Frontiers in materials research:
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2008
|
Schriftenreihe: | Advances in materials research
10 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | XXI, 320 S. Ill., graph. Darst. |
ISBN: | 9783540779674 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV035125516 | ||
003 | DE-604 | ||
005 | 20120104 | ||
007 | t | ||
008 | 081028s2008 gw ad|| |||| 00||| eng d | ||
015 | |a 08,N05,1426 |2 dnb | ||
015 | |a 08,A31,1128 |2 dnb | ||
016 | 7 | |a 987108549 |2 DE-101 | |
020 | |a 9783540779674 |c Pp. : EUR 139.05 (freier Pr.), sfr 209.00 (freier Pr.) |9 978-3-540-77967-4 | ||
035 | |a (OCoLC)213114161 | ||
035 | |a (DE-599)DNB987108549 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-703 |a DE-11 | ||
050 | 0 | |a TA404.2 | |
082 | 0 | |a 620.11 |2 22 | |
082 | 0 | |a 620.11 |2 22/ger | |
084 | |a UQ 8050 |0 (DE-625)146587: |2 rvk | ||
084 | |a 620 |2 sdnb | ||
245 | 1 | 0 | |a Frontiers in materials research |c Yasunori Fujikawa ... (eds.) |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2008 | |
300 | |a XXI, 320 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Advances in materials research |v 10 | |
500 | |a Literaturangaben | ||
650 | 4 | |a Materials |x Research | |
650 | 0 | 7 | |a Hochleistungswerkstoff |0 (DE-588)4312250-4 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |y 2007 |z Tohoku |2 gnd-content | |
689 | 0 | 0 | |a Hochleistungswerkstoff |0 (DE-588)4312250-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Fujikawa, Yasunori |0 (DE-588)135828503 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-540-77968-1 |
830 | 0 | |a Advances in materials research |v 10 |w (DE-604)BV012271346 |9 10 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016793106&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016793106 |
Datensatz im Suchindex
_version_ | 1804138105348816896 |
---|---|
adam_text | Contents
1 Science, for the Benefit of Mankind
H.H. Rohrer..................................................... 1
1.1 Introduction............................................... 1
1.2 Which Benefit? Which Mankind?............................. 1
1.3 Mankind in Science......................................... 2
1.4 Mankind and Benefits in Society............................. 3
1.5 Science, for the Benefit of Mankind........................... 4
1.6 Freedom in Science......................................... 4
1.7 Reform of Science.......................................... 6
1.8 The Benefits of the Future?.................................. 7
Part I Novel Materials for Electronics
2 Trends of Condensed Matter Science: A Personal View
H. Fukuyama.................................................... 11
2.1 Introduction............................................... 11
2.2 Carrier Doping into Insulators ............................... 13
2.2.1 Doped Band Insulators............................... 13
2.2.2 Doped Mott Insulators............................... 15
2.3 From Bulk to Local......................................... 16
2.4 Electronic Properties of Molecular Solids...................... 18
2.4.1 Strongly Correlations in Molecular Solids............... 19
2.4.2 p-d Systems........................................ 22
2.5 Electronic Properties of Molecular Assemblies.................. 24
2.6 Some Concrete Targets of Bio-Material Science................ 25
References...................................................... 26
VIII Contents
3 Measurements and Mechanisms of Single-Molecule
Conductance Switching
A.M. Moore, B.A. Mantooth, A.A. Dameron, Z.J. Donhauser,
P.A. Lewis, R.K. Smith, D.J. Fuchs, and P.S. Weiss................. 29
3.1 Introduction............................................... 29
3.2 Methods .................................................. 30
3.2.1 Sample Preparation ................................. 30
3.2.2 Imaging............................................ 33
3.2.3 Apparent Height Determination....................... 34
3.2.4 Dipole Moment Calculations.......................... 34
3.3 Results and Discussion...................................... 35
3.3.1 Stochastic Conductance Switching..................... 35
3.3.2 Conductance Switching Mechanisms................... 36
