Using eye movements as an experimental probe of brain function:
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Tagungsbericht Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Elsevier
2008
|
Ausgabe: | 1. ed. |
Schriftenreihe: | Progress in brain research
171 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXII, 613 S. zahlr. Ill. und graph. Darst. |
ISBN: | 9780444531636 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV035124651 | ||
003 | DE-604 | ||
005 | 20150703 | ||
007 | t | ||
008 | 081028s2008 ad|| |||| 11||| eng d | ||
020 | |a 9780444531636 |9 978-0-444-53163-6 | ||
035 | |a (OCoLC)496783936 | ||
035 | |a (DE-599)HBZHT015691843 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-20 |a DE-12 |a DE-355 | ||
084 | |a CP 2500 |0 (DE-625)18974: |2 rvk | ||
245 | 1 | 0 | |a Using eye movements as an experimental probe of brain function |c a Symposium in Honor of Jean Büttner-Ennever. Ed. by Christopher Kennard ... |
250 | |a 1. ed. | ||
264 | 1 | |a Amsterdam [u.a.] |b Elsevier |c 2008 | |
300 | |a XXII, 613 S. |b zahlr. Ill. und graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Progress in brain research |v 171 | |
650 | 2 | |a Encéphale - Actes de congrès | |
650 | 7 | |a Encéphale - Congrès |2 ram | |
650 | 2 | |a Mouvements oculaires - Actes de congrès | |
650 | 7 | |a Neurobiologie - Congrès |2 ram | |
650 | 7 | |a Oeil - Mouvements - Congrès |2 ram | |
650 | 4 | |a Brain | |
650 | 4 | |a Eye |x Movements | |
650 | 4 | |a Neurobiology | |
650 | 0 | 7 | |a Augenbewegung |0 (DE-588)4003583-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Visuelle Wahrnehmung |0 (DE-588)4078921-4 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4016928-5 |a Festschrift |2 gnd-content | |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |y 2007 |z London |2 gnd-content | |
689 | 0 | 0 | |a Visuelle Wahrnehmung |0 (DE-588)4078921-4 |D s |
689 | 0 | 1 | |a Augenbewegung |0 (DE-588)4003583-9 |D s |
689 | 0 | |C b |5 DE-604 | |
700 | 1 | |a Kennard, Christopher |4 edt | |
700 | 1 | |a Büttner-Ennever, Jean A. |0 (DE-588)1047952254 |4 hnr | |
711 | 2 | |a Symposium in Honor of Jean Büttner-Ennever |d 2007 |c London |j Sonstige |0 (DE-588)6522418-8 |4 oth | |
830 | 0 | |a Progress in brain research |v 171 |w (DE-604)BV008000363 |9 171 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016792255&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016792255 |
Datensatz im Suchindex
_version_ | 1804138104180703232 |
---|---|
adam_text | Contents
List of contributors v
Foreword xiii
1. Using Novel Techniques to Define the Neural Control of Extraocular Muscles
1.1. Mapping the oculomotor system
J.A. Biittner-Ennever (Munich, Germany) 3
1.2. Neuronal signalling expression profiles of motoneurons supplying multiply or
singly innervated extraocular muscle fibres in monkey
H.S. Ying, K. Fackelmann, A. Messoudi, X.-f. Tang, J.A. Biittner-Ennever
and A.K.E. Horn (Baltimore, MD, USA and Munich, Germany) 13
1.3. Histochemical characterisation of trigeminal neurons that innervate monkey
extraocular muscles
K. Fackelmann, A. Nouriani, A.K.E. Horn and J.A. Biittner-Ennever
(Munich, Germany) 17
1.4. Functional anatomy of the extraocular muscles during vergence
J.L. Demer, R.A. Clark, B.T. Crane, J.-R. Tian, A. Narasimhan and S. Karim
(Los Angeles, CA and Baltimore, MD, USA) 21
1.5. Induced extraocular muscle afferent signals: from pigeons to people
P.C. Knox (Liverpool, UK) 29
1.6. Monkey primary somatosensory cortex has a proprioceptive representation of eye position
M. Zhang, X. Wang and M.E. Goldberg (New York, NY, USA) 37
1.7. Acute superior oblique palsy in the monkey: effects of viewing conditions on ocular
alignment and modelling of the ocular motor plant
C. Quaia, X. Shan, J. Tian, H. Ying, L.M. Optican, M. Walker, R. Tamargo and
D.S. Zee (Bethesda, Baltimore, MD and Cleveland, OH, USA) 47
1.8. Dynamic aspects of trochlear nerve palsy
D. Straumann, C.J. Bockisch and K.P. Weber (Zurich, Switzerland and
Sydney, Australia) 53
XV
xvi
1.9. Ocular motor nerve palsies: implications for diagnosis and mechanisms of repair
J.A. Sharpe, A.M.F. Wong and M. Fouladvand (Toronto, ON, Canada) 59
1.10. Extraocular proprioception and new treatments for infantile nystagmus syndrome
L.F. Dell Osso and Z.I. Wang (Cleveland, OH, USA) 67
2. New Insights into Brainstem Generation of Ocular Motor Commands
2.1. Neural circuits for triggering saccades in the brainstem
Y. Shinoda, Y. Sugiuchi, Y. Izawa and M. Takahashi (Tokyo, Japan) 79
2.2. Brainstem circuits controlling lid-eye coordination in monkey
A.K.E. Horn and J.A. Biittner-Ennever (Munich, Germany) 87
2.3. Defining the pupillary component of the perioculomotor preganglionic population
within a unitary primate Edinger-Westphal nucleus
P.J. May, W. Sun and J.T. Erichsen
(Jackson, MS, Seattle, WA, USA and Cardiff, UK) 97
2.4. Frontal eye field signals that may trigger the brainstem saccade generator
E.L. Keller, B.-T. Lee and K.-M. Lee (San Francisco, CA, USA and Seoul, Korea) . 107
