147 4.15.1 AIRBORNE SCANNED MILLIMETER
WAVE RADIOMETER 148 4.15.2 SCANNING MULTI-CHANNEL MICROWAVE RADIOMETER
(SMMR) 149 4.15.3 GROUND BASED MILLIMETER WAVE RADIOMETERS 150 4.15.3.1
LOW VISIBILITY IMAGING 150 4.15.3.2 CONCEALED WEAPON DETECTION 152
4.15.3.3 SURVEILLANCE AND LAW ENFORCEMENT 154 4.15.3.4 MEDICAL IMAGING
154 4.15.4 RADIO ASTRONOMY 155 4.15.4.1 SINGLE DISH TELESCOPES 156 TABLE
OF CONTENTS IX 4.15.4.2 TELESCOPE ARRAYS 156 4.15.4.3 APPLICATIONS 157
4.16 REFERENCES 158 CHAPTER 5 ACTIVE RANGING SENSORS 161 5.1 OVERVIEW
161 5.2 TRIANGULATION 161 5.3 PULSED TIME-OF-FLIGHT OPERATION 164 5.3.1
SENSOR REQUIREMENTS 165 5.3.2 SPEED OF PROPAGATION 166 5.3.3 THE ANTENNA
167 5.3.4 THE TRANSMITTER 170 5.3.4.1 RADAR TRANSMITTERS 172 5.3.4.2
UNDERWATER SONAR TRANSMITTERS 175 5.3.4.3 ULTRASONIC TRANSMITTERS 176
5.3.4.4 LASER TRANSMITTERS 179 5.3.5 THE RECEIVER 182 5.4 PULSED RANGE
MEASUREMENT 187 5.4.1 TIMING DISCRIMINATORS 188 5.4.2 PULSE INTEGRATION
191 5.4.3 TIME TRANSFORMATION 194 5.5 OTHER METHODS TO MEASURE RANGE 194
5.5.1 RANGING USING AN UNMODULATED CARRIER 195 5.5.2 RANGING USING A
MODULATED CARRIER 195 5.5.3 TELLUROMETER EXAMPLE 197 5.6 THE RADAR RANGE
EQUATION 199 5.6.1 DERIVATION 199 5.6.2 THE DB FORM 201 5.6.3 WORKED
EXAMPLE: RADAR DETECTION CALCULATION 202 5.6.4 RECEIVER NOISE 204 5.6.5
DETERMINING THE REQUIRED SIGNAL LEVEL 204 5.6.6 PULSE INTEGRATION AND
THE PROBABILITY OF DETECTION 206 5.7 THE ACOUSTIC RANGE EQUATION 207
5.7.1 EXAMPLE OF USING THE ACOUSTIC RANGE EQUATION 209 5.8 TOF
MEASUREMENT CONSIDERATIONS 210 5.9 RANGE MEASUREMENT RADAR FOR A CRUISE
210 5.10 REFERENCES 212 CHAPTER 6 ACTIVE IMAGING SENSORS 215 6.1 IMAGING
TECHNIQUES 215 6.2 RANGE-GATE LIMITED 2D IMAGE CONSTRUCTION 216 X TABLE
OF CONTENTS 6.3 BEAMWIDTH LIMITED 3D IMAGE CONSTRUCTION 219 6.3.1
PUSH-BROOM SCANNING 219 6.3.2 MECHANICAL SCANNING 219 6.4 THE LIDAR
RANGE EQUATION 222 6.5 LIDAR SYSTEM PERFORMANCE 223 6.5.1 DIRECT
DETECTION 224 6.5.1.1 DIRECT DETECTION PHOTODIODES 225 6.5.2 HETERODYNE
DETECTION 226 6.5.3 SIGNAL TO NOISE RATIO AND DETECTION PROBABILITY 227
6.5.4 WORKED EXAMPLE: LASER RADAR REFLECTION FROM THE MOON 228 6.6
DIGITAL TERRAIN MODELS 230 6.6.1 SURFACE MODELS 231 6.6.2 DIGITAL
LANDSCAPES 231 6.6.3 THEMATIC VISUALIZATION 232 6.6.3.1 GEOGRAPHIC
INFORMATION SYSTEMS 233 6.6.3.2 3D CITY MODELS 233 6.7 AIRBORNE LIDAR
HYDROGRAPHY 234 6.8 3D IMAGING 235 6.8.1 RADAR SYSTEMS 236 6.8.2 FOCUSED
BEAM RADAR IMAGING 237 6.8.3 LIDAR IMAGING 240 6.8.4 JIGSAW*FOLIAGE
PENETRATING LIDAR 243 6.9 ACOUSTIC IMAGING 244 6.9.1 SCANNING ACOUSTIC
MICROSCOPES 244 6.10 WORKED EXAMPLE: LIDAR LOCUST TRACKER 245 6.10.1
REQUIREMENT 245 6.10.2 SPECIFICATIONS 247 6.10.3 SYSTEM HARDWARE 247
6.10.4 DETERMINING THE REQUIRED AIRCRAFT SPEED 247 6.10.5 LASER POWER
DENSITY ON THE GROUND 248 6.10.6 THE POWER DENSITY OF THE REFLECTED
SIGNALS BACK AT THE LASER 249 6.10.7 THE EFFECT OF THE SUN 250 6.10.8
THE RECEIVER 252 6.10.9 CONCLUSIONS 254 6.11 REFERENCES 254 CHAPTER 7
SIGNAL PROPAGATION 257 7.1 THE SENSING ENVIRONMENT 257 7.2 ATTENUATION
OF ELECTROMAGNETIC WAVES 257 7.2.1 CLEAR WEATHER ATTENUATION 259 TABLE
OF CONTENTS XI 7.2.2 EFFECT OF ATMOSPHERIC PRESSURE (AIR DENSITY) 260
7.2.3 EFFECT OF RAIN 260 7.2.4 EFFECT OF FOG AND CLOUDS 262 7.2.5
OVERALL ATTENUATION 265 7.2.6 ATTENUATION THROUGH DUST AND SMOKE 266
7.2.6.1 ATTENUATION OF RADAR SIGNALS 267 7.2.6.2 ATTENUATION OF LASER
SIGNALS 268 7.2.7 EFFECT OF ATMOSPHERE COMPOSITION 271 7.2.8
ELECTROMAGNETIC PROPAGATION THROUGH SOLID 272 7.3 REFRACTION OF
ELECTROMAGNETIC WAVES 273 7.4 ACOUSTICS AND VIBRATION 274 7.4.1
CHARACTERISTIC IMPEDANCE (Z) AND SOUND PRESSURE 275 7.4.2 SOUND
INTENSITY (I) 275 7.4.3 SOUND PROPAGATION IN GASES 276 7.4.3.1 WORKED
EXAMPLE: EFFECT OF MOLECULAR WEIGHT ON SPEED OF SOUND 277 7.4.3.2 EFFECT
OF TEMPERATURE AND PRESSURE 277 7.4.4 SOUND PROPAGATION IN WATER 278
7.4.5 SOUND PROPAGATION IN SOLIDS 280 7.4.6 ATTENUATION OF SOUND IN AIR
282 7.5 ATTENUATION OF SOUND IN WATER 284 7.6 REFLECTION AND REFRACTION
OF SOUND 287 7.6.1 WAVES NORMAL TO THE INTERFACE 287 7.6.2 WAVES AT AN
ANGLE TO THE INTERFACE 287 7.6.3 REFRACTION AND REFRACTION 288 7.7
MULTIPATH EFFECTS 289 7.7.1 MECHANISM 289 7.7.2 MULTIPATH LOBING 292
7.7.3 MULTIPATH FADING 293 7.7.4 MULTIPATH TRACKING 294 7.7.5 EFFECTS ON
IMAGING 296 7.8 REFERENCES 297 CHAPTER 8 TARGET AND CLUTTER
CHARACTERISTICS 299 8.1 INTRODUCTION 299 8.2 TARGET CROSS-SECTION 299
8.2.1 CROSS-SECTION AND THE EQUIVALENT SPHERE 300 8.2.2 CROSS-SECTION OF
REAL TARGETS 300 8.3 RADAR CROSS-SECTIONS (RCS) 301 8.4 RCS OF SIMPLE
SHAPES 302 8.4.1 FLAT PLATE 302 8.4.2 THE SPHERE 303 8.4.3 TRIHEDRAL
REFLECTOR 304 8.4.4 OTHER SIMPLE CALIBRATION REFLECTORS 304 8.5 RADAR
CROSS-SECTION OF COMPLEX TARGETS 306 8.5.1 AIRCRAFT 306 8.5.2 SHIPS 306
8.5.3 GROUND VEHICLES 309 8.6 EFFECT OF TARGET MATERIAL 311 8.7 RCS OF
LIVING CREATURES 311 8.7.1 HUMAN BEINGS 311 8.7.2 BIRDS 313 8.7.3
INSECTS 315 8.8 FLUCTUATIONS IN RADAR CROSS-SECTION 315 8.8.1 TEMPORAL
FLUCTUATIONS 315 8.8.2 SPATIAL DISTRIBUTION OF CROSS-SECTION 317 8.9
RADAR STEALTH 318 8.9.1 MINIMIZING DETECTABILITY 318 8.9.2 ANTI-STEALTH
TECHNOLOGY 320 8.10 TARGET CROSS-SECTION IN THE INFRARED 321 8.11
ACOUSTIC TARGET CROSS-SECTION 324 8.11.1 TARGET COMPOSITION 324 8.11.2
TARGET PROPERTIES 324 8.11.3 PARTICULATE TARGETS 325 8.11.4 UNDERWATER
TARGETS 325 8.11.4.1 TS OF A SPHERE 326 8.11.4.2 TS OF OTHER SHAPES 326
8.12 CLUTTER 328 8.12.1 GROUND CLUTTER 328 8.12.2 SPATIAL VARIATIONS 329
8.12.3 TEMPORAL VARIATIONS 333 8.12.4 SEA CLUTTER 335 8.13 CALCULATING
SURFACE CLUTTER BACKSCATTER 336 8.14 CALCULATING VOLUME BACKSCATTER 338
8.14.1 RAIN 339 8.14.2 DUST AND MIST BACKSCATTER 339 8.15 SONAR CLUTTER
AND REVERBERATION 342 8.15.1 BACKSCATTER 342 8.15.2 VOLUME REVERBERATION
343 8.16 WORKED EXAMPLE: OREPASS RADAR DEVELOPMENT 343 8.16.1
REQUIREMENT 343 8.16.2 SELECTION OF A SENSOR 344 TABLE OF CONTENTS XIII
8.16.3 8.16.4 8.16.5 8.16.6 8.16.7 8.16.8 8.16.9 16.10 16.11 16.12 16.13
16.14 16.15 16.16 8 RANGE RESOLUTION 345 TARGET CHARACTERISTICS 345
CLUTTER CHARACTERISTICS 346 TARGET SIGNAL-TO-CLUTTER RATIO (SCR) 346