3.3.3 Driven Conductance Switching........................ 41
3.4 Conclusions................................................ 43
References...................................................... 44
4 Exploration of Oxide Semiconductor Electronics
Through Parallel Synthesis of Epitaxial Thin Films
M. Kawasaki.................................................... 49
4.1 Introduction............................................... 49
4.2 Atomically Regulated Oxide Epitaxy.......................... 51
4.3 Integration of Oxide Epitaxy................................. 54
4.4 High Throughput Characterization ........................... 57
4.5 Oxide Semiconductors ...................................... 60
4.5.1 Ferromagnetic Oxide Semiconductors.................. 60
4.5.2 Optical Devices..................................... 64
4.5.3 Field Effect Devices ................................. 67
4.6 Conclusion and Future Prospects............................. 69
References...................................................... 71
5 Epitaxial Growth and Transport Properties
of High-Mobility ZnO-Based Heterostructures
A. Tsukazaki, A. Ohtomo, and M. Kawasaki........................ 77
References...................................................... 84
6 A Scaling Behavior of Anomalous Hall Effect in Cobalt
Doped TiO2
T. Fukumura, H. Toyosaki, K. Ueno, M. Nakano, T. Yamasaki,
and M. Kawasaki................................................ 87
References...................................................... 92
7 Synthesis, Phase Diagram, and Evolution of Electronic
Properties in LixZrNCl Superconductors
Y. Taguchi, A. Kitora, T. Takano, T. Kawabata, M. Hisakabe,
and Y. Iwasa.................................................... 93
References......................................................100
Contents IX
8 Ambipolar Tetraphenylpyrene (TPPy) Single-Crystal
Field-Effect Transistor with Symmetric and Asymmetric
Electrodes
S.Z. Bisri, T. Takahashi, T. Takenobu, M. Yahiro, C. Adachi,
and Y. Iwasa....................................................103
References......................................................109
9 Bulk Zinc Oxide and Gallium Nitride Crystals
by Solvothermal Techniques
D. Ehrentraut and T. Fukuda......................................Ill
9.1 Introduction...............................................Ill
9.2 Hydrothermal Growth of ZnO................................113
9.3 Ammonothermal Growth of Gallium Nitride...................117
9.4 Conclusion ................................................119
References......................................................119
Part II Materials for Ecological and Biological Systems
10 High-Quality Si Multicrystals with Same Grain Orientation
and Large Grain Size by the Newly Developed Dendritic
Casting Method for High-Efficiency Solar Cell Applications
K. Nakajima, K. Fujiwara, and N. Usami...........................123
10.1 In-Situ Observation System to Directly Observe the Growing
Interface of Si Crystals......................................125
10.2 Formation Mechanism of Parallel Twins Related to Si-Faceted
Dendrite Growth...........................................129
10.3 Growth of High-Quality Si Multicrystals by the Dendritic
Casting Method............................................131
10.4 Solar Cells Prepared by Si Multicrystals with the Same
Orientation................................................135
10.5 Quality of Si Multicrystals Grown by the Dendritic Casting
Method...................................................137
10.6 Summary..................................................139
References ......................................................140
11 Growth of High-Quality Polycrystalline Si Ingot
with Same Grain Orientation by Using Dendritic Casting
Method
K. Fujiwara, W. Pan, N. Usami, M. Tokairin, Y. Nose, A. Nomura,
T. Shishido, and K. Nakajima.....................................141
11.1 Introduction...............................................141
11.2 Experiments...............................................142
11.3 Results and Discussion......................................142
11.3.1 Direct Observations of Crystal Growth Behavior
of Si Melt..........................................142
X Contents
11.3.2 Dendritic Casting Method............................144