2.5. The role of omnipause neurons: why glycine?
L.M. Optican (Bethesda, MD, USA) 115
2.6. Applying saccade models to account for oscillations
S. Ramat, R.J. Leigh, D.S. Zee, A.G. Shaikh and L.M. Optican
(Pavia, Italy, Cleveland, OH, Baltimore and Bethesda, MD, USA) 123
2.7. Dynamics of saccadic oscillations
R.A. Clement, D.S. Broomhead and O.E. Akman
(London, Manchester and Edinburgh, UK) 131
2.8. Effects of failure of development of crossing brainstem pathways on ocular motor control
J.C. Jen (Los Angeles, CA, USA) 137
2.9. Neuronal evidence for individual eye control in the primate cMRF
D.M. Waitzman, M.R. Van Horn and K.E. Cullen
(Farmington, CT, USA and Montreal, QC, Canada) 143
3. Using Eye Movements as an Index of Transformation of Signals by the Cerebellum and Brainstem
3.1. Complex spike activity signals the direction and size of dysmetric saccade errors
R. Soetedjo, Y. Kojima and A. Fuchs (Seattle, WA, USA) 153
3.2. Role of the MST-DLPN pathway in smooth pursuit adaptation
S. Ono and M.J. Mustari (Atlanta, GA, USA) 161
xvii
3.3. Lesions of the cerebellar nodulus and uvula in monkeys: effect on otolith-ocular reflexes
M.F. Walker, J. Tian, X. Shan, R.J. Tamargo, H. Ying and D.S. Zee
(Baltimore, MD and Cleveland, OH, USA) 167
3.4. Vergence eye movement signals in the cerebellar dorsal vermis
T. Nitta, T. Akao, S. Kurkin and K. Fukushima (Sapporo, Japan) 173
3.5. Oculomotor anatomy and the motor-error problem: the role of the paramedian tract nuclei
P. Dean and J. Porrill (Sheffield, UK) 177
3.6. Impulsive testing of semicircular canal function
G.M. Halmagyi, K.P. Weber, S.T. Aw, M.J. Todd and I.S. Curthoys (Sydney, Australia) 187
3.7. Inter-ocular differences of the horizontal vestibulo-ocular reflex during impulsive testing
K.P. Weber, S.T. Aw, M.J. Todd, L.A. McGarvie, S. Pratap, I.S. Curthoys
and G.M. Halmagyi (Sydney, Australia) 195
3.8. Control of ocular torsion in the rotational vestibulo-ocular reflexes
B.J.M. Hess (Zurich, Switzerland) 199
3.9. Do humans show velocity-storage in the vertical rVOR?
G. Bertolini, C.J. Bockisch, D. Straumann, D.S. Zee and S. Ramat
(Pavia, Italy, Zurich, Switzerland and Baltimore, MD, USA) 207
3.10. Preserved otolith function in patients with cerebellar atrophy and bilateral
vestibulopathy
S. Marti, A.A. Tarnutzer, A. Palla and D. Straumann (Zurich, Switzerland) 211
3.11. Three-dimensional kinematics of saccadic eye movements in humans with
cerebellar degeneration
M.J. Thurtell, T. Raphan, R.A. Black, M.J. Todd, R.J. Leigh and G.M. Halmagyi
(Sydney, Australia, Cleveland, OH and Brooklyn, NY, USA) 215
3.12. Inferior olive hypertrophy and cerebellar learning are both needed to explain ocular
oscillations in oculopalatal tremor
S. Hong, R.J. Leigh, D.S. Zee and L.M. Optican
(Bethesda, MD, Cleveland, OH and Baltimore, MD, USA) 219
3.13. Impulsive head rotation resets oculopalatal tremor: examination of a model
K. Liao, S. Hong, D.S. Zee, L.M. Optican and R.J. Leigh
(Cleveland, OH, Bethesda and Baltimore, MD, USA) 227
4. Using Eye Movements as a Probe of Sensory-Motor Processing and Navigation
4.1. Human ocular following: evidence that responses to large-field stimuli are limited by
local and global inhibitory influences
B.M. Sheliga, E.J. FitzGibbon and F.A. Miles (Bethesda, MD, USA) 237
xviii
4.2. Short-latency disparity vergence eye movements: dependence on the preexisting
vergence angle
H.A. Rambold and F.A. Miles (Bethesda, MD, USA) 245
4.3. MSTd neurons during ocular following and smooth pursuit perturbation
U. Biittner, S. Ono, S. Glasauer, M.J. Mustari and U. Nuding
(Munich, Germany and Atlanta, GA, USA) 253
4.4. Neural activity in cortical areas MST and FEF in relation to smooth pursuit
gain control
U. Nuding, S. Ono, M.J. Mustari, U. Biittner and S. Glasauer
(Munich, Germany and Atlanta, GA, USA) 261
4.5. Eye position and cross-sensory learning both contribute to prism adaptation of
auditory space
Q.N. Cui, L. Bachus, E. Knoth, W.E. O Neill and G.D. Paige (Rochester, NY, USA) 265
4.6. Hysteresis effects of the subjective visual vertical during continuous quasi-static
whole-body roll rotation
A. Palla, M. Tatalias and D. Straumann (Zurich, Switzerland) 271
4.7. Perception of self motion during and after passive rotation of the body around an
earth-vertical axis
N. Sinha, N. Zaher, A.G. Shaikh, A.G. Lasker, D.S. Zee and A.A. Tarnutzer
(Baltimore, MD, USA, Zurich, Switzerland, Cambridge, UK and Lattakia, Syria). . . 277
4.8. The freezing rotation illusion
M.R. Diirsteler (Zurich, Switzerland) 283
4.9. Geometrical considerations on canal-otolith interactions during OVAR and
Bayesian modelling
J. Laurens, B.J.M. Hess and D. Straumann (Zurich, Switzerland) 287
4.10. Listing s plane and the otolith-mediated gravity vector
A.H. Clarke (Berlin, Germany) 291
4.11. A reinterpretation of the purpose of the translational vestibulo-ocular reflex in
human subjects
K. Liao, M.F. Walker, A. Joshi, M. Reschke, Z. Wang and R.J. Leigh
(Cleveland, OH and Houston, TX, USA) 295