ANTENNA SIZE AND RADAR FREQUENCY 347 RADAR CONFIGURATION 347 COMPONENT
SELECTION 347 8.16.9.1 ANTENNA OPTIONS 347 8.16.9.2 RADAR TRANSMITTER
348 8.16.9.3 RECEIVER OPTIONS 349 SIGNAL-TO-NOISE RATIO 351 OUTPUT
SIGNAL-TO-NOISE RATIO 351 REQUIRED IF GAIN 352 DETECTION PROBABILITY AND
PULSES INTEGRATED 352 MEASUREMENT UPDATE RATE 352 MONITORING ROCK
FALLING DOWN THE PASS 352 PROTOTYPE BUILD AND TEST 353 8.17 REFERENCES
355 CHAPTER 9 DETECTION OF SIGNALS IN NOISE 9.1 RECEIVER NOISE 357 9.1.1
RADAR NOISE 357 9.1.2 NOISE PROBABILITY DENSITY FUNCTIONS 359 9.1.3
INFRARED DETECTION AND LIDAR NOISE 359 9.1.3.1 THERMAL NOISE 359 9.1.3.2
SHOT NOISE 360 9.1.3.3 AVALANCHE NOISE 361 9.1.3.4 1/F NOISE 361 9.1.3.5
TOTAL NOISE CONTRIBUTION 361 9.1.4 SONAR NOISE 361 9.1.4.1 THERMAL NOISE
361 9.1.4.2 NOISE FROM THE SEA 362 9.2 EFFECTS OF SIGNAL-TO-NOISE RATIO
362 9.2.1 PROBABILITY OF FALSE ALARM 362 9.2.2 EXAMPLE 364 9.2.3
PROBABILITY OF DETECTION 364 9.2.4 DETECTOR LOSS RELATIVE TO AN IDEAL
SYSTEM 368 9.3 THE MATCHED FILTER 369 9.4 COHERENT DETECTION 370 9.5
INTEGRATION OF PULSE TRAINS 371 9.6 DETECTION OF FLUCTUATING SIGNALS 373
9.7 DETECTING TARGETS IN CLUTTER 376 357 XIV TABLE OF CONTENTS 9.8
CONSTANT FALSE ALARM RATE (CFAR) PROCESSORS 377 9.9 TARGET DETECTION
ANALYSIS 379 9.9.1 WORKED EXAMPLE: TARGET DETECTION WITH AIR
SURVEILLANCE RADAR 380 9.9.1.1 DETERMINE RECEIVER PARAMETERS 381 9.9.1.2
RADAR RANGE EQUATION 382 9.9.1.3 DETERMINE THE RECEIVER NOISE AND SNR
382 9.9.1.4 SOLVE FOR THE DETECTION RANGE (M) 383 9.9.2 RANGE ANALYSIS
SOFTWARE PACKAGES 385 9.9.3 DETECTION RANGE IN RAIN 385 9.10 NOISE
JAMMING 387 9.10.1 NOISE JAMMING EXAMPLE 388 9.11 REFERENCES 388 CHAPTER
10 DOPPLER MEASUREMENT 389 10.1 THE DOPPLER SHIFT 389 10.1.1 DOPPLER
SHIFT DERIVATION 389 10.2 DOPPLER GEOMETRY 392 10.2.1 TARGETS MOVING AT
LOW VELOCITIES (V C) 392 10.2.2 TARGETS MOVING AT HIGH SPEED (V C)
392 10.3 DOPPLER SHIFT EXTRACTION 393 10.3.1 DIRECTION DISCRIMINATION
394 10.3.1.1 SIDEBAND FILTERING 395 10.3.1.2 OFFSET CARRIER DEMODULATION
395 10.3.1.3 IN-PHASE/QUADRATURE DEMODULATION 396 10.4 PULSED DOPPLER
398 10.5 DOPPLER SENSORS 403 10.5.1 CONTINUOUS WAVE DOPPLER ULTRASOUND
403 10.5.2 CONTINUOUS WAVE DOPPLER RADAR 404 10.5.2.1 INTRUDER DETECTION
404 10.5.2.2 SPORTS RADAR 406 10.5.2.3 POLICE RADAR SPEED TRAP 407
10.5.2.4 WORKED EXAMPLE: POLICE RADAR AND DETECTOR COMPARISON 407
10.5.2.5 PROJECTILE TRACKING RADAR 411 10.5.2.6 DOPPLER TARGET
IDENTIFICATION 412 10.5.3 PULSED DOPPLER ULTRASOUND 413 10.5.4 PULSED
DOPPLER RADAR 414 10.6 DOPPLER TARGET GENERATOR 416 TABLE OF CONTENTS XV
10.7 CASE STUDY: ESTIMATING THE SPEED OF RADIO CONTROLLED AIRCRAFT 417
10.7.1 BACKGROUND 418 10.7.2 MEASURED DATA 420 10.8 REFERENCES 423
CHAPTER 11 HIGH RANGE-RESOLUTION TECHNIQUES 425 11.1 CLASSICAL
MODULATION TECHNIQUES 425 11.2 AMPLITUDE MODULATION 425 11.2.1 RANGE
RESOLUTION 42 5 11.3 FREQUENCY & PHASE MODULATION 427 11.3.1 MATCHED
FILTER 427 11.4 PHASE-CODED PULSE COMPRESSION 430 11.4.1 BARKER CODES
431 11.4.2 RANDOM CODES 432 11.4.2.1 OPTIMAL BINARY SEQUENCES 433 11.4.3
CORRELATION 436 11.4.3.1 BINARY CORRELATION 436 11.4.3.2 CIRCULAR
CORRELATION 436 11.5 SAW BASED PULSE COMPRESSION 437 11.6 STEP FREQUENCY
439 11.7 FREQUENCY-MODULATED CONTINUOUS-WAVE RADAR 442 11.7.1
OPERATIONAL PRINCIPLES 442 11.7.2 MATCHED FILTERING 445 11.7.3 THE
AMBIGUITY FUNCTION 446 11.7.4 EFFECT OF A NON-LINEAR CHIRP 449 11.7.5
CHIRP LINEARIZATION 450 11.7.5.1 OPEN LOOP TECHNIQUES 450 11.7.5.2
DETERMINING THE EFFECTIVENESS OF LINEARIZATION TECHNIQUES 450 11.7.5.3
IMPLEMENTATION OF CLOSED-LOOP LINEARIZATION 451 11.7.5.4 DIRECT DIGITAL
SYNTHESIS 453 11.7.6 EXTRACTION OF RANGE INFORMATION AND RANGE GATING
454 11.7.6.1 FFT PROCESSING 454 11.7.6.2 OTHER RANGE GATING METHODS 455
11.7.7 PROBLEMS WITH FMCW 455 11.8 STRETCH 455 11.9 INTERRUPTED FMCW 456
11.9.1 DISADVANTAGES 456 11.9.2 OPTIMIZING FOR A LONG RANGE IMAGING
APPLICATION 458 11.9.3 IMPLEMENTATION 458 XVI TABLE OF CONTENTS 11.10
SIDELOBES AND WEIGHTING FOR LINEAR FM SYSTEMS 459 11.11 HIGH RESOLUTION
RADAR SYSTEMS 461 11.11.1 INDUSTRY 461 11.11.2 AUTOMOTIVE RADAR 462
11.11.3 RESEARCH RADARS 464 11.12 WORKED EXAMPLE: BRIMSTONE ANTITANK
MISSILE 464 11.12.1 SYSTEM SPECIFICATIONS 465 11.12.2 SEEKER
SPECIFICATIONS (KNOWN) 466 11.12.3 OPERATIONAL PROCEDURE*LOCK-ON AFTER
LAUNCH 467 11.12.4 SYSTEM PERFORMANCE (SPECULATED) 467 11.12.4.1 TARGET
DETECTION AND IDENTIFICATION 467 11.12.4.2 RADAR FRONT END 468 11.12.4.3
ANTENNA AND SCANNER 469 11.12.4.4 SIGNAL PROCESSING 471 11.12.4.5
SIGNAL-TO-CLUTTER RATIO: CLUTTER LEVELS 471 11.12.4.6 TARGET LEVELS 473
11.12.4.7 SIGNAL-TO-CLUTTER RATIO 473 11.12.4.8 SIGNAL-TO-NOISE RATIO
474 11.12.4.9 TARGET IDENTIFICATION: DOPPLER PROCESSING 475 11.12.4.10
TARGET IDENTIFICATION: OTHER TECHNIQUES 476 11.12.5 TRACKING AND
GUIDANCE 476 11.13 REFERENCES 477 CHAPTER 12 HIGH ANGULAR-RESOLUTION
TECHNIQUES 481 12.1 INTRODUCTION 481 12.2 PHASED ARRAYS 482 12.2.1
ADVANTAGES OF USING PHASED ARRAYS 482 12.2.2 ARRAY SYNTHESIS 483 12.2.3
TWO POINT ARRAY 486 12.2.4 4 POINT ARRAY 487 12.2.5 THE GENERAL CASE 488
12.3 THE RADIATION PATTERN 489 12.3.1 LINEAR ARRAY 489 12.3.2 RADIATION
PATTERN: 2D RECTANGULAR ARRAY 490 12.4 BEAM STEERING 491 12.4.1 ACTIVE
AND PASSIVE ARRAYS 493 12.4.2 CORRECTIONS TO IMPROVE RANGE RESOLUTION
493 12.5 ARRAY CHARACTERISTICS 494 12.5.1 ANTENNA GAIN AND BEAMWIDTH 494
12.5.2 MATCHING AND MUTUAL COUPLING 494 12.5.3 THINNED ARRAYS 494 12.5.4
CONFORMAL ARRAYS 495 TABLE OF CONTENTS XVII 12.6 APPLICATIONS 495 12.6.1
ACOUSTIC ARRAY 496 12.6.2 NEW GENERATION MMIC PHASED ARRAYS 496 12.6.3
EARLY WARNING PHASED ARRAY RADAR 496 12.7 SIDESCAN SONAR 500 12.7.1
OPERATIONAL PRINCIPLES 500 12.7.2 HARDWARE 501 12.7.3 OPERATION AND
IMAGE INTERPRETATION 502 12.7.4 SIGNAL PROCESSING 504 12.8 WORKED
EXAMPLE: PERFORMANCE OF THE ICT-5202 TRANSDUCER 506 12.9 DOPPLER
BEAM-SHARPENING 513 12.10 OPERATIONAL PRINCIPLES OF SYNTHETIC APERTURE
516 12.11 RANGE AND CROSS-RANGE RESOLUTION 517 12.11.1 UNFOCUSED SAR 517
12.11.2 FOCUSED SAR 519 12.11.3 RESOLUTION COMPARISON 522 12.12 WORKED