11.3.3 Growth of Poly-Si Ingot by Dendritic Casting Method ... 145
11.4 Conclusion ................................................147
References......................................................147
12 Floating Cast Method as a New Growth Method of Silicon
Bulk Multicrystals for Solar Cells
I. Takahashi, Y. Nose, N. Usami, K. Fujiwara, and K. Nakajima......149
12.1 Introduction...............................................149
12.2 Experimental Procedure.....................................150
12.3 Results and Discussion......................................151
12.4 Summary..................................................156
References......................................................156
13 Dehydriding Reaction of Hydrides Enhanced by Microwave
Irradiation
M. Matsuo, Y. Nakamori, K. Yamada, T. Tsutaoka, and S. Orimo.....157
13.1 Introduction...............................................157
13.2 Experimental..............................................158
13.3 Results and Discussion......................................158
13.3.1 Microwave Irradiation on Metal Hydrides MHn.........158
13.3.2 Microwave Irradiation on Complex Hydrides MBH4.....160
13.3.3 Mechanism of Rapid Heating of TiH2 and LiBH^.......161
13.3.4 Difference of the Amounts of Released Hydrogen
Between TiH2 and LiBHi ...........................163
13.3.5 Microwave Irradiation on the Composites of LiBH^
and TiH2 ..........................................164
13.4 Summary..................................................165
References......................................................166
14 Mechanically Multifunctional Properties
and Microstructure of New Beta-Type Titanium Alloy,
Ti-29Nb-13Ta-4.6Zr, for Biomedical Applications
M. Nakai, M. Niinomi, and T. Akahori.............................167
14.1 Introduction...............................................167
14.2 Experimental Procedures....................................168
14.2.1 Alloying Elements and Alloy Composition..............168
14.2.2 Thermomechanical Treatment.........................169
14.2.3 Microstructure Analysis..............................169
14.2.4 Mechanical Tests....................................169
14.2.5 Evaluation of Mechanical Biocompatibility .............171
14.3 Results and Discussion......................................171
14.3.1 Microstructure......................................171
14.3.2 Young s Modulus....................................174
14.3.3 Tensile Properties...................................176
14.3.4 Superelasticity......................................177
Contents XI
14.3.5 Fatigue Properties...................................179
14.3.6 Mechanical Biocompatibility..........................180
14.4 Conclusions................................................182
References ......................................................182
Part III Precise Control of Microscopic and Complex Systems
15 Atom Probe Tomography at The University of Sydney
B. Gault, M.P. Moody, D. W. Saxey, J.M. Cairney, Z. Liu, R. Zheng,
R.K.W. Marceau, P.V. Liddicoat, L.T. Stephenson, and S.P. Ringer ... 187
15.1 Introduction...............................................187
15.2 Field Evaporation Theory...................................189
15.3 Atom Probe Tomography....................................191
15.3.1 Projection of the Ions: the Third Dimension............191
15.3.2 Pulsing Modes......................................193
15.4 Specimen Preparation.......................................194
15.4.1 Cut-Out Method...................................195
15.4.2 Lift-Out Method...................................197
15.5 Experimental..............................................198
15.6 The Dual Beam SEM/FIB...................................201
15.7 Applications: Nanostructural Analysis of Materials .............202
15.7.1 Al-Cu-Mg Alloys....................................204
15.7.2 Fe-Base Alloys: Fenimnal Spinodal Alloy...............206
15.7.3 Al-Zn-Mg-Cu Alloys.................................209
15.8 Summary..................................................212
References......................................................213
16 A Study on Age Hardening in Cu-Ag Alloys
by Transmission Electron Microscopy