4.12. Dynamics of binocular fixation of targets during fore-aft motion
S.B. Yakushin, D.A. Ogorodnokov, M. Kunin, B. Cohen and T. Raphan
(Brooklyn, New York, USA) 303
4.13. Differential coding of head rotation by lateral-vertical canal convergent central
vestibular neurons
J.N. Eron, B. Cohen, T. Raphan and S.B. Yakushin (New York, NY, USA) 313
xix
4.14. Cyclovergence evoked by up-down acceleration along longitudinal axis
in humans
I. Olasagasti, C.J. Bockisch, D.S. Zee and D. Straumann
(Zurich, Switzerland and Baltimore, MD, USA) 319
4.15. Oblique gaze shifts: head movements reveal new aspects of component coupling
E.G. Freedman and A.L. Cecala (Rochester, NY, USA) 323
4.16. Head movement control during head-free gaze shifts
N. Lehnen, U. Biittner and S. Glasauer (Munich, Germany) 331
4.17. Postural changes during eye—head movements
J. Fukushima, T. Asaka and K. Fukushima (Sapporo, Japan) 335
4.18. Cortical processing in vestibular navigation
B.M. Seemungal, V. Rizzo, M.A. Gresty, J.C. Rothwell and A.M. Bronstein
(London, UK) 339
4.19. Foot rotation contribution to trunk and gaze stability during whole-body mediated
gaze shifts: a principal component analysis study
S. Sklavos, D. Anastasopoulos, N. Ziavra, M.A. Hollands and A.M. Bronstein
(Athens, Greece, London and Birmingham, UK) 347
4.20. Supraspinal locomotor control in quadrupeds and humans
K. Jahn, A. Deutschlander, T. Stephan, R. Kalla, K. Hiifner, J. Wagner,
M. Strupp and T. Brandt (Munich, Germany) 353
4.21. Private lines of cortical visual information to the nucleus of the optic tract and
dorsolateral pontine nucleus
C. Distler and K.-P. Hoffmann (Bochum, Germany) 363
4.22. Gravity perception in cerebellar patients
A.A. Tarnutzer, S. Marti and D. Straumann (Zurich, Switzerland) 369
5. Using Eye Movements as a Probe of Cognition, Memory, and Prediction
5.1. Brain mechanisms for switching from automatic to controlled eye movements
O. Hikosaka and M. Isoda (Bethesda, MD, USA and Saitama, Japan) 375
5.2. The frontal eye field as a prediction map
T.B. Crapse and M.A. Sommer (Pittsburgh, PA, USA) 383
5.3. Volition and eye movements
P. Nachev, M. Husain and C. Kennard (London, UK) 391
5.4. Negative motivational control of saccadic eye movement by the lateral habenula
M. Matsumoto and O. Hikosaka (Bethesda, MD, USA) 399
XX
5.5. Eye movements as a probe of attention
A.H. Due, P. Bays and M. Husain (London, UK) 403
5.6. Using transcranial magnetic stimulation to probe decision-making and memory
R.M. Miiri and T. Nyffeler (Bern, Switzerland) 413
5.7. Supplementary eye field contributions to the execution of saccades to remembered
target locations
C.R. Rosenthal, T.L. Hodgson, M. Husain and C. Kennard
(London and Exeter, UK) 419
5.8. Multiple memory-guided saccades: movement memory improves the accuracy of
memory-guided saccades
S. Colnaghi, G. Beltrami, A. Cortese, W.H. Zangemeister, V. Cosi and M. Versino
(Pavia, Italy and Hamburg, Germany) 425
5.9. Visual vector inversion during memory antisaccades — a TMS study
T. Nyffeler, M. Hartmann, C.W. Hess and R.M. Miiri (Bern, Switzerland) 429
5.10. Predictive signals in the pursuit area of the monkey frontal eye fields
K. Fukushima, T. Akao, N. Shichinohe, T. Nitta, S. Kurkin and J. Fukushima
(Sapporo, Japan) 433
5.11. Internally generated smooth eye movement: its dynamic characteristics and role
in randomised and predictable pursuit
G.R. Barnes and C.J.S. Collins (Manchester, UK) 441
5.12. Predictive disjunctive pursuit of virtual images perceived to move in depth
P. Fu, R. Chang, K. O Beirne and W.M. King (Ann Arbor, MI, USA) 451
5.13. Tracking in 3-D space under natural viewing condition
H.A. Rambold, T. Sander, A. Sprenger and C. Helmchen
(Liibeck, Germany and Bethesda, MD, USA) 459
5.14. Exploring the pulvinar path to visual cortex
R.A. Berman and R.H. Wurtz (Bethesda, MD, USA) 467
5.15. The role of the human pulvinar in visual attention and action: evidence from
temporal-order judgements, saccade decision, and antisaccade tasks
I. Arend, L. Machado, R. Ward, M. McGrath, T. Ro and R.D. Rafal
(Bangor, UK, Dunedin, New Zealand and Huston, TX, USA) 475
6. Abnormal Eye Movements: Mechanisms and Treatment Strategies
6.1. How disturbed visual processing early in life leads to disorders of gaze-holding and
smooth pursuit
M.J. Mustari, S. Ono and K.C. Vitorello (Atlanta, GA, USA) 487
xxi
6.2. Manifest latent nystagmus: a case of sensori-motor switching
R. Abadi, R. Clement, T. Theodorou and C. Scallan
(Manchester, London and Sheffield, UK) 497
6.3. Eye hyperdeviation in mouse cerebellar mutants is comparable to the
gravity-dependent component of human downbeat nystagmus
J.S. Stahl and B.S. Oommen (Cleveland, OH, USA) 503
6.4. New insights into the upward vestibulo-oculomotor pathways in the
human brainstem
C. Pierrot-Deseilligny and C. Tilikete (Paris and Lyon, France) 509
6.5. Mechanisms of vestibulo-ocular reflex (VOR) cancellation in spinocerebellar ataxia
type 3 (SCA-3) and episodic ataxia type 2 (EA-2)
C.R. Gordon, A. Caspi, R. Levite and A.Z. Zivotofsky