EXAMPLE: SYNTHETIC APERTURE SONAR 522 12.13 RADAR IMAGE QUALITY ISSUES
527 12.13.1 PERSPECTIVE OF A RADAR IMAGE 527 12.13.2 IMAGE DISTORTION
528 12.13.2.1 STRETCHING 528 12.13.2.2 SHADOWING 528 12.13.3 SPECKLE 528
12.14 SAR ON UNMANNED AERIAL VEHICLES 528 12.14.1 TESAR 528 12.14.2
MINISAR 530 12.15 AIRBORNE SAR CAPABILITY 5 3 2 12.16 SPACE-BASED SAR
533 12.16.1 INTERFEROMETRY 535 12.17 MAGELLAN MISSION TO VENUS 536 12.18
REFERENCES 537 CHAPTER 13 RANGE AND ANGLE ESTIMATION AND TRACKING 539
13.1 INTRODUCTION 539 13.2 RANGE ESTIMATION AND TRACKING 539 13.2.1
RANGE GATING 539 13.3 PRINCIPLES OF A SPLIT-GATE TRACKER 540 13.3.1
RANGE TRANSFER FUNCTION 540 13.3.2 NOISE ON SPLIT-GATE TRACKERS 541 13.4
RANGE TRACKING LOOP IMPLEMENTATION 542 13.4.1 THE A-SS FILTER 543 XVIII
TABLE OF CONTENTS 13.4.2 THE KAIMAN FILTER 545 13.4.3 OTHER TRACKING
FILTERS 545 13.5 ULTRASONIC RANGE TRACKER EXAMPLE 546 13.6 TRACKING
NOISE AFTER FILTERING 546 13.7 TRACKING LAG FOR AN ACCELERATING TARGET
550 13.8 WORKED EXAMPLE: RANGE TRACKER BANDWIDTH OPTIMIZATION 551 13.9
RANGE TRACKING SYSTEMS 553 13.9.1 LIDAR SPEED TRAP 553 13.10 SEDUCTION
JAMMING 555 13.11 ANGLE MEASUREMENT 557 13.11.1 AMPLITUDE THRESHOLDING
557 13.11.2 PROXIMITY DETECTOR EXAMPLE 558 13.12 ANGLE TRACKING
PRINCIPLES 558 13.12.1 SCANNING ACROSS THE TARGET 558 13.12.2 NULL
STEERING 559 13.13 LOBE SWITCHING (SEQUENTIAL LOBING) 559 13.13.1 MAIN
DISADVANTAGES OF LOBE SWITCHING 560 13.14 CONICAL SCAN 560 13.14.1 THE
SQUINT ANGLE OPTIMIZATION PROCESS 563 13.14.2 MEASURING THE CONSCAN
ANTENNA TRANSFER FUNCTION 563 13.14.3 APPLICATION 564 13.14.4 MAIN
DISADVANTAGES 566 13.14.5 OTHER CONSIDERATIONS 567 13.15 INFRARED TARGET
TRACKERS 567 13.16 AMPLITUDE COMPARISON MONOPULSE 568 13.16.1 ANTENNA
PATTERNS 568 13.16.2 GENERATION OF ERROR SIGNALS 568 13.17 COMPARISON
BETWEEN CONSCAN AND MONOPULSE 571 13.18 ANGLE TRACKING LOOPS 573 13.19
ANGLE ESTIMATION AND TRACKING APPLICATIONS 574 13.19.1 INSTRUMENT
LANDING SYSTEM (ILS) 574 13.19.1.1 LOCALIZER TRANSMITTER 574 13.19.1.2
LOCALIZER RECEIVER 575 13.19.1.3 GLIDE SLOPE EQUIPMENT 575 13.20 WORKED
EXAMPLE: COMBINED ACOUSTIC AND INFRARED TRACKER 575 13.20.1 OPERATIONAL
PRINCIPLES OF PROTOTYPE 576 13.20.2 THEORETICAL PERFORMANCE 579 13.20.3
TRACKER IMPLEMENTATION 581 13.20.3.1 BEACON 581 13.20.3.2 RECEIVER 582
TABLE OF CONTENTS XIX 13.20.4 CONSTRUCTION 585 13.20.5 CONTROL
ALGORITHMS 586 13.21 ANGLE TRACK JAMMING 586 13.22 TRIANGULATION 587
13.22.1 LORAN-C 588 13.22.1.1 SUMMARY OF OPERATION 588 13.22.1.2
MEASUREMENT PROCESS 588 13.22.1.3 ADVANTAGES OF LORAN-C 590 13.23
REFERENCES 591 CHAPTER 14 TRACKING MOVING TARGETS 593 14.1 TRACK WHILE
SCAN 593 14.2 THE COHERENT PULSED TRACKING RADAR 595 14.2.1 SINGLE
CHANNEL DETECTION 597 14.2.2 I/Q DETECTION 598 14.2.3 MOVING TARGET
INDICATOR (MTI) 598 14.2.3.1 BLIND SPEEDS 601 14.2.3.2 STAGGERED PRF AND
BLIND SPEED 602 14.3 LIMITATIONS TO MTI PERFORMANCE 603 14.4 RANGE-GATED
PULSED DOPPLER TRACKING 603 14.5 COORDINATE FRAMES 605 14.5.1
MEASUREMENT FRAME 605 14.5.2 TRACKING AND ESTIMATION FRAME 605 14.6
ANTENNA MOUNTS AND SERVO SYSTEMS 606 14.7 ON-AXIS TRACKING 608 14.7.1
CROSSING TARGETS AND APPARENT ACCELERATION 608 14.7.2 MILLIMETER WAVE
TRACKING RADAR 616 14.8 TRACKING IN CARTESIAN SPACE 619 14.9 WORKED
EXAMPLE: FIRE CONTROL RADAR 620 14.9.1 REQUIREMENTS 621 14.9.2 SELECTION
OF POLARIZATION 621 14.9.3 POSITIONER SPECIFICATIONS 622 14.9.4 RADAR
HORIZON 622 14.9.5 SELECTION OF FREQUENCY 623 14.9.6 ADVERSE WEATHER
EFFECTS 623 14.9.7 REQUIRED SINGLE PULSE SIGNAL-TO-NOISE RATIO 624
14.9.8 TRACKING GATE SIZE 626 14.9.9 SIGNAL-TO-CLUTTER 626 14.9.10
MOVING TARGET INDICATOR 627 14.9.11 THE PULSE REPETITION FREQUENCY 627
14.9.12 SEARCH REQUIREMENT 628 14.9.13 INTEGRATION GAIN 630 XX TABLE OF
CONTENTS 14.9.14 MATCHED FILTER 630 14.9.15 TRANSMITTER POWER 631
14.9.16 SYSTEM CONFIGURATION 631 14.9.17 FREE SPACE DETECTION RANGE 632
14.9.18 EFFECTS OF MULTIPATH ON AIRCRAFT DETECTION 634 14.9.19 DETECTION
THRESHOLD AND CFAR 636 14.9.20 TRANSITION TO TRACK 637 14.9.21 TARGET
TRACKING 637 14.10 REFERENCES 640 CHAPTER 15 RADIO FREQUENCY
IDENTIFICATION TAGS AND TRANSPONDERS 641 15.1 PRINCIPLE OF OPERATION 641
15.2 HISTORY 641 15.3 SECONDARY SURVEILLANCE RADAR 642 15.3.1
INTERROGATION EQUIPMENT 643 15.3.2 TRANSPONDER EQUIPMENT 643 15.3.3
OPERATION 643 15.3.4 SSR ISSUES 644 15.3.4.1 SIDELOBE PROBLEMS 644
15.3.4.2 CONGESTION 645 15.4 RADIO FREQUENCY IDENTIFICATION (RFID)
SYSTEMS 646 15.4.1 ELECTRONIC ARTICLE SURVEILLANCE (EAS) 647 15.4.1.1
RADIO FREQUENCY TAGS 647 15.4.1.2 ACOUSTO-MAGNETIC TAGS 647 15.4.1.3
MICROWAVE TAGS (E-TAGS) 648 15.4.2 MULTIBIT EAS TAGS 649 15.4.3 MAGNETIC
COUPLED RFID TRANSPONDER SYSTEMS 649 15.4.3.1 OPERATIONAL PRINCIPLES 649
15.4.4 ELECTROMAGNETIC COUPLED RFID TRANSPONDER SYSTEMS 650 15.5 OTHER
APPLICATIONS 652 15.5.1 HOUSE ARREST TAG 652 15.6 SOCIAL ISSUES 653 15.7
TECHNICAL CHALLENGES 654 15.8 HARMONIC RADAR 655 15.9 BATTLEFIELD COMBAT
ID SYSTEM (BCIS) 655 15.9.1 COMBAT IDENTIFICATION: THE FUTURE 656 15.10
REFERENCES 657 CHAPTER 16 TOMOGRAPHY AND 3D IMAGING 659 16.1 PRINCIPLE
OF OPERATION 659 16.2 CT IMAGING 660 16.2.1 IMAGE RECONSTRUCTION 662
TABLE OF CONTENTS XXI 16.2.2 WHAT IS DISPLAYED IN CT IMAGES 664 16.2.3
TWO DIMENSIONAL DISPLAYS 665 16.2.4 THREE DIMENSIONAL DISPLAYS 665 16.3
MAGNETIC RESONANCE IMAGING (MRI) 665 16.3.1 NUCLEAR MAGNETIC RESONANCE
(NMR) 667 16.3.2 IMAGING PROCESS 670 16.3.3 IMAGING RESOLUTION 673 16.4
MRI IMAGES 673 16.5 FUNCTIONAL MRI INVESTIGATIONS OF BRAIN FUNCTION 673
16.6 POSITRON EMISSION TOMOGRAPHY 674 16.6.1 EXAMPLES OF THE USE OF PET
SCANS 677 16.7 3D ULTRASOUND IMAGING 677 16.7.1 2D MEDICAL ULTRASOUND
677 16.7.1.1 MEDICAL APPLICATIONS 680 16.7.1.2 DANGERS OF ULTRASOUND USE
680 16.8 3D EXTENSION 680 16.8.1 ULTRASONIC COMPUTED TOMOGRAPHY 682 16.9
3D SONAR IMAGING 683 16.10 GROUND PENETRATING RADAR 686 16.10.1 3D
IMAGING USING GPR 690 16.11 WORKED EXAMPLE: DETECTING A RUBY NODULE IN A
ROCK MATRIX 691 16.12 REFERENCES 693 INDEX 695
|
adam_txt |
SENSORS
FOR RANGING AND IMAGING
This comprehensive text-reference provides a solid background in active sensing technology.