E. Shizuya and T.J. Konno.......................................217
16.1 Introduction...............................................217
16.2 Experimental Procedure.....................................218
16.3 Results....................................................219
16.4 Discussion.................................................224
16.5 Conclusions................................................225
References......................................................226
17 Rubber-Like Entropy Elasticity of a Glassy Alloy
M. Fukuhara, A. Inoue, and N. Nishiyama..........................227
17.1 Introduction...............................................227
17.2 Experimental..............................................228
17.3 Results and Discussions.....................................229
17.3.1 Temperature Dependence of the Elastic Parameters......229
17.3.2 Gough-Joule Effect..................................232
XII Contents
17.4 Conclusion ................................................233
References......................................................233
18 Formation and Mechanical Properties of Bulk Glassy
and Quasicrystalline Alloys in Zr-Al-Cu-Ti System
J.B. Qiang, W. Zhang, G.Q. Xie, and A. Inoue......................235
18.1 Introduction...............................................235
18.2 Experimental..............................................236
18.3 Results and Discussion......................................236
18.3.1 Formation of BMG and QCs by Liquid Cooling.........236
18.3.2 Formation of Bulk QCs by Glass Devitrification.........240
18.3.3 Mechanical Properties of BMG and Bulk QCs ..........241
18.4 Conclusions................................................243
References......................................................244
19 Fabrication and Characterization of Metallic Glassy
Matrix Composite Reinforced with ZrC 2 Particulate
by Spark Plasma Sintering Process
G. Q. Xie, D. V. Louzguine-Luzgin, W. Zhang, H. Kimura,
and A. Inoue....................................................245
19.1 Introduction...............................................245
19.2 Experimental Procedures....................................247
19.3 Results....................................................248
19.3.1 Preparation of Metallic Glassy Alloy Powders...........248
19.3.2 Fabrication and Characterization of Metallic Glassy
Matrix Composite...................................249
19.3.3 Mechanical Properties of Metallic Glassy Matrix
Composite..........................................252
19.4 Discussion.................................................253
19.5 Conclusions................................................254
References......................................................255
20 Nucleation and Growth of Thin Pentacene Films Studied
by LEEM and STM
J.T. Sadowski, A. Al-Mahboob, Y. Fujikawa, and T. Sakurai...........257
20.1 Introduction...............................................257
20.2 Experimental Setup.........................................258
20.3 Results and Discussion......................................261
20.3.1 Highly Ordered Pentacene Films on Bi(0001) ...........263
20.3.2 Anisotropic Growth of Pentacene......................269
20.3.3 Self-Polycrystallization in Epitaxial Pentacene Films
on H-Si(lll)........................................272
20.4 Conclusions................................................277
References......................................................278
Contents XIII
21 Mechanism of Chiral Growth of 6,13-Pentacenequinone
Films on Si(lll)
A. Al-Mahboob, J.T. Sadowski, T. Nishihara, Y. Fujikawa,
and T. Sakurai..................................................281
21.1 Introduction...............................................281
21.2 Experimental and Calculation Procedures.....................282
21.3 Results and Discussion......................................282
21.3.1 Growth and Thin Film Phase of PnQ on Si(lll)........282
21.3.2 Growth Anisotropy..................................286
21.3.3 Chiral Evolution of the Islands........................290
21.4 Conclusions................................................292
References......................................................292
22 GaN Integration on Si via Symmetry-Converted