(Kfar Saba, Tel Aviv and Ramat Gan, Israel) 519
6.6. Modelling drug modulation of nystagmus
S. Glasauer and C. Rossert (Munich, Germany) 527
6.7. Aminopyridines for the treatment of cerebellar and ocular motor disorders
M. Strupp, R. Kalla, S. Glasauer, J. Wagner, K. Hiifner, K. Jahn and T. Brandt
(Munich, Germany) 535
6.8. Baclofen, motion sickness susceptibility and the neural basis for velocity storage
B. Cohen, M. Dai, S.B. Yakushin and T. Raphan (New York, NY, USA) 543
6.9. Oculomotor deficits indicate the progression of Huntington s Disease
S.L. Hicks, M.P.A. Robert, C.V.P. Golding, S.J. Tabrizi and C. Kennard
(London, UK) 555
6.10. Eye movements in visual search indicate impaired saliency processing
in Parkinson s disease
S.K. Mannan, T.L. Hodgson, M. Husain and C. Kennard
(Exeter and London, UK) 559
6.11. Ocular motor anatomy in a case of interrupted saccades
J.C. Rucker, R.J. Leigh, L.M. Optican, E.L. Keller and J.A. Buttner-Ennever
(Chicago, IL, Cleveland, OH, Bethesda, MD, San Francisco, CA, USA
and Munich, Germany) 563
6.12. Mechanism of interrupted saccades in patients with late-onset Tay-Sachs disease
L.M. Optican, J.C. Rucker, E.L. Keller and R.J. Leigh
(Bethesda, MD, Chicago, IL, San Francisco, CA and Cleveland, OH, USA) 567
6.13. Conjugacy of horizontal saccades: application of binocular phase planes
A. Serra, K. Liao and R.J. Leigh
(Cleveland, OH, USA and Sassari and Troina, Italy) 571
xxii
6.14. The neuroanatomical basis of slow saccades in spinocerebellar ataxia type 2 (Wadia-subtype)
S. Geiner, A.K.E. Horn, N.H. Wadia, H. Sakai and J.A. Biittner-Ennever
(Munich, Germany, Mumbai, India and Nagoya, Japan) 575
6.15. Selective, circuit-wide sparing of floccular connections in hereditary olivopontine cerebellar
atrophy with slow saccades
S.H. Ying, A.K.E. Horn, S. Geiner, N.H. Wadia and J.A. Biittner-Ennever
(Baltimore, MD, USA, Munich, Germany and Mumbai, India) 583
6.16. A quick look at slow saccades after cardiac surgery: where is the lesion?
D. Solomon, S. Ramat, R.J. Leigh and D. Zee
(Baltimore, MD, USA, Pavia, Italy and Cleveland, OH, USA) 587
6.17. Eye and head torsion is affected in patients with midbrain lesions
O. Kremmyda, S. Glasauer, T. Eggert and U. Biittner (Munich, Germany) 591
6.18. Horizontal saccadic palsy associated with gliosis of the brainstem midline
J.A. Biittner-Ennever, T. Uemura, Y. Arai and J. Tateishi
(Munich, Germany, Fukuoka and Tokyo, Japan) 597
Subject Index 605
See Color Plate Section at the end of this book
|
adam_txt |
Contents
List of contributors v
Foreword xiii
1. Using Novel Techniques to Define the Neural Control of Extraocular Muscles
1.1. Mapping the oculomotor system
J.A. Biittner-Ennever (Munich, Germany) 3
1.2. Neuronal signalling expression profiles of motoneurons supplying multiply or
singly innervated extraocular muscle fibres in monkey
H.S. Ying, K. Fackelmann, A. Messoudi, X.-f. Tang, J.A. Biittner-Ennever
and A.K.E. Horn (Baltimore, MD, USA and Munich, Germany) 13
1.3. Histochemical characterisation of trigeminal neurons that innervate monkey
extraocular muscles
K. Fackelmann, A. Nouriani, A.K.E. Horn and J.A. Biittner-Ennever
(Munich, Germany) 17
1.4. Functional anatomy of the extraocular muscles during vergence
J.L. Demer, R.A. Clark, B.T. Crane, J.-R. Tian, A. Narasimhan and S. Karim
(Los Angeles, CA and Baltimore, MD, USA) 21
1.5. Induced extraocular muscle afferent signals: from pigeons to people
P.C. Knox (Liverpool, UK) 29
1.6. Monkey primary somatosensory cortex has a proprioceptive representation of eye position
M. Zhang, X. Wang and M.E. Goldberg (New York, NY, USA) 37
1.7. Acute superior oblique palsy in the monkey: effects of viewing conditions on ocular
alignment and modelling of the ocular motor plant
C. Quaia, X. Shan, J. Tian, H. Ying, L.M. Optican, M. Walker, R. Tamargo and
D.S. Zee (Bethesda, Baltimore, MD and Cleveland, OH, USA) 47
1.8. Dynamic aspects of trochlear nerve palsy
D. Straumann, C.J. Bockisch and K.P. Weber (Zurich, Switzerland and
Sydney, Australia) 53
XV
xvi
1.9. Ocular motor nerve palsies: implications for diagnosis and mechanisms of repair
J.A. Sharpe, A.M.F. Wong and M. Fouladvand (Toronto, ON, Canada) 59
1.10. Extraocular proprioception and new treatments for infantile nystagmus syndrome
L.F. Dell'Osso and Z.I. Wang (Cleveland, OH, USA) 67
2. New Insights into Brainstem Generation of Ocular Motor Commands
2.1. Neural circuits for triggering saccades in the brainstem
Y. Shinoda, Y. Sugiuchi, Y. Izawa and M. Takahashi (Tokyo, Japan) 79
2.2. Brainstem circuits controlling lid-eye coordination in monkey
A.K.E. Horn and J.A. Biittner-Ennever (Munich, Germany) 87
2.3. Defining the pupillary component of the perioculomotor preganglionic population
within a unitary primate Edinger-Westphal nucleus
P.J. May, W. Sun and J.T. Erichsen
(Jackson, MS, Seattle, WA, USA and Cardiff, UK) 97
2.4. Frontal eye field signals that may trigger the brainstem saccade generator
E.L. Keller, B.-T. Lee and K.-M. Lee (San Francisco, CA, USA and Seoul, Korea) . 107