It is concerned with active sensing, starting with the basics of time-of-flight sensors (opera¬
tional
principies,
components), and going through the derivation of the radar range equation
and the detection of echo signals, both fundamental to the understanding of radar, sonar
and
lidar
imaging. Several chapters cover signal propagation of both electromagnetic and
acoustic energy, target characteristics, stealth, and clutter. The remainder of the book intro¬
duces the range measurement process, active imaging, with an emphasis on noise and linear
frequency modulation techniques,
Doppler
processing, and target tracking.
KEY FEATURES
For a broad appeal, complicated math¬
ematical derivations are avoided unless
absolutely necessary, and electronic
details of the sensors are limited to block
diagram and algorithm level.
-
Extensive practical examples show the
process of designing a sensor for a
particular application, ranging from the
design of ship-borne fire control radar
to a UAV based
lidar
scanner to detect
locust swarms.
There are
572
figures, including over
100
photographs.
RELATED TITLES
Jeffrey, Tom. Phased-Array Radar
Design: Application of Radar
Fundamentals. (ISBN
9781891121692)
Sullivan, Roger. Radar Foundations
for Imaging and Advanced Concepts.
(ISBN
9781891121227)
INTRODUCTION TO SENSORS FOR RANGING AND IMAGING DR. GRAHAM BROOKER S
SCITEOT PUBLISHMEFINC. SCITECH PUBLISHING, INC RALEIGH, NC
WWW.SCITECHPUB.COM TABLE OF CONTENTS INTRODUCTION TO SENSORS FOR RANGING
AND IMAGING CHAPTER 1 INTRODUCTION TO SENSING 1.1 INTRODUCTION 1 1.1.1
ACTIVE SENSORS 1 1.1.2 PASSIVE SENSORS 1 1.2 A BRIEF HISTORY OF SENSING
2 1.2.1 SONAR 2 1.2.2 RADAR 4 1.2.3 LIDAR 10 1.3 PASSIVE INFRARED
SENSING 12 1.4 SENSOR SYSTEMS 14 1.5 FREQUENCY BAND ALLOCATIONS FOR THE
ELECTROMAGNETIC SPECTRUM 1.6 FREQUENCY BAND ALLOCATIONS FOR THE ACOUSTIC
SPECTRUM 19 1.7 REFERENCES 21 CHAPTER 2 SIGNAL PROCESSING AND MODULATION
2.1 THE NATURE OF ELECTRONIC SIGNALS 2 3 2.1.1 STATIC AND QUASI-STATIC
SIGNALS 23 2.1.2 PERIODIC AND REPETITIVE SIGNALS 23 2.1.3 TRANSIENT AND
QUASI TRANSIENT SIGNALS 23 2.2 NOISE 24 2.2.1 THERMAL NOISE 24 2.2.1.1
NOISE POWER SPECTRUM FOR THERMAL NOISE 25 2.2.2 SHOT NOISE 26 2.2.2.1
NOISE POWER SPECTRUM FOR SHOT NOISE 27 2.2.3 1/F NOISE 27 2.2.4
AVALANCHE NOISE 28 2.3 SIGNALS 28 2.4 SIGNALS AND NOISE IN THE FREQUENCY
DOMAIN 28 2.4.1 THE FOURIER SERIES 30 2.5 SAMPLED SIGNALS 33 2.5.1
GENERATING SIGNALS IN MATLAB 35 2.5.2 ALIASING 37 VI TABLE OF CONTENTS
2.6 FILTERING 38 2.6.1 FILTER CATEGORIES 39 2.6.1.1 BUTTERWORTH 40
2.6.1.2 CHEBYSHEV 40 2.6.1.3 BESSEL 40 2.6.1.4 ELLIPTIC 40 2.6.2 FILTER
ROLL-OFF 40 2.6.3 THE EAR AS A FILTER BANK 41 2.7 ANALOG MODULATION AND
DEMODULATION 41 2.7.1 AMPLITUDE MODULATION 42 2.8 FREQUENCY MODULATION
(FM) 45 2.9 LINEAR FREQUENCY MODULATION 50 2.10 PULSE CODED MODULATION
TECHNIQUES 52 2.10.1 PULSE AMPLITUDE MODULATION 52 2.10.2 FREQUENCY
SHIFT KEYING 55 2.10.3 PHASE SHIFT KEYING 57 2.10.4 STEPPED FREQUENCY
MODULATION 60 2.11 CONVOLUTION 61 2.11.1 LINEAR TIME INVARIANT SYSTEMS
61 2.11.2 THE CONVOLUTION SUM 63 2.11.3 WORKED EXAMPLE: PULSED RADAR
ECHO AMPLITUDE 65 2.12 REFERENCES 67 CHAPTER 3 IR RADIOMETERS & IMAGE
INTENSIFIES ' 69 3.1 INTRODUCTION 69 3.2 THERMAL EMISSION 70 3.2.1
BLACKBODY RADIATION 70 3.2.2 THE PLANCK FUNCTION 70 3.2.3 PROPERTIES OF
THE PLANCK FUNCTION 71 3.2.4 CONFIRMATION OF STEFAN-BOLTZMANN AND
RAYLEIGH-JEAN LAWS 74 3.3 EMISSIVITY AND REFLECTIVITY 76 3.3.1 WORKED
EXAMPLE: BLACK BODY RADIATION FROM HUMAN BODY 78 3.4 DETECTING THERMAL
RADIATION 79 3.4.1 EXTERNAL PHOTOEFFECT 80 3.4.2 INTERNAL PHOTOEFFECT 80
3.4.2.1 PHOTOCONDUCTIVE DETECTORS 80 3.4.2.2 PHOTOVOLTAIC DETECTORS 81
3.5 HEATING 82 3.5.1 BOLOMETERS 82 3.5.2 PYROELECTRIC SENSORS 83 3.5.3
THERMOPILES 84 TABLE OF CONTENTS VII 3.6 PERFORMANCE CRITERIA FOR
DETECTORS 85 3.6.1 RESPONSIVITY 85 3.6.2 NOISE EQUIVALENT POWER (NEP) 87
3.6.3 DETECTIVITY AND SPECIFIC DETECTIVITY 87 3.7 NOISE PROCESSES AND
EFFECTS 88 3.8 APPLICATIONS 89 3.8.1 PASSIVE ULTRAVIOLET SENSOR
(EXTERNAL PHOTOEFFECT) 89 3.8.2 RADIATION THERMOMETER (INTERNAL
PHOTOEFFECT: THERMOPILE) 90 3.8.3 PASSIVE INFRARED SENSOR (INTERNAL
PHOTOEFFECT: PYROELECTRIC) 91 3.8.4 CROOKES' RADIOMETER 92 3.9
INTRODUCTION TO THERMAL IMAGING SYSTEMS 93 3.9.1 SCATTERING AND
ABSORPTION 93 3.9.2 SCANNING MECHANISMS AND ARRAYS 95 3.9.3
MICRO-BOLOMETER ARRAYS 96 3.9.4 KEY OPTICAL PARAMETERS 97 3.10
PERFORMANCE MEASURES FOR INFRARED IMAGERS 98 3.10.1 DETECTOR FIELD OF
VIEW 98 3.10.2 SPATIAL FREQUENCY 100 3.10.3 SIGNAL TO NOISE RATIO FOR A
POINT TARGET 102 3.10.4 WORKED EXAMPLE: IRST SYSTEM SNR 103 3.10.5
SIGNAL TO NOISE RATIO FOR A TARGET IN GROUND CLUTTER 104 3.10.6 NOISE
EQUIVALENT TEMPERATURE DIFFERENCE (NETD) 105 3.10.7 EXAMPLE 105 3.10.8
THE MINIMUM RESOLVABLE TEMPERATURE DIFFERENCE (MRTD) 107 3.11 TARGET
DETECTION AND RECOGNITION 107 3.11.1 EXAMPLE OF FLIR DETECTION 109 3.12
THERMAL IMAGING APPLICATIONS 112 3.13 IMAGE INTENSIFIERS 114 3.13.1
FIRST GENERATION TUBES 114 3.13.2 SECOND GENERATION TUBES 115 3.13.3
LIMITATIONS OF MICROCHANNEL PLATES 116 3.13.4 THIRD GENERATION TUBES 117
3.13.5 SPECTRAL CHARACTERISTICS OF DIE SCENE 117 3.13.6 TIME GATING
MICROCHANNEL PLATES 117 3.14 REFERENCES 119 CHAPTER 4 MILLIMETER WAVE
RADIOMETERS 4.1 ANTENNA POWER TEMPERATURE CORRESPONDENCE 121 4.1.1
EXAMPLE OF POWER RECEIVED FROM A BLACKBODY 123 121 TABLE OF CONTENTS 4.2
BRIGHTNESS TEMPERATURE 123 4.3 APPARENT TEMPERATURE 123 4.4 ATMOSPHERIC
EFFECTS 125 4.4.1 ATTENUATION 125 4.4.2 DOWNWELLING RADIATION 125 4.4.3
UPWELLING RADIATION 125 4.5 TERRAIN BRIGHTNESS 127 4.6 WORKED EXAMPLE:
SPACE-BASED RADIOMETER 127 4.6.1 TEMPERATURE CONTRAST 128 4.7 ANTENNA
CONSIDERATIONS 128 4.7.1 BEAMWIDTH 128 4.7.2 EFFICIENCY 128 4.7.3 FILL
RATIO 129 4.8 RECEIVER CONSIDERATIONS 129 4.8.1 MIXER IMPLEMENTATIONS
FOR MICROWAVE RECEIVERS 129 4.8.1.1 MIXER SPECIFICATIONS 130 4.8.2 NOISE
FIGURE 130 4.9 THE SYSTEM NOISE TEMPERATURE 131 4.10 RADIOMETER
TEMPERATURE SENSITIVITY 131 4.11 RADIOMETER IMPLEMENTATION 133 4.11.1
TOTAL POWER RADIOMETER 134 4.11.2 DICKE RADIOMETER 135 4.11.3
PERFORMANCE COMPARISON BETWEEN RADIOMETER TYPES 135 4.12 INTERMEDIATE
FREQUENCY AND VIDEO GAIN REQUIREMENTS 135 4.13 WORKED EXAMPLE: ANTI TANK
SUBMUNITION SENSOR DESIGN 135 4.13.1 RADIOMETER IMPLEMENTATION 142
4.13.2 RECEIVER NOISE TEMPERATURE 142 4.13.3 MINIMUM DETECTABLE
TEMPERATURE DIFFERENCE 143 4.14 RADIOMETRIC IMAGING 144 4.14.1 IMAGE
