Handbook of self assembled semiconductor nanostructures for novel devices in photonics and electronics:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Elsevier
2008
|
Ausgabe: | 1. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVII, 841 S. Ill., graph. Darst. |
ISBN: | 0080463258 9780080463254 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035122426 | ||
003 | DE-604 | ||
005 | 20090406 | ||
007 | t | ||
008 | 081027s2008 ad|| |||| 00||| eng d | ||
020 | |a 0080463258 |9 0-08-046325-8 | ||
020 | |a 9780080463254 |9 978-0-08-046325-4 | ||
035 | |a (OCoLC)213839568 | ||
035 | |a (DE-599)GBV574289364 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-526 | ||
050 | 0 | |a TA418.9.N35 | |
082 | 0 | |a 621.38152 |2 22 | |
084 | |a UP 3150 |0 (DE-625)146377: |2 rvk | ||
245 | 1 | 0 | |a Handbook of self assembled semiconductor nanostructures for novel devices in photonics and electronics |c edited by Mohamed Henini |
250 | |a 1. ed. | ||
264 | 1 | |a Amsterdam [u.a.] |b Elsevier |c 2008 | |
300 | |a XVII, 841 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Nanomatériaux | |
650 | 4 | |a Nanostructured materials | |
650 | 4 | |a Photonics | |
650 | 4 | |a Semiconductors | |
650 | 0 | 7 | |a Halbleitertechnologie |0 (DE-588)4158814-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |D s |
689 | 0 | 1 | |a Halbleitertechnologie |0 (DE-588)4158814-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Henini, Mohamed |e Sonstige |4 oth | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016790063&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016790063 |
Datensatz im Suchindex
_version_ | 1804138100788559872 |
---|---|
adam_text | Contents
Preface
xix
Chapter
1
Self-organized Quantum Dot Multilayer Structures
1
1.1
Introduction
1
1.2
Mechanisms for interlayer correlation formation
2
1.3
Strain-field interactions in multilayer structures
4
1.3.1
The
isotropie
point-source model
5
1.3.2
The effect of elastic
aniso
tropy
7
1.3.3
Near-field strain interactions
12
1.3.4
Stacking conditions and replication angles
16
1.4
Comparison with experimental results
21
1.4.1
Vertically aligned dots
21
1.4.2
Fcc-like dot stacking
2 2
1.4.3
Anticorrelated and staggered dot stackings
2 3
1.4.4
Oblique replication on high-indexed surfaces
26
1.5
Monte Carlo growth simulations
2 7
1.6
InGaAs/GaAs multilayers
30
1.6.1
Pairing probability as a function of
spacer thickness
31
1.6.2
Lateral ordering
3 2
1.6.3
Sizes, shapes and critical wetting layer thickness
З З
1.6.4
Photoluminescence
34
1.7
Ordering in SiGe/Si dot superlattices
3 4
1.8
PbSe/PbEuTe dot superlattices
3 6
1.8.1
Stackings
asa
function of spacer thickness
3 8
1.8.2
Lateral ordering
39
1.8.3
Interlayer correlations as a function of dot size
44
1.8.4
Phase diagram for vertical and lateral dot
ordering
45
1.9
Other mechanisms for interlayer correlation formation
48
1.9.1
Morphologic correlations
4 8
1.9.2
Correlations induced by composition
49
1.10
Summary and outlook
51
Acknowledgements
51
vi
Contents
Chapter
2
InAs Quantum Dots on
A^Ga^As
Surfaces and in an
AlxGan_xAs Matrix
62
2.1
Introduction
62
2.2
Quantum dot formation
62
2.2.1
Strained heteroepitaxial growth
62
2.2.2
Quantum dot nucleation on A^Ga^xAs
surfaces
64
2.2.3
Calibrating InAs growth rate
6 6
2.3
Control of quantum dot size and density
6 7
2.3.1
QD nucleation and growth
6 8
2.4
Changing the confining matrix
69
2.5
Overgrowth of quantum dots
70
2.5.1
QD characterization
72
2.5.2
Inhomogeneous broadening of QD size
73
2.6
Applications
75
2.6.1
Quantum dot detectors
7 5
2.6.2
Quantum dot quantum-cascade emitters
77
Chapter
3
Optical Properties of IniGaJAs/GaAs Quantum Dots for
Optoelectronic Devices
84
3.1
Introduction
84
3.2
Growth of In(Ga)As/GaAs QDs
84
3.3
Stacked QD layers
88
3.4
Energy states in QDs
90
3.5
Single QD spectroscopy
9 9
3.6
Quantum dot lasers
102
3.7
Vertical and resonant cavity structures
109
3.8
Semiconductor optical amplifiers
110
3.9
Single photon sources
112
3.10
Entangled photon sources
114
3.11