Silicon-on-Insulator
Y. Fujikawa, Y. Yamada-Takamura, Z.T. Wang, G. Yoshikawa,
and T. Sakurai..................................................295
22.1 Introduction...............................................295
22.2 Interface Control of GaN Film Growth on Si(lll) ..............296
22.3 Integration of Wurtzite GaN on Si(001)
via Symmetry-Converted SOI................................298
22.4 Conclusions................................................302
References ......................................................302
23 Functional Probes for Scanning Probe Microscopy
K. Akiyama, T. Eguchi, M. Hamada, T. An, Y. Fujikawa,
Y. Hasegawa, and T. Sakurai......................................305
23.1 Introduction...............................................305
23.2 Fabrication of Functional Probes.............................306
23.2.1 Fabrication of a Metal-Tip Cantilever for KFM
and AFM Lithography...............................306
23.2.2 Fabrication of a Glass-Coated Tungsten Tip
for SR-STM........................................308
23.3 Characterization of the Functional Probes.....................309
23.3.1 TEM Observation of the Metal-Tip Cantilevers .........309
23.3.2 SEM/EDX Observation of Glass-Coated
Tungsten Tips......................................311
23.4 Results and Discussions.....................................312
23.4.1 KFM Observation with a Tungsten-Tip Cantilever.......312
23.4.2 AFM Lithography with a Au-Tip Cantilever............314
23.4.3 SR-STM Observation with a Glass-Coated
Tungsten Tip.......................................316
23.5 Conclusions................................................319
References......................................................320
|
adam_txt |
Contents
1 Science, for the Benefit of Mankind
H.H. Rohrer. 1
1.1 Introduction. 1
1.2 Which Benefit? Which Mankind?. 1
1.3 Mankind in Science. 2
1.4 Mankind and Benefits in Society. 3
1.5 Science, for the Benefit of Mankind. 4
1.6 Freedom in Science. 4
1.7 Reform of Science. 6
1.8 The Benefits of the Future?. 7
Part I Novel Materials for Electronics
2 Trends of Condensed Matter Science: A Personal View
H. Fukuyama. 11
2.1 Introduction. 11
2.2 Carrier Doping into Insulators . 13
2.2.1 Doped Band Insulators. 13
2.2.2 Doped Mott Insulators. 15
2.3 From Bulk to Local. 16
2.4 Electronic Properties of Molecular Solids. 18
2.4.1 Strongly Correlations in Molecular Solids. 19
2.4.2 p-d Systems. 22
2.5 Electronic Properties of Molecular Assemblies. 24
2.6 Some Concrete Targets of Bio-Material Science. 25
References. 26
VIII Contents
3 Measurements and Mechanisms of Single-Molecule
Conductance Switching
A.M. Moore, B.A. Mantooth, A.A. Dameron, Z.J. Donhauser,
P.A. Lewis, R.K. Smith, D.J. Fuchs, and P.S. Weiss. 29
3.1 Introduction. 29
3.2 Methods . 30
3.2.1 Sample Preparation . 30
3.2.2 Imaging. 33
3.2.3 Apparent Height Determination. 34
3.2.4 Dipole Moment Calculations. 34
3.3 Results and Discussion. 35
3.3.1 Stochastic Conductance Switching. 35
3.3.2 Conductance Switching Mechanisms. 36
3.3.3 Driven Conductance Switching. 41
3.4 Conclusions. 43
References. 44
4 Exploration of Oxide Semiconductor Electronics
Through Parallel Synthesis of Epitaxial Thin Films
M. Kawasaki. 49
4.1 Introduction. 49
4.2 Atomically Regulated Oxide Epitaxy. 51
4.3 Integration of Oxide Epitaxy. 54
4.4 High Throughput Characterization . 57
4.5 Oxide Semiconductors . 60
4.5.1 Ferromagnetic Oxide Semiconductors. 60
4.5.2 Optical Devices. 64
4.5.3 Field Effect Devices . 67
4.6 Conclusion and Future Prospects. 69
References. 71
5 Epitaxial Growth and Transport Properties
of High-Mobility ZnO-Based Heterostructures
A. Tsukazaki, A. Ohtomo, and M. Kawasaki. 77
References. 84
6 A Scaling Behavior of Anomalous Hall Effect in Cobalt
Doped TiO2
T. Fukumura, H. Toyosaki, K. Ueno, M. Nakano, T. Yamasaki,
and M. Kawasaki. 87
References. 92
7 Synthesis, Phase Diagram, and Evolution of Electronic
Properties in LixZrNCl Superconductors
Y. Taguchi, A. Kitora, T. Takano, T. Kawabata, M. Hisakabe,
and Y. Iwasa. 93
References.100
Contents IX
8 Ambipolar Tetraphenylpyrene (TPPy) Single-Crystal
Field-Effect Transistor with Symmetric and Asymmetric
Electrodes
S.Z. Bisri, T. Takahashi, T. Takenobu, M. Yahiro, C. Adachi,