PROCESSING 144 4.15 APPLICATIONS 147 4.15.1 AIRBORNE SCANNED MILLIMETER
WAVE RADIOMETER 148 4.15.2 SCANNING MULTI-CHANNEL MICROWAVE RADIOMETER
(SMMR) 149 4.15.3 GROUND BASED MILLIMETER WAVE RADIOMETERS 150 4.15.3.1
LOW VISIBILITY IMAGING 150 4.15.3.2 CONCEALED WEAPON DETECTION 152
4.15.3.3 SURVEILLANCE AND LAW ENFORCEMENT 154 4.15.3.4 MEDICAL IMAGING
154 4.15.4 RADIO ASTRONOMY 155 4.15.4.1 SINGLE DISH TELESCOPES 156 TABLE
OF CONTENTS IX 4.15.4.2 TELESCOPE ARRAYS 156 4.15.4.3 APPLICATIONS 157
4.16 REFERENCES 158 CHAPTER 5 ACTIVE RANGING SENSORS 161 5.1 OVERVIEW
161 5.2 TRIANGULATION 161 5.3 PULSED TIME-OF-FLIGHT OPERATION 164 5.3.1
SENSOR REQUIREMENTS 165 5.3.2 SPEED OF PROPAGATION 166 5.3.3 THE ANTENNA
167 5.3.4 THE TRANSMITTER 170 5.3.4.1 RADAR TRANSMITTERS 172 5.3.4.2
UNDERWATER SONAR TRANSMITTERS 175 5.3.4.3 ULTRASONIC TRANSMITTERS 176
5.3.4.4 LASER TRANSMITTERS 179 5.3.5 THE RECEIVER 182 5.4 PULSED RANGE
MEASUREMENT 187 5.4.1 TIMING DISCRIMINATORS 188 5.4.2 PULSE INTEGRATION
191 5.4.3 TIME TRANSFORMATION 194 5.5 OTHER METHODS TO MEASURE RANGE 194
5.5.1 RANGING USING AN UNMODULATED CARRIER 195 5.5.2 RANGING USING A
MODULATED CARRIER 195 5.5.3 TELLUROMETER EXAMPLE 197 5.6 THE RADAR RANGE
EQUATION 199 5.6.1 DERIVATION 199 5.6.2 THE DB FORM 201 5.6.3 WORKED
EXAMPLE: RADAR DETECTION CALCULATION 202 5.6.4 RECEIVER NOISE 204 5.6.5
DETERMINING THE REQUIRED SIGNAL LEVEL 204 5.6.6 PULSE INTEGRATION AND
THE PROBABILITY OF DETECTION 206 5.7 THE ACOUSTIC RANGE EQUATION 207
5.7.1 EXAMPLE OF USING THE ACOUSTIC RANGE EQUATION 209 5.8 TOF
MEASUREMENT CONSIDERATIONS 210 5.9 RANGE MEASUREMENT RADAR FOR A CRUISE
210 5.10 REFERENCES 212 CHAPTER 6 ACTIVE IMAGING SENSORS 215 6.1 IMAGING
TECHNIQUES 215 6.2 RANGE-GATE LIMITED 2D IMAGE CONSTRUCTION 216 X TABLE
OF CONTENTS 6.3 BEAMWIDTH LIMITED 3D IMAGE CONSTRUCTION 219 6.3.1
PUSH-BROOM SCANNING 219 6.3.2 MECHANICAL SCANNING 219 6.4 THE LIDAR
RANGE EQUATION 222 6.5 LIDAR SYSTEM PERFORMANCE 223 6.5.1 DIRECT
DETECTION 224 6.5.1.1 DIRECT DETECTION PHOTODIODES 225 6.5.2 HETERODYNE
DETECTION 226 6.5.3 SIGNAL TO NOISE RATIO AND DETECTION PROBABILITY 227
6.5.4 WORKED EXAMPLE: LASER RADAR REFLECTION FROM THE MOON 228 6.6
DIGITAL TERRAIN MODELS 230 6.6.1 SURFACE MODELS 231 6.6.2 DIGITAL
LANDSCAPES 231 6.6.3 THEMATIC VISUALIZATION 232 6.6.3.1 GEOGRAPHIC
INFORMATION SYSTEMS 233 6.6.3.2 3D CITY MODELS 233 6.7 AIRBORNE LIDAR
HYDROGRAPHY 234 6.8 3D IMAGING 235 6.8.1 RADAR SYSTEMS 236 6.8.2 FOCUSED
BEAM RADAR IMAGING 237 6.8.3 LIDAR IMAGING 240 6.8.4 JIGSAW*FOLIAGE
PENETRATING LIDAR 243 6.9 ACOUSTIC IMAGING 244 ' 6.9.1 SCANNING ACOUSTIC
MICROSCOPES 244 6.10 WORKED EXAMPLE: LIDAR LOCUST TRACKER 245 6.10.1
REQUIREMENT 245 6.10.2 SPECIFICATIONS 247 6.10.3 SYSTEM HARDWARE 247
6.10.4 DETERMINING THE REQUIRED AIRCRAFT SPEED 247 6.10.5 LASER POWER
DENSITY ON THE GROUND 248 6.10.6 THE POWER DENSITY OF THE REFLECTED
SIGNALS BACK AT THE LASER 249 6.10.7 THE EFFECT OF THE SUN 250 6.10.8
THE RECEIVER 252 6.10.9 CONCLUSIONS 254 6.11 REFERENCES 254 CHAPTER 7
SIGNAL PROPAGATION 257 7.1 THE SENSING ENVIRONMENT 257 7.2 ATTENUATION
OF ELECTROMAGNETIC WAVES 257 7.2.1 CLEAR WEATHER ATTENUATION 259 TABLE
OF CONTENTS XI 7.2.2 EFFECT OF ATMOSPHERIC PRESSURE (AIR DENSITY) 260
7.2.3 EFFECT OF RAIN 260 7.2.4 EFFECT OF FOG AND CLOUDS 262 7.2.5
OVERALL ATTENUATION 265 7.2.6 ATTENUATION THROUGH DUST AND SMOKE 266
7.2.6.1 ATTENUATION OF RADAR SIGNALS 267 7.2.6.2 ATTENUATION OF LASER
SIGNALS 268 7.2.7 EFFECT OF ATMOSPHERE COMPOSITION 271 7.2.8
ELECTROMAGNETIC PROPAGATION THROUGH SOLID 272 7.3 REFRACTION OF
ELECTROMAGNETIC WAVES 273 7.4 ACOUSTICS AND VIBRATION 274 7.4.1
CHARACTERISTIC IMPEDANCE (Z) AND SOUND PRESSURE 275 7.4.2 SOUND
INTENSITY (I) 275 7.4.3 SOUND PROPAGATION IN GASES 276 7.4.3.1 WORKED
EXAMPLE: EFFECT OF MOLECULAR WEIGHT ON SPEED OF SOUND 277 7.4.3.2 EFFECT
OF TEMPERATURE AND PRESSURE 277 7.4.4 SOUND PROPAGATION IN WATER 278
7.4.5 SOUND PROPAGATION IN SOLIDS 280 7.4.6 ATTENUATION OF SOUND IN AIR
282 7.5 ATTENUATION OF SOUND IN WATER 284 7.6 REFLECTION AND REFRACTION
OF SOUND 287 7.6.1 WAVES NORMAL TO THE INTERFACE 287 7.6.2 WAVES AT AN
ANGLE TO THE INTERFACE 287 7.6.3 REFRACTION AND REFRACTION 288 7.7
MULTIPATH EFFECTS 289 7.7.1 MECHANISM 289 7.7.2 MULTIPATH LOBING 292
7.7.3 MULTIPATH FADING 293 7.7.4 MULTIPATH TRACKING 294 7.7.5 EFFECTS ON
IMAGING 296 7.8 REFERENCES 297 CHAPTER 8 TARGET AND CLUTTER
CHARACTERISTICS 299 8.1 INTRODUCTION 299 8.2 TARGET CROSS-SECTION 299
8.2.1 CROSS-SECTION AND THE EQUIVALENT SPHERE 300 8.2.2 CROSS-SECTION OF
REAL TARGETS 300 8.3 RADAR CROSS-SECTIONS (RCS) 301 8.4 RCS OF SIMPLE
SHAPES 302 8.4.1 FLAT PLATE 302 8.4.2 THE SPHERE 303 8.4.3 TRIHEDRAL
REFLECTOR 304 8.4.4 OTHER SIMPLE CALIBRATION REFLECTORS 304 8.5 RADAR
CROSS-SECTION OF COMPLEX TARGETS 306 8.5.1 AIRCRAFT 306 8.5.2 SHIPS 306
8.5.3 GROUND VEHICLES 309 8.6 EFFECT OF TARGET MATERIAL 311 8.7 RCS OF
LIVING CREATURES 311 8.7.1 HUMAN BEINGS 311 8.7.2 BIRDS 313 8.7.3
INSECTS 315 8.8 FLUCTUATIONS IN RADAR CROSS-SECTION 315 8.8.1 TEMPORAL
FLUCTUATIONS 315 8.8.2 SPATIAL DISTRIBUTION OF CROSS-SECTION 317 8.9
RADAR STEALTH 318 8.9.1 MINIMIZING DETECTABILITY 318 8.9.2 ANTI-STEALTH
TECHNOLOGY 320 8.10 TARGET CROSS-SECTION IN THE INFRARED 321 8.11
ACOUSTIC TARGET CROSS-SECTION 324 8.11.1 TARGET COMPOSITION 324 8.11.2
TARGET PROPERTIES 324 8.11.3 PARTICULATE TARGETS 325 8.11.4 UNDERWATER
TARGETS 325 8.11.4.1 TS OF A SPHERE 326 8.11.4.2 TS OF OTHER SHAPES 326
8.12 CLUTTER 328 8.12.1 GROUND CLUTTER 328 8.12.2 SPATIAL VARIATIONS 329
8.12.3 TEMPORAL VARIATIONS 333 8.12.4 SEA CLUTTER 335 8.13 CALCULATING
SURFACE CLUTTER BACKSCATTER 336 8.14 CALCULATING VOLUME BACKSCATTER 338
8.14.1 RAIN 339 8.14.2 DUST AND MIST BACKSCATTER 339 8.15 SONAR CLUTTER
AND REVERBERATION 342 8.15.1 BACKSCATTER 342 8.15.2 VOLUME REVERBERATION
343 8.16 WORKED EXAMPLE: OREPASS RADAR DEVELOPMENT 343 8.16.1
REQUIREMENT 343 8.16.2 SELECTION OF A SENSOR 344 TABLE OF CONTENTS XIII
8.16.3 8.16.4 8.16.5 8.16.6 8.16.7 8.16.8 8.16.9 16.10 16.11 16.12 16.13
16.14 16.15 16.16 8 RANGE RESOLUTION 345 TARGET CHARACTERISTICS 345
CLUTTER CHARACTERISTICS 346 TARGET SIGNAL-TO-CLUTTER RATIO (SCR) 346
ANTENNA SIZE AND RADAR FREQUENCY 347 RADAR CONFIGURATION 347 COMPONENT
SELECTION 347 8.16.9.1 ANTENNA OPTIONS 347 8.16.9.2 RADAR TRANSMITTER
348 8.16.9.3 RECEIVER OPTIONS 349 SIGNAL-TO-NOISE RATIO 351 OUTPUT
SIGNAL-TO-NOISE RATIO 351 REQUIRED IF GAIN 352 DETECTION PROBABILITY AND