2.5. The role of omnipause neurons: why glycine?
L.M. Optican (Bethesda, MD, USA) 115
2.6. Applying saccade models to account for oscillations
S. Ramat, R.J. Leigh, D.S. Zee, A.G. Shaikh and L.M. Optican
(Pavia, Italy, Cleveland, OH, Baltimore and Bethesda, MD, USA) 123
2.7. Dynamics of saccadic oscillations
R.A. Clement, D.S. Broomhead and O.E. Akman
(London, Manchester and Edinburgh, UK) 131
2.8. Effects of failure of development of crossing brainstem pathways on ocular motor control
J.C. Jen (Los Angeles, CA, USA) 137
2.9. Neuronal evidence for individual eye control in the primate cMRF
D.M. Waitzman, M.R. Van Horn and K.E. Cullen
(Farmington, CT, USA and Montreal, QC, Canada) 143
3. Using Eye Movements as an Index of Transformation of Signals by the Cerebellum and Brainstem
3.1. Complex spike activity signals the direction and size of dysmetric saccade errors
R. Soetedjo, Y. Kojima and A. Fuchs (Seattle, WA, USA) 153
3.2. Role of the MST-DLPN pathway in smooth pursuit adaptation
S. Ono and M.J. Mustari (Atlanta, GA, USA) 161
xvii
3.3. Lesions of the cerebellar nodulus and uvula in monkeys: effect on otolith-ocular reflexes
M.F. Walker, J. Tian, X. Shan, R.J. Tamargo, H. Ying and D.S. Zee
(Baltimore, MD and Cleveland, OH, USA) 167
3.4. Vergence eye movement signals in the cerebellar dorsal vermis
T. Nitta, T. Akao, S. Kurkin and K. Fukushima (Sapporo, Japan) 173
3.5. Oculomotor anatomy and the motor-error problem: the role of the paramedian tract nuclei
P. Dean and J. Porrill (Sheffield, UK) 177
3.6. Impulsive testing of semicircular canal function
G.M. Halmagyi, K.P. Weber, S.T. Aw, M.J. Todd and I.S. Curthoys (Sydney, Australia) 187
3.7. Inter-ocular differences of the horizontal vestibulo-ocular reflex during impulsive testing
K.P. Weber, S.T. Aw, M.J. Todd, L.A. McGarvie, S. Pratap, I.S. Curthoys
and G.M. Halmagyi (Sydney, Australia) 195
3.8. Control of ocular torsion in the rotational vestibulo-ocular reflexes
B.J.M. Hess (Zurich, Switzerland) 199
3.9. Do humans show velocity-storage in the vertical rVOR?
G. Bertolini, C.J. Bockisch, D. Straumann, D.S. Zee and S. Ramat
(Pavia, Italy, Zurich, Switzerland and Baltimore, MD, USA) 207
3.10. Preserved otolith function in patients with cerebellar atrophy and bilateral
vestibulopathy
S. Marti, A.A. Tarnutzer, A. Palla and D. Straumann (Zurich, Switzerland) 211
3.11. Three-dimensional kinematics of saccadic eye movements in humans with
cerebellar degeneration
M.J. Thurtell, T. Raphan, R.A. Black, M.J. Todd, R.J. Leigh and G.M. Halmagyi
(Sydney, Australia, Cleveland, OH and Brooklyn, NY, USA) 215
3.12. Inferior olive hypertrophy and cerebellar learning are both needed to explain ocular
oscillations in oculopalatal tremor
S. Hong, R.J. Leigh, D.S. Zee and L.M. Optican
(Bethesda, MD, Cleveland, OH and Baltimore, MD, USA) 219
3.13. Impulsive head rotation resets oculopalatal tremor: examination of a model
K. Liao, S. Hong, D.S. Zee, L.M. Optican and R.J. Leigh
(Cleveland, OH, Bethesda and Baltimore, MD, USA) 227
4. Using Eye Movements as a Probe of Sensory-Motor Processing and Navigation
4.1. Human ocular following: evidence that responses to large-field stimuli are limited by
local and global inhibitory influences
B.M. Sheliga, E.J. FitzGibbon and F.A. Miles (Bethesda, MD, USA) 237
xviii
4.2. Short-latency disparity vergence eye movements: dependence on the preexisting
vergence angle
H.A. Rambold and F.A. Miles (Bethesda, MD, USA) 245
4.3. MSTd neurons during ocular following and smooth pursuit perturbation
U. Biittner, S. Ono, S. Glasauer, M.J. Mustari and U. Nuding
(Munich, Germany and Atlanta, GA, USA) 253
4.4. Neural activity in cortical areas MST and FEF in relation to smooth pursuit
gain control
U. Nuding, S. Ono, M.J. Mustari, U. Biittner and S. Glasauer
(Munich, Germany and Atlanta, GA, USA) 261
4.5. Eye position and cross-sensory learning both contribute to prism adaptation of
auditory space
Q.N. Cui, L. Bachus, E. Knoth, W.E. O'Neill and G.D. Paige (Rochester, NY, USA) 265
4.6. Hysteresis effects of the subjective visual vertical during continuous quasi-static
whole-body roll rotation
A. Palla, M. Tatalias and D. Straumann (Zurich, Switzerland) 271
4.7. Perception of self motion during and after passive rotation of the body around an
earth-vertical axis
N. Sinha, N. Zaher, A.G. Shaikh, A.G. Lasker, D.S. Zee and A.A. Tarnutzer
(Baltimore, MD, USA, Zurich, Switzerland, Cambridge, UK and Lattakia, Syria). . . 277
4.8. The freezing rotation illusion
M.R. Diirsteler (Zurich, Switzerland) 283
4.9. Geometrical considerations on canal-otolith interactions during OVAR and
Bayesian modelling
J. Laurens, B.J.M. Hess and D. Straumann (Zurich, Switzerland) 287
4.10. Listing's plane and the otolith-mediated gravity vector
A.H. Clarke (Berlin, Germany) 291
4.11. A reinterpretation of the purpose of the translational vestibulo-ocular reflex in
human subjects
K. Liao, M.F. Walker, A. Joshi, M. Reschke, Z. Wang and R.J. Leigh
(Cleveland, OH and Houston, TX, USA) 295