and Y. Iwasa.103
References.109
9 Bulk Zinc Oxide and Gallium Nitride Crystals
by Solvothermal Techniques
D. Ehrentraut and T. Fukuda.Ill
9.1 Introduction.Ill
9.2 Hydrothermal Growth of ZnO.113
9.3 Ammonothermal Growth of Gallium Nitride.117
9.4 Conclusion .119
References.119
Part II Materials for Ecological and Biological Systems
10 High-Quality Si Multicrystals with Same Grain Orientation
and Large Grain Size by the Newly Developed Dendritic
Casting Method for High-Efficiency Solar Cell Applications
K. Nakajima, K. Fujiwara, and N. Usami.123
10.1 In-Situ Observation System to Directly Observe the Growing
Interface of Si Crystals.125
10.2 Formation Mechanism of Parallel Twins Related to Si-Faceted
Dendrite Growth.129
10.3 Growth of High-Quality Si Multicrystals by the Dendritic
Casting Method.131
10.4 Solar Cells Prepared by Si Multicrystals with the Same
Orientation.135
10.5 Quality of Si Multicrystals Grown by the Dendritic Casting
Method.137
10.6 Summary.139
References .140
11 Growth of High-Quality Polycrystalline Si Ingot
with Same Grain Orientation by Using Dendritic Casting
Method
K. Fujiwara, W. Pan, N. Usami, M. Tokairin, Y. Nose, A. Nomura,
T. Shishido, and K. Nakajima.141
11.1 Introduction.141
11.2 Experiments.142
11.3 Results and Discussion.142
11.3.1 Direct Observations of Crystal Growth Behavior
of Si Melt.142
X Contents
11.3.2 Dendritic Casting Method.144
11.3.3 Growth of Poly-Si Ingot by Dendritic Casting Method . 145
11.4 Conclusion .147
References.147
12 Floating Cast Method as a New Growth Method of Silicon
Bulk Multicrystals for Solar Cells
I. Takahashi, Y. Nose, N. Usami, K. Fujiwara, and K. Nakajima.149
12.1 Introduction.149
12.2 Experimental Procedure.150
12.3 Results and Discussion.151
12.4 Summary.156
References.156
13 Dehydriding Reaction of Hydrides Enhanced by Microwave
Irradiation
M. Matsuo, Y. Nakamori, K. Yamada, T. Tsutaoka, and S. Orimo.157
13.1 Introduction.157
13.2 Experimental.158
13.3 Results and Discussion.158
13.3.1 Microwave Irradiation on Metal Hydrides MHn.158
13.3.2 Microwave Irradiation on Complex Hydrides MBH4.160
13.3.3 Mechanism of Rapid Heating of TiH2 and LiBH^.161
13.3.4 Difference of the Amounts of Released Hydrogen
Between TiH2 and LiBHi .163
13.3.5 Microwave Irradiation on the Composites of LiBH^
and TiH2 .164
13.4 Summary.165
References.166
14 Mechanically Multifunctional Properties
and Microstructure of New Beta-Type Titanium Alloy,
Ti-29Nb-13Ta-4.6Zr, for Biomedical Applications
M. Nakai, M. Niinomi, and T. Akahori.167
14.1 Introduction.167
14.2 Experimental Procedures.168
14.2.1 Alloying Elements and Alloy Composition.168
14.2.2 Thermomechanical Treatment.169
14.2.3 Microstructure Analysis.169
14.2.4 Mechanical Tests.169
14.2.5 Evaluation of Mechanical Biocompatibility .171
14.3 Results and Discussion.171
14.3.1 Microstructure.171
14.3.2 Young's Modulus.174
14.3.3 Tensile Properties.176
14.3.4 Superelasticity.177
Contents XI
14.3.5 Fatigue Properties.179
14.3.6 Mechanical Biocompatibility.180
14.4 Conclusions.182
References .182
Part III Precise Control of Microscopic and Complex Systems
15 Atom Probe Tomography at The University of Sydney
B. Gault, M.P. Moody, D. W. Saxey, J.M. Cairney, Z. Liu, R. Zheng,
R.K.W. Marceau, P.V. Liddicoat, L.T. Stephenson, and S.P. Ringer . 187
15.1 Introduction.187
15.2 Field Evaporation Theory.189
15.3 Atom Probe Tomography.191
15.3.1 Projection of the Ions: the Third Dimension.191
15.3.2 Pulsing Modes.193
15.4 Specimen Preparation.194
15.4.1 'Cut-Out' Method.195
15.4.2 'Lift-Out' Method.197
15.5 Experimental.198
15.6 The Dual Beam SEM/FIB.201
15.7 Applications: Nanostructural Analysis of Materials .202
15.7.1 Al-Cu-Mg Alloys.204
15.7.2 Fe-Base Alloys: Fenimnal Spinodal Alloy.206
15.7.3 Al-Zn-Mg-Cu Alloys.209
15.8 Summary.212
References.213
16 A Study on Age Hardening in Cu-Ag Alloys
by Transmission Electron Microscopy
E. Shizuya and T.J. Konno.217
16.1 Introduction.217
16.2 Experimental Procedure.218
16.3 Results.219
16.4 Discussion.224
16.5 Conclusions.225
References.226
17 Rubber-Like Entropy Elasticity of a Glassy Alloy
M. Fukuhara, A. Inoue, and N. Nishiyama.227
17.1 Introduction.227
17.2 Experimental.228
17.3 Results and Discussions.229
17.3.1 Temperature Dependence of the Elastic Parameters.229