Spin-LEDs and the potential for QDs in spintronic devices
116
3.12
Conclusions
121
Acknowledgements
121
Chapter
4
Cavity Quantum Electrodynamics with Semiconductor
Quantum Dots
132
4.1
Introduction
132
4.2
Basics of cavity quantum electrodynamics
133
4.2.1
Optical confinement and light-matter interaction
133
4.2.2
Spontaneous emission control
-
Purceii
effect
134
4.2.3
Strong coupling regime
137
4.3
Implementation of cavity quantum electrodynamics
in the solid state
138
4.3.1
The resonator: a semiconductor microcavity
138
4.3.2
The emitter: a single semiconductor quantum dot
140
4.4
The weak coupling regime
142
4.4.1
Spontaneous emission inhibition
142
4.4.2
Spontaneous emission acceleration
143
4.5
The strong coupling regime
145
4.5.1
First demonstrations of strong coupling regime
145
4.5.2
Some perspectives
148
Contents
vii
4.6
Towards a deterministic cavity-dot coupling
149
4.6.1
Spatial tuning
149
4.6.2
Spectral tuning
150
4.7
Applications of solid-state cavity quantum electrodynamics
150
4.7.1
Efficient single photon source: possibilities and
limitations
151
4.7.2
Indistinguishable single photon sources
152
4.7.3
Proposal for entangled photons sources
154
4.7.4
Proposal for ultra-low threshold lasers
155
4.7.5
Possible applications for quantum information
processing
157
4.8
Summary and conclusions
157
Acknowledgements
158
Chapter
5
InAs Quantum Dot Formation Studied at the Atomic Scale by
Cross-sectional Scanning Tunnelling Microscopy
165
5.1
Introduction
165
5.1.1
Quantum dot formation
165
5.1.2
Cross-sectional scanning tunnelling
microscopy (X-STM)
165
5.2
Formation of the wetting layer
171
5.3
Dependence of the
OD
structural properties on the substrate
material (GaAs vs AlAs)
176
5.4
Capping process of InAs quantum dots
179
5.4.1
Capping temperature and growth interruptions
179
5.4.2
Capping with different materials
183
5.4.3
Double capping process
193
5.5
Conclusions
196
Acknowledgements
197
Chapter
6
Growth and Characterization of Structural and Optical
Properties of Polar and Non-polar GaN Quantum Dots
201
6.1
Introduction
201
6.2
Epitaxial growth of nitrides
202
6.2.1
Generalities
202
6.2.2
Growth of GaN QDs
205
6.3
Structural properties of GaN QDs
210
6.3.1 [0001]
GaN QDs
210
6.3.2 [1120]
GaN QDs
211
6.4
Vertical correlation of stacked QDs
214
6.5
X-ray diffraction analysis of GaN QDs
215
6.6
Optical properties of single GaN QDs
217
6.6.1
Photoluminescence
of ensembles of non-polar
GaN QDs
217
6.6.2
Single dot PL
-
spectral diffusion and temperature
broadening
219
6.6.3
Phonon coupling and oscillator strength: the
localization hypothesis
222
6.7
Rare earth doping of GaN QDs
226
6.8
Conclusion
227
Acknowledgements
227
viii Contents
Chapter
7
Optical and Vibrational Properties of Self-assembled
GaN Quantum Dots
230
7.1
Introduction
230
7.2
Growth and structural characterization
231
7.2.1
Growth and structural properties
231
7.2.2
Strain field distribution
236
7.3
Raman scattering
240
7.3.1
Vibrational modes in bulk GaN and A1N
240
7.3.2
Vibrational modes in GaN QDs
241
7.3.3
Non-resonant Raman scattering
242
7.3.4
Resonant Raman scattering
245
7.3.5
QDs grown along non-polar directions
247
7.4
Luminescence
248
7.4.1
Confinement effects
249
7.4.2
Electric field effects: quantum-confined
Stark effect
252
7.4.3
Electric field effects on the exciton dynamics
258
7.4.4
Single quantum dot studies
260
7.4.5
QDs grown along non-polar directions
263
7.5
Intraband absorption
264
Acknowledgements
266
Chapter
8
GaSb/GaAs Quantum Nanostructures by Molecular
Beam Epitaxy
271
8.1
Introduction
271
8.2
Surface and interface structures of GaSb/GaAs
271
8.2.1
Surface reconstruction of GaSb on GaAs and
in situ STM observation
2 72
8.2.2
Heterointerface
structure of GaSb/GaAs
2 75
8.3
GaSb quantum dots on GaAs
280
8.3.1
MBE growth of self-assembled GaSb/GaAs
quantum dots
280
8.3.2
Optical properties of GaSb/GaAs quantum dots
285
Chapter
9
Growth and Characterization of ZnO
Nano-
and
Microstructures
293
9.1
Introduction
293
9.2
Growth of nanowires
PLD