PULSES INTEGRATED 352 MEASUREMENT UPDATE RATE 352 MONITORING ROCK
FALLING DOWN THE PASS 352 PROTOTYPE BUILD AND TEST 353 8.17 REFERENCES
355 CHAPTER 9 DETECTION OF SIGNALS IN NOISE 9.1 RECEIVER NOISE 357 9.1.1
RADAR NOISE 357 9.1.2 NOISE PROBABILITY DENSITY FUNCTIONS 359 9.1.3
INFRARED DETECTION AND LIDAR NOISE 359 9.1.3.1 THERMAL NOISE 359 9.1.3.2
SHOT NOISE 360 9.1.3.3 AVALANCHE NOISE 361 9.1.3.4 1/F NOISE 361 9.1.3.5
TOTAL NOISE CONTRIBUTION 361 9.1.4 SONAR NOISE 361 9.1.4.1 THERMAL NOISE
361 9.1.4.2 NOISE FROM THE SEA 362 9.2 EFFECTS OF SIGNAL-TO-NOISE RATIO
362 9.2.1 PROBABILITY OF FALSE ALARM 362 9.2.2 EXAMPLE 364 9.2.3
PROBABILITY OF DETECTION 364 9.2.4 DETECTOR LOSS RELATIVE TO AN IDEAL
SYSTEM 368 9.3 THE MATCHED FILTER 369 9.4 COHERENT DETECTION 370 9.5
INTEGRATION OF PULSE TRAINS 371 9.6 DETECTION OF FLUCTUATING SIGNALS 373
9.7 DETECTING TARGETS IN CLUTTER 376 357 XIV TABLE OF CONTENTS 9.8
CONSTANT FALSE ALARM RATE (CFAR) PROCESSORS 377 9.9 TARGET DETECTION
ANALYSIS 379 9.9.1 WORKED EXAMPLE: TARGET DETECTION WITH AIR
SURVEILLANCE RADAR 380 9.9.1.1 DETERMINE RECEIVER PARAMETERS 381 9.9.1.2
RADAR RANGE EQUATION 382 9.9.1.3 DETERMINE THE RECEIVER NOISE AND SNR
382 9.9.1.4 SOLVE FOR THE DETECTION RANGE (M) 383 9.9.2 RANGE ANALYSIS
SOFTWARE PACKAGES 385 9.9.3 DETECTION RANGE IN RAIN 385 9.10 NOISE
JAMMING 387 9.10.1 NOISE JAMMING EXAMPLE 388 9.11 REFERENCES 388 CHAPTER
10 DOPPLER MEASUREMENT 389 10.1 THE DOPPLER SHIFT 389 10.1.1 DOPPLER
SHIFT DERIVATION 389 10.2 DOPPLER GEOMETRY 392 10.2.1 TARGETS MOVING AT
LOW VELOCITIES (V C) 392 10.2.2 TARGETS MOVING AT HIGH SPEED (V C)
392 10.3 DOPPLER SHIFT EXTRACTION 393 10.3.1 DIRECTION DISCRIMINATION
394 10.3.1.1 SIDEBAND FILTERING 395 10.3.1.2 OFFSET CARRIER DEMODULATION
395 10.3.1.3 IN-PHASE/QUADRATURE DEMODULATION 396 10.4 PULSED DOPPLER
398 10.5 DOPPLER SENSORS 403 10.5.1 CONTINUOUS WAVE DOPPLER ULTRASOUND
403 10.5.2 CONTINUOUS WAVE DOPPLER RADAR 404 10.5.2.1 INTRUDER DETECTION
404 10.5.2.2 SPORTS RADAR 406 10.5.2.3 POLICE RADAR SPEED TRAP 407
10.5.2.4 WORKED EXAMPLE: POLICE RADAR AND DETECTOR COMPARISON 407
10.5.2.5 PROJECTILE TRACKING RADAR 411 10.5.2.6 DOPPLER TARGET
IDENTIFICATION 412 10.5.3 PULSED DOPPLER ULTRASOUND 413 10.5.4 PULSED
DOPPLER RADAR 414 10.6 DOPPLER TARGET GENERATOR 416 TABLE OF CONTENTS XV
10.7 CASE STUDY: ESTIMATING THE SPEED OF RADIO CONTROLLED AIRCRAFT 417
10.7.1 BACKGROUND 418 10.7.2 MEASURED DATA 420 10.8 REFERENCES 423
CHAPTER 11 HIGH RANGE-RESOLUTION TECHNIQUES 425 11.1 CLASSICAL
MODULATION TECHNIQUES 425 11.2 AMPLITUDE MODULATION 425 11.2.1 RANGE
RESOLUTION 42 5 11.3 FREQUENCY & PHASE MODULATION 427 11.3.1 MATCHED
FILTER 427 11.4 PHASE-CODED PULSE COMPRESSION 430 11.4.1 BARKER CODES
431 11.4.2 RANDOM CODES 432 11.4.2.1 OPTIMAL BINARY SEQUENCES 433 11.4.3
CORRELATION 436 11.4.3.1 BINARY CORRELATION 436 11.4.3.2 CIRCULAR
CORRELATION 436 11.5 SAW BASED PULSE COMPRESSION 437 11.6 STEP FREQUENCY
439 11.7 FREQUENCY-MODULATED CONTINUOUS-WAVE RADAR 442 11.7.1
OPERATIONAL PRINCIPLES 442 11.7.2 MATCHED FILTERING 445 11.7.3 THE
AMBIGUITY FUNCTION 446 11.7.4 EFFECT OF A NON-LINEAR CHIRP 449 11.7.5
CHIRP LINEARIZATION 450 11.7.5.1 OPEN LOOP TECHNIQUES 450 11.7.5.2
DETERMINING THE EFFECTIVENESS OF LINEARIZATION TECHNIQUES 450 11.7.5.3
IMPLEMENTATION OF CLOSED-LOOP LINEARIZATION 451 11.7.5.4 DIRECT DIGITAL
SYNTHESIS 453 11.7.6 EXTRACTION OF RANGE INFORMATION AND RANGE GATING
454 11.7.6.1 FFT PROCESSING 454 11.7.6.2 OTHER RANGE GATING METHODS 455
11.7.7 PROBLEMS WITH FMCW 455 11.8 STRETCH 455 11.9 INTERRUPTED FMCW 456
11.9.1 DISADVANTAGES 456 11.9.2 OPTIMIZING FOR A LONG RANGE IMAGING
APPLICATION 458 11.9.3 IMPLEMENTATION 458 XVI TABLE OF CONTENTS 11.10
SIDELOBES AND WEIGHTING FOR LINEAR FM SYSTEMS 459 11.11 HIGH RESOLUTION
RADAR SYSTEMS 461 11.11.1 INDUSTRY 461 11.11.2 AUTOMOTIVE RADAR 462
11.11.3 RESEARCH RADARS 464 11.12 WORKED EXAMPLE: BRIMSTONE ANTITANK
MISSILE 464 11.12.1 SYSTEM SPECIFICATIONS 465 11.12.2 SEEKER
SPECIFICATIONS (KNOWN) 466 11.12.3 OPERATIONAL PROCEDURE*LOCK-ON AFTER
LAUNCH 467 11.12.4 SYSTEM PERFORMANCE (SPECULATED) 467 11.12.4.1 TARGET
DETECTION AND IDENTIFICATION 467 11.12.4.2 RADAR FRONT END 468 11.12.4.3
ANTENNA AND SCANNER 469 11.12.4.4 SIGNAL PROCESSING 471 11.12.4.5
SIGNAL-TO-CLUTTER RATIO: CLUTTER LEVELS 471 11.12.4.6 TARGET LEVELS 473
11.12.4.7 SIGNAL-TO-CLUTTER RATIO 473 11.12.4.8 SIGNAL-TO-NOISE RATIO
474 11.12.4.9 TARGET IDENTIFICATION: DOPPLER PROCESSING 475 11.12.4.10
TARGET IDENTIFICATION: OTHER TECHNIQUES 476 11.12.5 TRACKING AND
GUIDANCE 476 11.13 REFERENCES 477 CHAPTER 12 HIGH ANGULAR-RESOLUTION
TECHNIQUES 481 12.1 INTRODUCTION 481 12.2 PHASED ARRAYS 482 12.2.1
ADVANTAGES OF USING PHASED ARRAYS 482 12.2.2 ARRAY SYNTHESIS 483 12.2.3
TWO POINT ARRAY 486 12.2.4 4 POINT ARRAY 487 12.2.5 THE GENERAL CASE 488
12.3 THE RADIATION PATTERN 489 12.3.1 LINEAR ARRAY 489 12.3.2 RADIATION
PATTERN: 2D RECTANGULAR ARRAY 490 12.4 BEAM STEERING 491 12.4.1 ACTIVE
AND PASSIVE ARRAYS 493 12.4.2 CORRECTIONS TO IMPROVE RANGE RESOLUTION
493 12.5 ARRAY CHARACTERISTICS 494 12.5.1 ANTENNA GAIN AND BEAMWIDTH 494
12.5.2 MATCHING AND MUTUAL COUPLING 494 12.5.3 THINNED ARRAYS 494 12.5.4
CONFORMAL ARRAYS 495 TABLE OF CONTENTS XVII 12.6 APPLICATIONS 495 12.6.1
ACOUSTIC ARRAY 496 12.6.2 NEW GENERATION MMIC PHASED ARRAYS 496 12.6.3
EARLY WARNING PHASED ARRAY RADAR 496 12.7 SIDESCAN SONAR 500 12.7.1
OPERATIONAL PRINCIPLES 500 12.7.2 HARDWARE 501 12.7.3 OPERATION AND
IMAGE INTERPRETATION 502 12.7.4 SIGNAL PROCESSING 504 12.8 WORKED
EXAMPLE: PERFORMANCE OF THE ICT-5202 TRANSDUCER 506 12.9 DOPPLER
BEAM-SHARPENING 513 12.10 OPERATIONAL PRINCIPLES OF SYNTHETIC APERTURE
516 12.11 RANGE AND CROSS-RANGE RESOLUTION 517 12.11.1 UNFOCUSED SAR 517
12.11.2 FOCUSED SAR 519 12.11.3 RESOLUTION COMPARISON 522 12.12 WORKED
EXAMPLE: SYNTHETIC APERTURE SONAR 522 12.13 RADAR IMAGE QUALITY ISSUES
527 12.13.1 PERSPECTIVE OF A RADAR IMAGE 527 12.13.2 IMAGE DISTORTION
528 12.13.2.1 STRETCHING 528 12.13.2.2 SHADOWING 528 12.13.3 SPECKLE 528
12.14 SAR ON UNMANNED AERIAL VEHICLES 528 12.14.1 TESAR 528 12.14.2
MINISAR 530 12.15 AIRBORNE SAR CAPABILITY 5 3 2 12.16 SPACE-BASED SAR
533 12.16.1 INTERFEROMETRY 535 12.17 MAGELLAN MISSION TO VENUS 536 12.18
REFERENCES 537 CHAPTER 13 RANGE AND ANGLE ESTIMATION AND TRACKING 539
13.1 INTRODUCTION 539 13.2 RANGE ESTIMATION AND TRACKING 539 13.2.1
RANGE GATING 539 13.3 PRINCIPLES OF A SPLIT-GATE TRACKER 540 13.3.1