4.12. Dynamics of binocular fixation of targets during fore-aft motion
S.B. Yakushin, D.A. Ogorodnokov, M. Kunin, B. Cohen and T. Raphan
(Brooklyn, New York, USA) 303
4.13. Differential coding of head rotation by lateral-vertical canal convergent central
vestibular neurons
J.N. Eron, B. Cohen, T. Raphan and S.B. Yakushin (New York, NY, USA) 313
xix
4.14. Cyclovergence evoked by up-down acceleration along longitudinal axis
in humans
I. Olasagasti, C.J. Bockisch, D.S. Zee and D. Straumann
(Zurich, Switzerland and Baltimore, MD, USA) 319
4.15. Oblique gaze shifts: head movements reveal new aspects of component coupling
E.G. Freedman and A.L. Cecala (Rochester, NY, USA) 323
4.16. Head movement control during head-free gaze shifts
N. Lehnen, U. Biittner and S. Glasauer (Munich, Germany) 331
4.17. Postural changes during eye—head movements
J. Fukushima, T. Asaka and K. Fukushima (Sapporo, Japan) 335
4.18. Cortical processing in vestibular navigation
B.M. Seemungal, V. Rizzo, M.A. Gresty, J.C. Rothwell and A.M. Bronstein
(London, UK) 339
4.19. Foot rotation contribution to trunk and gaze stability during whole-body mediated
gaze shifts: a principal component analysis study
S. Sklavos, D. Anastasopoulos, N. Ziavra, M.A. Hollands and A.M. Bronstein
(Athens, Greece, London and Birmingham, UK) 347
4.20. Supraspinal locomotor control in quadrupeds and humans
K. Jahn, A. Deutschlander, T. Stephan, R. Kalla, K. Hiifner, J. Wagner,
M. Strupp and T. Brandt (Munich, Germany) 353
4.21. Private lines of cortical visual information to the nucleus of the optic tract and
dorsolateral pontine nucleus
C. Distler and K.-P. Hoffmann (Bochum, Germany) 363
4.22. Gravity perception in cerebellar patients
A.A. Tarnutzer, S. Marti and D. Straumann (Zurich, Switzerland) 369
5. Using Eye Movements as a Probe of Cognition, Memory, and Prediction
5.1. Brain mechanisms for switching from automatic to controlled eye movements
O. Hikosaka and M. Isoda (Bethesda, MD, USA and Saitama, Japan) 375
5.2. The frontal eye field as a prediction map
T.B. Crapse and M.A. Sommer (Pittsburgh, PA, USA) 383
5.3. Volition and eye movements
P. Nachev, M. Husain and C. Kennard (London, UK) 391
5.4. Negative motivational control of saccadic eye movement by the lateral habenula
M. Matsumoto and O. Hikosaka (Bethesda, MD, USA) 399
XX
5.5. Eye movements as a probe of attention
A.H. Due, P. Bays and M. Husain (London, UK) 403
5.6. Using transcranial magnetic stimulation to probe decision-making and memory
R.M. Miiri and T. Nyffeler (Bern, Switzerland) 413
5.7. Supplementary eye field contributions to the execution of saccades to remembered
target locations
C.R. Rosenthal, T.L. Hodgson, M. Husain and C. Kennard
(London and Exeter, UK) 419
5.8. Multiple memory-guided saccades: movement memory improves the accuracy of
memory-guided saccades
S. Colnaghi, G. Beltrami, A. Cortese, W.H. Zangemeister, V. Cosi and M. Versino
(Pavia, Italy and Hamburg, Germany) 425
5.9. Visual vector inversion during memory antisaccades — a TMS study
T. Nyffeler, M. Hartmann, C.W. Hess and R.M. Miiri (Bern, Switzerland) 429
5.10. Predictive signals in the pursuit area of the monkey frontal eye fields
K. Fukushima, T. Akao, N. Shichinohe, T. Nitta, S. Kurkin and J. Fukushima
(Sapporo, Japan) 433
5.11. Internally generated smooth eye movement: its dynamic characteristics and role
in randomised and predictable pursuit
G.R. Barnes and C.J.S. Collins (Manchester, UK) 441
5.12. Predictive disjunctive pursuit of virtual images perceived to move in depth
P. Fu, R. Chang, K. O'Beirne and W.M. King (Ann Arbor, MI, USA) 451
5.13. Tracking in 3-D space under natural viewing condition
H.A. Rambold, T. Sander, A. Sprenger and C. Helmchen
(Liibeck, Germany and Bethesda, MD, USA) 459
5.14. Exploring the pulvinar path to visual cortex
R.A. Berman and R.H. Wurtz (Bethesda, MD, USA) 467
5.15. The role of the human pulvinar in visual attention and action: evidence from
temporal-order judgements, saccade decision, and antisaccade tasks
I. Arend, L. Machado, R. Ward, M. McGrath, T. Ro and R.D. Rafal
(Bangor, UK, Dunedin, New Zealand and Huston, TX, USA) 475
6. Abnormal Eye Movements: Mechanisms and Treatment Strategies
6.1. How disturbed visual processing early in life leads to disorders of gaze-holding and
smooth pursuit
M.J. Mustari, S. Ono and K.C. Vitorello (Atlanta, GA, USA) 487
xxi
6.2. Manifest latent nystagmus: a case of sensori-motor switching
R. Abadi, R. Clement, T. Theodorou and C. Scallan
(Manchester, London and Sheffield, UK) 497
6.3. Eye hyperdeviation in mouse cerebellar mutants is comparable to the
gravity-dependent component of human downbeat nystagmus
J.S. Stahl and B.S. Oommen (Cleveland, OH, USA) 503
6.4. New insights into the upward vestibulo-oculomotor pathways in the
human brainstem
C. Pierrot-Deseilligny and C. Tilikete (Paris and Lyon, France) 509
6.5. Mechanisms of vestibulo-ocular reflex (VOR) cancellation in spinocerebellar ataxia
type 3 (SCA-3) and episodic ataxia type 2 (EA-2)