294
9.2.1
Synthesis strategies for ZnO nanostructures
294
9.2.2
High-pressure
PLD
process
296
9.2.3
Growth morphology
297
9.2.4
Structural characterization
300
9.3
Optical properties I: whispering gallery modes
302
9.3.1
Nanowire luminescence
302
9.3.2
Theory of hexagonal whispering gallery modes
304
9.3.3
Whispering gallery modes in hexagonal ZnO
microcrystals
306
9.3.4
Whispering gallery modes in ZnO nanostructures
306
Contents ix
9.4
Optical properties II: stimulated emission from
ZnO microcrystals
311
9.4.1
Experiments
311
9.4.2
Results and discussion
312
9.5
Electrical characterization of ZnO microcrystals
313
9.6
Conclusion
319
Acknowledgements
319
Chapter
10
Miniband-related
1.4-1.8
μπι
Luminescence of Ge/Si
Quantum Dot Superlattices
324
10.1
Introduction
324
10.2
Experimental techniques
325
10.3
Experimental data and interpretation
326
10.3.1
Structural properties of Ge/Si QDSL
326
10.3.2
Luminescence properties and initial
electronic structure
328
10.3.3
Effect of Sb doping
334
10.4
Miniband
model for the Ge/Si QDSL
336
10.4.1
PL excitation power dependence
336
10.4.2
Miniband
calculation
337
10.4.3
PL dependence on the number of periods
338
10.4.4
Temporal profile of QDSL PL
3 39
10.4.5
Temperature and power dependence of
miniband
340
10.5
Conclusions
342
Acknowledgements
343
Chapter
11
Effects of the Electron-Phonon Interaction in Semiconductor
Quantum Dots
346
11.1
Introduction
346
11.2
Non-adiabaticity of the exciton-phonon systems in
spherical quantum dots
347
11.3
Photoluminescence
of spherical quantum dots
348
11.3.1
The light absorption by quantum dots
348
11.3.2
The photoluminescence spectrum
351
11.3.3
Models for quantum dots
351
11.3.4
Numerical results and comparison with
the experiment
353
11.4
Non-adiabaticity of the exciton-phonon systems in
stacked quantum dots
356
11.5
Excitonic polarons in quantum dots: modification of
the optical spectra
361
11.6
Recent studies
3 64
11.7
Conclusions
367
Acknowledgements
367
Chapter
12
Slow Oscillation and Random Fluctuation in Quantum Dots:
Can we Overcome?
371
12.1
Introduction
371
12.2
What is a quantum dot?
372
χ
Contents
12.3
Slow oscillation and random switching instability
in a distribution of QDs
373
12.4
Many-body effects in coupled quantum dots
383
12.5
Conventional optical study of QDs
385
12.6
Single quantum dot spectroscopy
387
12.7
Instability in the PL of quantum dots
387
12.8
Summary
390
Acknowledgements
390
Chapter
13
Radiation Effects in Quantum Dot Structures
392
13.1
Introduction
392
13.2
Radiation hardness of quantum dot heterostructures
399
13.2.1
General remarks
399
13.2.2
In(Ga)As/GaAs quantum dots
400
13.2.3
Other quantum dots
407
13.2.4
Quantum dots embedded in a superlattice
409
13.2.5
Amorphizing damage
410
13.2.6
Low-dose effect
411
13.2.7
Irradiation with electrons of subthreshold
energies and x-rays
411
13.2.8
Hydrogen passivation
412
13.2.9
Influence of defects on the thermal stability of
the luminescence
412
13.3
Radiation hardness of
OD
lasers
413
13.4
Radiation technology
415
13.4.1
Intermixing
415
13.4.2
Self-organization upon irradiation
421
13.4.3
Ion-beam synthesis
422
13.4.4
Creation of magnetic nanocrystals
424
13.4.5
Other nanotechnological applications of radiation
433
13.5
Conclusions
434
Acknowledgements
434
Chapter
14
Probing and Controlling the Spin State of Single Magnetic
Atoms in an Individual Quantum Dot
448
14.1
Introduction
448
14.2
П
-VI
diluted magnetic semiconductors quantum dots
449
14.2.1
Carrier-Mn coupling
449
14.2.2
CdTe:Mn/ZnTe quantum dots
451
14.3
Optical probing of the spin state of a single magnetic
atom in a QD
453
14.3.1
Confined carriers-Mn exchange interaction
453
14.3.2
The exciton as a probe of the Mn spin state
456
14.3.3
Exciton-Mn thermalization process
457
14.4
Geometrical effects on the optical properties of quantum
dots doped with a single magnetic atom
460
14.4.1
Influence of an anisotropic strain distribution
460
14.4.2
Influence of the shape anisotropy
462
14.5
Carrier-controlled spin properties of a single magnetic atom