RANGE TRANSFER FUNCTION 540 13.3.2 NOISE ON SPLIT-GATE TRACKERS 541 13.4
RANGE TRACKING LOOP IMPLEMENTATION 542 13.4.1 THE A-SS FILTER 543 XVIII
TABLE OF CONTENTS 13.4.2 THE KAIMAN FILTER 545 13.4.3 OTHER TRACKING
FILTERS 545 13.5 ULTRASONIC RANGE TRACKER EXAMPLE 546 13.6 TRACKING
NOISE AFTER FILTERING 546 13.7 TRACKING LAG FOR AN ACCELERATING TARGET
550 13.8 WORKED EXAMPLE: RANGE TRACKER BANDWIDTH OPTIMIZATION 551 13.9
RANGE TRACKING SYSTEMS 553 13.9.1 LIDAR SPEED TRAP 553 13.10 SEDUCTION
JAMMING 555 13.11 ANGLE MEASUREMENT 557 13.11.1 AMPLITUDE THRESHOLDING
557 13.11.2 PROXIMITY DETECTOR EXAMPLE 558 13.12 ANGLE TRACKING
PRINCIPLES 558 13.12.1 SCANNING ACROSS THE TARGET 558 13.12.2 NULL
STEERING 559 13.13 LOBE SWITCHING (SEQUENTIAL LOBING) 559 13.13.1 MAIN
DISADVANTAGES OF LOBE SWITCHING 560 13.14 CONICAL SCAN 560 13.14.1 THE
SQUINT ANGLE OPTIMIZATION PROCESS 563 13.14.2 MEASURING THE CONSCAN
ANTENNA TRANSFER FUNCTION 563 13.14.3 APPLICATION 564 13.14.4 MAIN
DISADVANTAGES 566 13.14.5 OTHER CONSIDERATIONS 567 13.15 INFRARED TARGET
TRACKERS 567 13.16 AMPLITUDE COMPARISON MONOPULSE 568 13.16.1 ANTENNA
PATTERNS 568 13.16.2 GENERATION OF ERROR SIGNALS 568 13.17 COMPARISON
BETWEEN CONSCAN AND MONOPULSE 571 13.18 ANGLE TRACKING LOOPS 573 13.19
ANGLE ESTIMATION AND TRACKING APPLICATIONS 574 13.19.1 INSTRUMENT
LANDING SYSTEM (ILS) 574 13.19.1.1 LOCALIZER TRANSMITTER 574 13.19.1.2
LOCALIZER RECEIVER 575 13.19.1.3 GLIDE SLOPE EQUIPMENT 575 13.20 WORKED
EXAMPLE: COMBINED ACOUSTIC AND INFRARED TRACKER 575 13.20.1 OPERATIONAL
PRINCIPLES OF PROTOTYPE 576 13.20.2 THEORETICAL PERFORMANCE 579 13.20.3
TRACKER IMPLEMENTATION 581 13.20.3.1 BEACON 581 13.20.3.2 RECEIVER 582
TABLE OF CONTENTS XIX 13.20.4 CONSTRUCTION 585 13.20.5 CONTROL
ALGORITHMS 586 13.21 ANGLE TRACK JAMMING 586 13.22 TRIANGULATION 587
13.22.1 LORAN-C 588 13.22.1.1 SUMMARY OF OPERATION 588 13.22.1.2
MEASUREMENT PROCESS 588 13.22.1.3 ADVANTAGES OF LORAN-C 590 13.23
REFERENCES 591 ' CHAPTER 14 TRACKING MOVING TARGETS 593 14.1 TRACK WHILE
SCAN 593 14.2 THE COHERENT PULSED TRACKING RADAR 595 14.2.1 SINGLE
CHANNEL DETECTION 597 14.2.2 I/Q DETECTION 598 14.2.3 MOVING TARGET
INDICATOR (MTI) 598 14.2.3.1 BLIND SPEEDS 601 14.2.3.2 STAGGERED PRF AND
BLIND SPEED 602 14.3 LIMITATIONS TO MTI PERFORMANCE 603 14.4 RANGE-GATED
PULSED DOPPLER TRACKING 603 14.5 COORDINATE FRAMES 605 14.5.1
MEASUREMENT FRAME 605 14.5.2 TRACKING AND ESTIMATION FRAME 605 14.6
ANTENNA MOUNTS AND SERVO SYSTEMS 606 14.7 ON-AXIS TRACKING 608 14.7.1
CROSSING TARGETS AND APPARENT ACCELERATION 608 14.7.2 MILLIMETER WAVE
TRACKING RADAR 616 14.8 TRACKING IN CARTESIAN SPACE 619 14.9 WORKED
EXAMPLE: FIRE CONTROL RADAR 620 14.9.1 REQUIREMENTS 621 14.9.2 SELECTION
OF POLARIZATION 621 14.9.3 POSITIONER SPECIFICATIONS 622 14.9.4 RADAR
HORIZON 622 14.9.5 SELECTION OF FREQUENCY 623 14.9.6 ADVERSE WEATHER
EFFECTS 623 14.9.7 REQUIRED SINGLE PULSE SIGNAL-TO-NOISE RATIO 624
14.9.8 TRACKING GATE SIZE 626 14.9.9 SIGNAL-TO-CLUTTER 626 14.9.10
MOVING TARGET INDICATOR 627 14.9.11 THE PULSE REPETITION FREQUENCY 627
14.9.12 SEARCH REQUIREMENT 628 14.9.13 INTEGRATION GAIN 630 XX TABLE OF
CONTENTS 14.9.14 MATCHED FILTER 630 14.9.15 TRANSMITTER POWER 631
14.9.16 SYSTEM CONFIGURATION 631 14.9.17 FREE SPACE DETECTION RANGE 632
14.9.18 EFFECTS OF MULTIPATH ON AIRCRAFT DETECTION 634 14.9.19 DETECTION
THRESHOLD AND CFAR 636 14.9.20 TRANSITION TO TRACK 637 14.9.21 TARGET
TRACKING 637 14.10 REFERENCES 640 CHAPTER 15 RADIO FREQUENCY
IDENTIFICATION TAGS AND TRANSPONDERS 641 15.1 PRINCIPLE OF OPERATION 641
15.2 HISTORY 641 15.3 SECONDARY SURVEILLANCE RADAR 642 15.3.1
INTERROGATION EQUIPMENT 643 15.3.2 TRANSPONDER EQUIPMENT 643 15.3.3
OPERATION 643 15.3.4 SSR ISSUES 644 15.3.4.1 SIDELOBE PROBLEMS 644
15.3.4.2 CONGESTION 645 15.4 RADIO FREQUENCY IDENTIFICATION (RFID)
SYSTEMS 646 15.4.1 ELECTRONIC ARTICLE SURVEILLANCE (EAS) 647 15.4.1.1
RADIO FREQUENCY TAGS 647 15.4.1.2 ACOUSTO-MAGNETIC TAGS 647 15.4.1.3
MICROWAVE TAGS (E-TAGS) 648 15.4.2 MULTIBIT EAS TAGS 649 15.4.3 MAGNETIC
COUPLED RFID TRANSPONDER SYSTEMS 649 15.4.3.1 OPERATIONAL PRINCIPLES 649
15.4.4 ELECTROMAGNETIC COUPLED RFID TRANSPONDER SYSTEMS 650 15.5 OTHER
APPLICATIONS 652 15.5.1 HOUSE ARREST TAG 652 15.6 SOCIAL ISSUES 653 15.7
TECHNICAL CHALLENGES 654 15.8 HARMONIC RADAR 655 15.9 BATTLEFIELD COMBAT
ID SYSTEM (BCIS) 655 15.9.1 COMBAT IDENTIFICATION: THE FUTURE 656 15.10
REFERENCES 657 CHAPTER 16 TOMOGRAPHY AND 3D IMAGING 659 16.1 PRINCIPLE
OF OPERATION 659 16.2 CT IMAGING 660 16.2.1 IMAGE RECONSTRUCTION 662
TABLE OF CONTENTS XXI 16.2.2 WHAT IS DISPLAYED IN CT IMAGES 664 16.2.3
TWO DIMENSIONAL DISPLAYS 665 16.2.4 THREE DIMENSIONAL DISPLAYS 665 16.3
MAGNETIC RESONANCE IMAGING (MRI) 665 16.3.1 NUCLEAR MAGNETIC RESONANCE
(NMR) 667 16.3.2 IMAGING PROCESS 670 16.3.3 IMAGING RESOLUTION 673 16.4
MRI IMAGES 673 16.5 FUNCTIONAL MRI INVESTIGATIONS OF BRAIN FUNCTION 673
16.6 POSITRON EMISSION TOMOGRAPHY 674 16.6.1 EXAMPLES OF THE USE OF PET
SCANS 677 16.7 3D ULTRASOUND IMAGING 677 16.7.1 2D MEDICAL ULTRASOUND
677 16.7.1.1 MEDICAL APPLICATIONS 680 16.7.1.2 DANGERS OF ULTRASOUND USE
680 16.8 3D EXTENSION 680 16.8.1 ULTRASONIC COMPUTED TOMOGRAPHY 682 16.9
3D SONAR IMAGING 683 16.10 GROUND PENETRATING RADAR 686 16.10.1 3D
IMAGING USING GPR 690 16.11 WORKED EXAMPLE: DETECTING A RUBY NODULE IN A
ROCK MATRIX 691 16.12 REFERENCES 693 INDEX 695 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Brooker, Graham |
author_GND | (DE-588)1075230098 |
author_facet | Brooker, Graham |
author_role | aut |
author_sort | Brooker, Graham |
author_variant | g b gb |
building | Verbundindex |
bvnumber | BV035125627 |
callnumber-first | T - Technology |
callnumber-label | TA165 |
callnumber-raw | TA165 |
callnumber-search | TA165 |
callnumber-sort | TA 3165 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | ZQ 3120 |
ctrlnum | (OCoLC)233798872 (DE-599)HBZHT015610743 |
dewey-full | 621.36/7 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.36/7 |
dewey-search | 621.36/7 |
dewey-sort | 3621.36 17 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