17.3.2 Gough-Joule Effect.232
XII Contents
17.4 Conclusion .233
References.233
18 Formation and Mechanical Properties of Bulk Glassy
and Quasicrystalline Alloys in Zr-Al-Cu-Ti System
J.B. Qiang, W. Zhang, G.Q. Xie, and A. Inoue.235
18.1 Introduction.235
18.2 Experimental.236
18.3 Results and Discussion.236
18.3.1 Formation of BMG and QCs by Liquid Cooling.236
18.3.2 Formation of Bulk QCs by Glass Devitrification.240
18.3.3 Mechanical Properties of BMG and Bulk QCs .241
18.4 Conclusions.243
References.244
19 Fabrication and Characterization of Metallic Glassy
Matrix Composite Reinforced with ZrC 2 Particulate
by Spark Plasma Sintering Process
G. Q. Xie, D. V. Louzguine-Luzgin, W. Zhang, H. Kimura,
and A. Inoue.245
19.1 Introduction.245
19.2 Experimental Procedures.247
19.3 Results.248
19.3.1 Preparation of Metallic Glassy Alloy Powders.248
19.3.2 Fabrication and Characterization of Metallic Glassy
Matrix Composite.249
19.3.3 Mechanical Properties of Metallic Glassy Matrix
Composite.252
19.4 Discussion.253
19.5 Conclusions.254
References.255
20 Nucleation and Growth of Thin Pentacene Films Studied
by LEEM and STM
J.T. Sadowski, A. Al-Mahboob, Y. Fujikawa, and T. Sakurai.257
20.1 Introduction.257
20.2 Experimental Setup.258
20.3 Results and Discussion.261
20.3.1 Highly Ordered Pentacene Films on Bi(0001) .263
20.3.2 Anisotropic Growth of Pentacene.269
20.3.3 Self-Polycrystallization in Epitaxial Pentacene Films
on H-Si(lll).272
20.4 Conclusions.277
References.278
Contents XIII
21 Mechanism of Chiral Growth of 6,13-Pentacenequinone
Films on Si(lll)
A. Al-Mahboob, J.T. Sadowski, T. Nishihara, Y. Fujikawa,
and T. Sakurai.281
21.1 Introduction.281
21.2 Experimental and Calculation Procedures.282
21.3 Results and Discussion.282
21.3.1 Growth and Thin Film Phase of PnQ on Si(lll).282
21.3.2 Growth Anisotropy.286
21.3.3 Chiral Evolution of the Islands.290
21.4 Conclusions.292
References.292
22 GaN Integration on Si via Symmetry-Converted
Silicon-on-Insulator
Y. Fujikawa, Y. Yamada-Takamura, Z.T. Wang, G. Yoshikawa,
and T. Sakurai.295
22.1 Introduction.295
22.2 Interface Control of GaN Film Growth on Si(lll) .296
22.3 Integration of Wurtzite GaN on Si(001)
via Symmetry-Converted SOI.298
22.4 Conclusions.302
References .302
23 Functional Probes for Scanning Probe Microscopy
K. Akiyama, T. Eguchi, M. Hamada, T. An, Y. Fujikawa,
Y. Hasegawa, and T. Sakurai.305
23.1 Introduction.305
23.2 Fabrication of Functional Probes.306
23.2.1 Fabrication of a Metal-Tip Cantilever for KFM
and AFM Lithography.306
23.2.2 Fabrication of a Glass-Coated Tungsten Tip
for SR-STM.308
23.3 Characterization of the Functional Probes.309
23.3.1 TEM Observation of the Metal-Tip Cantilevers .309
23.3.2 SEM/EDX Observation of Glass-Coated
Tungsten Tips.311
23.4 Results and Discussions.312
23.4.1 KFM Observation with a Tungsten-Tip Cantilever.312
23.4.2 AFM Lithography with a Au-Tip Cantilever.314
23.4.3 SR-STM Observation with a Glass-Coated
Tungsten Tip.316
23.5 Conclusions.319
References.320 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Fujikawa, Yasunori |
author2_role | edt |
author2_variant | y f yf |
author_GND | (DE-588)135828503 |
author_facet | Fujikawa, Yasunori |
building | Verbundindex |
bvnumber | BV035125516 |
callnumber-first | T - Technology |
callnumber-label | TA404 |
callnumber-raw | TA404.2 |
callnumber-search | TA404.2 |
callnumber-sort | TA 3404.2 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | UQ 8050 |
ctrlnum | (OCoLC)213114161 (DE-599)DNB987108549 |
dewey-full | 620.11 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.11 |
dewey-search | 620.11 |
dewey-sort | 3620.11 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Maschinenbau / Maschinenwesen Physik |