C.R. Gordon, A. Caspi, R. Levite and A.Z. Zivotofsky
(Kfar Saba, Tel Aviv and Ramat Gan, Israel) 519
6.6. Modelling drug modulation of nystagmus
S. Glasauer and C. Rossert (Munich, Germany) 527
6.7. Aminopyridines for the treatment of cerebellar and ocular motor disorders
M. Strupp, R. Kalla, S. Glasauer, J. Wagner, K. Hiifner, K. Jahn and T. Brandt
(Munich, Germany) 535
6.8. Baclofen, motion sickness susceptibility and the neural basis for velocity storage
B. Cohen, M. Dai, S.B. Yakushin and T. Raphan (New York, NY, USA) 543
6.9. Oculomotor deficits indicate the progression of Huntington's Disease
S.L. Hicks, M.P.A. Robert, C.V.P. Golding, S.J. Tabrizi and C. Kennard
(London, UK) 555
6.10. Eye movements in visual search indicate impaired saliency processing
in Parkinson's disease
S.K. Mannan, T.L. Hodgson, M. Husain and C. Kennard
(Exeter and London, UK) 559
6.11. Ocular motor anatomy in a case of interrupted saccades
J.C. Rucker, R.J. Leigh, L.M. Optican, E.L. Keller and J.A. Buttner-Ennever
(Chicago, IL, Cleveland, OH, Bethesda, MD, San Francisco, CA, USA
and Munich, Germany) 563
6.12. Mechanism of interrupted saccades in patients with late-onset Tay-Sachs disease
L.M. Optican, J.C. Rucker, E.L. Keller and R.J. Leigh
(Bethesda, MD, Chicago, IL, San Francisco, CA and Cleveland, OH, USA) 567
6.13. Conjugacy of horizontal saccades: application of binocular phase planes
A. Serra, K. Liao and R.J. Leigh
(Cleveland, OH, USA and Sassari and Troina, Italy) 571
xxii
6.14. The neuroanatomical basis of slow saccades in spinocerebellar ataxia type 2 (Wadia-subtype)
S. Geiner, A.K.E. Horn, N.H. Wadia, H. Sakai and J.A. Biittner-Ennever
(Munich, Germany, Mumbai, India and Nagoya, Japan) 575
6.15. Selective, circuit-wide sparing of floccular connections in hereditary olivopontine cerebellar
atrophy with slow saccades
S.H. Ying, A.K.E. Horn, S. Geiner, N.H. Wadia and J.A. Biittner-Ennever
(Baltimore, MD, USA, Munich, Germany and Mumbai, India) 583
6.16. A quick look at slow saccades after cardiac surgery: where is the lesion?
D. Solomon, S. Ramat, R.J. Leigh and D. Zee
(Baltimore, MD, USA, Pavia, Italy and Cleveland, OH, USA) 587
6.17. Eye and head torsion is affected in patients with midbrain lesions
O. Kremmyda, S. Glasauer, T. Eggert and U. Biittner (Munich, Germany) 591
6.18. Horizontal saccadic palsy associated with gliosis of the brainstem midline
J.A. Biittner-Ennever, T. Uemura, Y. Arai and J. Tateishi
(Munich, Germany, Fukuoka and Tokyo, Japan) 597
Subject Index 605
See Color Plate Section at the end of this book |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Kennard, Christopher |
author2_role | edt |
author2_variant | c k ck |
author_GND | (DE-588)1047952254 |
author_facet | Kennard, Christopher |
building | Verbundindex |
bvnumber | BV035124651 |
classification_rvk | CP 2500 |
ctrlnum | (OCoLC)496783936 (DE-599)HBZHT015691843 |
discipline | Psychologie |
discipline_str_mv | Psychologie |
edition | 1. ed. |
format | Conference Proceeding Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02185nam a2200517 cb4500</leader><controlfield tag="001">BV035124651</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150703 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081028s2008 ad|| |||| 11||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444531636</subfield><subfield code="9">978-0-444-53163-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)496783936</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT015691843</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CP 2500</subfield><subfield code="0">(DE-625)18974:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Using eye movements as an experimental probe of brain function</subfield><subfield code="c">a Symposium in Honor of Jean Büttner-Ennever. Ed. by Christopher Kennard ...</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 613 S.</subfield><subfield code="b">zahlr. Ill. und graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in brain research</subfield><subfield code="v">171</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Encéphale - Actes de congrès</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Encéphale - Congrès</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Mouvements oculaires - Actes de congrès</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neurobiologie - Congrès</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Oeil - Mouvements - Congrès</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eye</subfield><subfield code="x">Movements</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neurobiology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Augenbewegung</subfield><subfield code="0">(DE-588)4003583-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Visuelle Wahrnehmung</subfield><subfield code="0">(DE-588)4078921-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4016928-5</subfield><subfield code="a">Festschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">2007</subfield><subfield code="z">London</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Visuelle Wahrnehmung</subfield><subfield code="0">(DE-588)4078921-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Augenbewegung</subfield><subfield code="0">(DE-588)4003583-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kennard, Christopher</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Büttner-Ennever, Jean A.