discipline_str_mv | Elektrotechnik / Elektronik / Nachrichtentechnik Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02469nam a2200589 c 4500</leader><controlfield tag="001">BV035125627</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210922 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081028s2009 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781891121746</subfield><subfield code="9">978-1-891121-74-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789746521062</subfield><subfield code="9">978-9-746521-06-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781901121746</subfield><subfield code="9">978-1-901121-74-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)233798872</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT015610743</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA165</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.36/7</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZQ 3120</subfield><subfield code="0">(DE-625)158040:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brooker, Graham</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1075230098</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to sensors for ranging and imaging</subfield><subfield code="c">Graham Brooker</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Raleigh, NC</subfield><subfield code="b">SciTech Publishing Inc.</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 717 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Detectors</subfield><subfield code="x">Scientific applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Imaging systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radar</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Transponder</subfield><subfield code="0">(DE-588)4185921-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Radar</subfield><subfield code="0">(DE-588)4176765-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sensor</subfield><subfield code="0">(DE-588)4038824-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bildsensor</subfield><subfield code="0">(DE-588)4495594-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Radiometer</subfield><subfield code="0">(DE-588)4176837-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bildgebendes Verfahren</subfield><subfield code="0">(DE-588)4006617-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Sensor</subfield><subfield code="0">(DE-588)4038824-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Radar</subfield><subfield code="0">(DE-588)4176765-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Sensor</subfield><subfield code="0">(DE-588)4038824-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Bildgebendes Verfahren</subfield><subfield code="0">(DE-588)4006617-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Transponder</subfield><subfield code="0">(DE-588)4185921-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Radiometer</subfield><subfield code="0">(DE-588)4176837-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Sensor</subfield><subfield code="0">(DE-588)4038824-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="3"><subfield code="a">Bildsensor</subfield><subfield code="0">(DE-588)4495594-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-61353-142-6</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016793216&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016793216&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016793216</subfield></datafield></record></collection> |
id | DE-604.BV035125627 |
illustrated | Illustrated |
index_date | 2024-07-02T22:22:47Z |
indexdate | 2024-07-09T21:22:54Z |
institution | BVB |
isbn | 9781891121746 9789746521062 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016793216 |
oclc_num | 233798872 |
open_access_boolean | |
owner | DE-703 DE-29T |
owner_facet | DE-703 DE-29T |
physical | XXI, 717 Seiten Illustrationen, Diagramme |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | SciTech Publishing Inc. |
record_format | marc |
spelling | Brooker, Graham Verfasser (DE-588)1075230098 aut Introduction to sensors for ranging and imaging Graham Brooker Raleigh, NC SciTech Publishing Inc. 2009 XXI, 717 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Detectors Scientific applications Imaging systems Radar Transponder (DE-588)4185921-2 gnd rswk-swf Radar (DE-588)4176765-2 gnd rswk-swf Sensor (DE-588)4038824-4 gnd rswk-swf Bildsensor (DE-588)4495594-7 gnd rswk-swf Radiometer (DE-588)4176837-1 gnd rswk-swf Bildgebendes Verfahren (DE-588)4006617-4 gnd rswk-swf Sensor (DE-588)4038824-4 s Radar (DE-588)4176765-2 s DE-604 Bildgebendes Verfahren (DE-588)4006617-4 s Transponder (DE-588)4185921-2 s Radiometer (DE-588)4176837-1 s Bildsensor (DE-588)4495594-7 s Erscheint auch als Online-Ausgabe 978-1-61353-142-6 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016793216&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Klappentext GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016793216&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Brooker, Graham Introduction to sensors for ranging and imaging Detectors Scientific applications Imaging systems Radar Transponder (DE-588)4185921-2 gnd Radar (DE-588)4176765-2 gnd Sensor (DE-588)4038824-4 gnd Bildsensor (DE-588)4495594-7 gnd Radiometer (DE-588)4176837-1 gnd Bildgebendes Verfahren (DE-588)4006617-4 gnd |
subject_GND | (DE-588)4185921-2 (DE-588)4176765-2 (DE-588)4038824-4 (DE-588)4495594-7 (DE-588)4176837-1 (DE-588)4006617-4 |
title | Introduction to sensors for ranging and imaging |
title_auth | Introduction to sensors for ranging and imaging |
title_exact_search | Introduction to sensors for ranging and imaging |
title_exact_search_txtP | Introduction to sensors for ranging and imaging |
title_full | Introduction to sensors for ranging and imaging Graham Brooker |
title_fullStr | Introduction to sensors for ranging and imaging Graham Brooker |
title_full_unstemmed | Introduction to sensors for ranging and imaging Graham Brooker |
title_short | Introduction to sensors for ranging and imaging |
title_sort | introduction to sensors for ranging and imaging |
topic | Detectors Scientific applications Imaging systems Radar Transponder (DE-588)4185921-2 gnd Radar (DE-588)4176765-2 gnd Sensor (DE-588)4038824-4 gnd Bildsensor (DE-588)4495594-7 gnd Radiometer (DE-588)4176837-1 gnd Bildgebendes Verfahren (DE-588)4006617-4 gnd |
topic_facet | Detectors Scientific applications Imaging systems Radar Transponder Sensor Bildsensor Radiometer Bildgebendes Verfahren |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016793216&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016793216&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT brookergraham introductiontosensorsforrangingandimaging |