discipline_str_mv | Maschinenbau / Maschinenwesen Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01833nam a2200481 cb4500</leader><controlfield tag="001">BV035125516</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120104 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081028s2008 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,N05,1426</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,A31,1128</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">987108549</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540779674</subfield><subfield code="c">Pp. : EUR 139.05 (freier Pr.), sfr 209.00 (freier Pr.)</subfield><subfield code="9">978-3-540-77967-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)213114161</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB987108549</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA404.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.11</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.11</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 8050</subfield><subfield code="0">(DE-625)146587:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">620</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Frontiers in materials research</subfield><subfield code="c">Yasunori Fujikawa ... (eds.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 320 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Advances in materials research</subfield><subfield code="v">10</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materials</subfield><subfield code="x">Research</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hochleistungswerkstoff</subfield><subfield code="0">(DE-588)4312250-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">2007</subfield><subfield code="z">Tohoku</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hochleistungswerkstoff</subfield><subfield code="0">(DE-588)4312250-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fujikawa, Yasunori</subfield><subfield code="0">(DE-588)135828503</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-540-77968-1</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Advances in materials research</subfield><subfield code="v">10</subfield><subfield code="w">(DE-604)BV012271346</subfield><subfield code="9">10</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016793106&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016793106</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift 2007 Tohoku gnd-content |
genre_facet | Konferenzschrift 2007 Tohoku |
id | DE-604.BV035125516 |
illustrated | Illustrated |
index_date | 2024-07-02T22:22:44Z |
indexdate | 2024-07-09T21:22:54Z |
institution | BVB |
isbn | 9783540779674 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016793106 |
oclc_num | 213114161 |
open_access_boolean | |
owner | DE-703 DE-11 |
owner_facet | DE-703 DE-11 |
physical | XXI, 320 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
series | Advances in materials research |
series2 | Advances in materials research |
spelling | Frontiers in materials research Yasunori Fujikawa ... (eds.) Berlin [u.a.] Springer 2008 XXI, 320 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Advances in materials research 10 Literaturangaben Materials Research Hochleistungswerkstoff (DE-588)4312250-4 gnd rswk-swf (DE-588)1071861417 Konferenzschrift 2007 Tohoku gnd-content Hochleistungswerkstoff (DE-588)4312250-4 s DE-604 Fujikawa, Yasunori (DE-588)135828503 edt Erscheint auch als Online-Ausgabe 978-3-540-77968-1 Advances in materials research 10 (DE-604)BV012271346 10 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016793106&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Frontiers in materials research Advances in materials research Materials Research Hochleistungswerkstoff (DE-588)4312250-4 gnd |
subject_GND | (DE-588)4312250-4 (DE-588)1071861417 |
title | Frontiers in materials research |
title_auth | Frontiers in materials research |
title_exact_search | Frontiers in materials research |
title_exact_search_txtP | Frontiers in materials research |
title_full | Frontiers in materials research Yasunori Fujikawa ... (eds.) |
title_fullStr | Frontiers in materials research Yasunori Fujikawa ... (eds.) |
title_full_unstemmed | Frontiers in materials research Yasunori Fujikawa ... (eds.) |
title_short | Frontiers in materials research |
title_sort | frontiers in materials research |
topic | Materials Research Hochleistungswerkstoff (DE-588)4312250-4 gnd |
topic_facet | Materials Research Hochleistungswerkstoff Konferenzschrift 2007 Tohoku |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016793106&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV012271346 |
work_keys_str_mv | AT fujikawayasunori frontiersinmaterialsresearch |