</subfield><subfield code="0">(DE-588)1047952254</subfield><subfield code="4">hnr</subfield></datafield><datafield tag="711" ind1="2" ind2=" "><subfield code="a">Symposium in Honor of Jean Büttner-Ennever</subfield><subfield code="d">2007</subfield><subfield code="c">London</subfield><subfield code="j">Sonstige</subfield><subfield code="0">(DE-588)6522418-8</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in brain research</subfield><subfield code="v">171</subfield><subfield code="w">(DE-604)BV008000363</subfield><subfield code="9">171</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016792255&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016792255</subfield></datafield></record></collection> |
genre | (DE-588)4016928-5 Festschrift gnd-content (DE-588)1071861417 Konferenzschrift 2007 London gnd-content |
genre_facet | Festschrift Konferenzschrift 2007 London |
id | DE-604.BV035124651 |
illustrated | Illustrated |
index_date | 2024-07-02T22:22:22Z |
indexdate | 2024-07-09T21:22:53Z |
institution | BVB |
institution_GND | (DE-588)6522418-8 |
isbn | 9780444531636 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016792255 |
oclc_num | 496783936 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-20 DE-12 DE-355 DE-BY-UBR |
owner_facet | DE-19 DE-BY-UBM DE-20 DE-12 DE-355 DE-BY-UBR |
physical | XXII, 613 S. zahlr. Ill. und graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Elsevier |
record_format | marc |
series | Progress in brain research |
series2 | Progress in brain research |
spelling | Using eye movements as an experimental probe of brain function a Symposium in Honor of Jean Büttner-Ennever. Ed. by Christopher Kennard ... 1. ed. Amsterdam [u.a.] Elsevier 2008 XXII, 613 S. zahlr. Ill. und graph. Darst. txt rdacontent n rdamedia nc rdacarrier Progress in brain research 171 Encéphale - Actes de congrès Encéphale - Congrès ram Mouvements oculaires - Actes de congrès Neurobiologie - Congrès ram Oeil - Mouvements - Congrès ram Brain Eye Movements Neurobiology Augenbewegung (DE-588)4003583-9 gnd rswk-swf Visuelle Wahrnehmung (DE-588)4078921-4 gnd rswk-swf (DE-588)4016928-5 Festschrift gnd-content (DE-588)1071861417 Konferenzschrift 2007 London gnd-content Visuelle Wahrnehmung (DE-588)4078921-4 s Augenbewegung (DE-588)4003583-9 s b DE-604 Kennard, Christopher edt Büttner-Ennever, Jean A. (DE-588)1047952254 hnr Symposium in Honor of Jean Büttner-Ennever 2007 London Sonstige (DE-588)6522418-8 oth Progress in brain research 171 (DE-604)BV008000363 171 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016792255&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Using eye movements as an experimental probe of brain function Progress in brain research Encéphale - Actes de congrès Encéphale - Congrès ram Mouvements oculaires - Actes de congrès Neurobiologie - Congrès ram Oeil - Mouvements - Congrès ram Brain Eye Movements Neurobiology Augenbewegung (DE-588)4003583-9 gnd Visuelle Wahrnehmung (DE-588)4078921-4 gnd |
subject_GND | (DE-588)4003583-9 (DE-588)4078921-4 (DE-588)4016928-5 (DE-588)1071861417 |
title | Using eye movements as an experimental probe of brain function |
title_auth | Using eye movements as an experimental probe of brain function |
title_exact_search | Using eye movements as an experimental probe of brain function |
title_exact_search_txtP | Using eye movements as an experimental probe of brain function |
title_full | Using eye movements as an experimental probe of brain function a Symposium in Honor of Jean Büttner-Ennever. Ed. by Christopher Kennard ... |
title_fullStr | Using eye movements as an experimental probe of brain function a Symposium in Honor of Jean Büttner-Ennever. Ed. by Christopher Kennard ... |
title_full_unstemmed | Using eye movements as an experimental probe of brain function a Symposium in Honor of Jean Büttner-Ennever. Ed. by Christopher Kennard ... |
title_short | Using eye movements as an experimental probe of brain function |
title_sort | using eye movements as an experimental probe of brain function |
topic | Encéphale - Actes de congrès Encéphale - Congrès ram Mouvements oculaires - Actes de congrès Neurobiologie - Congrès ram Oeil - Mouvements - Congrès ram Brain Eye Movements Neurobiology Augenbewegung (DE-588)4003583-9 gnd Visuelle Wahrnehmung (DE-588)4078921-4 gnd |
topic_facet | Encéphale - Actes de congrès Encéphale - Congrès Mouvements oculaires - Actes de congrès Neurobiologie - Congrès Oeil - Mouvements - Congrès Brain Eye Movements Neurobiology Augenbewegung Visuelle Wahrnehmung Festschrift Konferenzschrift 2007 London |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016792255&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV008000363 |
work_keys_str_mv | AT kennardchristopher usingeyemovementsasanexperimentalprobeofbrainfunction AT buttnerenneverjeana usingeyemovementsasanexperimentalprobeofbrainfunction AT symposiuminhonorofjeanbuttnerenneverlondon usingeyemovementsasanexperimentalprobeofbrainfunction |