465
Contents xi
14.5.1
Carrier-induced spin splitting of a single Mn
atom in a quantum dot
465
14.5.2
Electrical control of a single Mn atom in
a quantum dot
468
14.6
Conclusion
473
Acknowledgements
473
Chapter
15
Quantum Dot Charge and Spin Memory Devices
476
15.1
Introduction
476
15.1.1
Self-assembled quantum dots
477
15.1.2
Fundamental optical properties and single
particle non-linearities
477
15.1.3
Optical memory structures based on quantum dots
480
15.2
Optically induced charge storage
481
15.2.1
Electrical detection of stored charge
481
15.2.2
Optically detected charge storage
486
15.2.3
Thermal redistribution and loss of electrons
and holes
490
15.3
Optical spin orientation
493
15.3.1
Selection rules for the neutral exciton
transition in QDs
493
15.3.2
Spin relaxation in semiconductor nanostructures
495
15.3.3
Polarization dynamics as a probe of electron
spin relaxation dynamics
496
15.3.4
Hole spin relaxation in QDs
49 8
15.4
Outlook
501
Acknowledgements
501
Chapter
16
Engineering of Quantum Dot Nanostructures for
Photonic Devices
505
16.1
Introduction
505
16.2
QD nanostructures for long wavelength emission
506
16.3
Quantum dot strain engineering
507
16.3.1
The quantum dot strain engineering approach:
experimental
509
16.3.2
The quantum dot strain engineering approach:
model and discussion
511
16.3.3
Further steps towards QD emission at
1.5 5
μπι
at room temperature
517
16.4
QD nanostructures for
0.98-1.04
μπι
emission
520
16.4.1
InGaAs/AlGaAs QDs: the effect of CL composition
521
16.4.2
InGaAs/AlGaAs QDs: the effect of QD composition
522
16.5
Conclusions
524
Acknowledgements
525
Chaper
17
Advanced Growth Techniques of InAs-system Quantum
Dots for Integrated Nanophotonic Circuits
529
17.1
Introduction
529
17.2
Selective-area-growth of InAs quantum dots using the
metal-mask/MBE method
530
xii Contents
17.2.1
Introduction
530
17.2.2
Experimental
apparatus and procedures for
MM/MBE method
531
17.2.3
Structural and optical properties of
SA-grownQDs
533
17.2.4
PL wavelength control of InAs QDs with a
strain-reducing-layer
535
17.2.5
Selective area-grown QD embedded in PC-
WG
535
17.2.6
Summary
538
17.3
Site control of InAs QDs using the
nano-jet
probe (NJP)
539
17.3.1
Introduction
539
17.3.2
Experimental apparatus and procedures
539
17.3.3
Fabrication of site-controlled QDs
541
17.3.4
Summary
549
Chapter
18
Nanostructured Solar Cells
552
18.1
Introduction
552
18.2
Quantum dot solar cells
553
18.2.1
Intermediated band solar cells
553
18.3
Quantum dot growth
556
18.3.1
Stranksi-Kranstanow quantum dots
556
18.4
Organic quantum dot solar cells
558
18.5
Quantum dot solar cell behaviour
559
18.5.1
ПІ
-V
quantum dot solar cell behaviour
559
18.5.2
Organic bulk heterojunction solar cells
561
18.6
Conclusions
563
Chapter
19
Quantum Dot
Superluminescent
Diodes
565
19.1
Introduction
565
19.1.1
Superluminescent
diodes and their applications
565
19.1.2
Application requirements and markets
566
19.1.3
Quantum dots for
superluminescent
diodes
567
19.2
QD growth for SLEDs
569
19.2.1
Chirped multiple QD structure
570
19.2.2
Increasing the inhomogeneous spectral
width of a single layer of QDs
5 72
19.2.3
Conclusions and perspectives
574
19.3
Wide-spectrum InAs/GaAs QD SLEDs
5 74
19.3.1
Gain and length requirements
5 74
19.3.2
Narrow-gain devices
578
19.3.3
Wide-gain devices
579
19.3.4
Coherence properties
582
19.3.5
Temperature characteristics
583
19.4
Modelling QD SLEDs
587
19.4.1
Travelling-wave rate-equation models
587
19.4.2
Modelling of spectral characteristics
-
towards
flat-top spectra
590
19.5
Conclusion and perspectives
595
19.5.1
Comparison of present performance with
commercial devices and application needs
595
19.5.2
Potential improvements
596
Chapter
20
Chapter
21
Contents
xiii
Quantum
Dot-based Mode-locked Lasers and Applications
600
20.1
Introduction
600
20.2
InAs/GaAs quantum dot mode-locked lasers
600
20.2.1
Quantum dot active medium for ultra-short
pulse generation
601
20.2.2
Gain properties of quantum dot
mode-locked lasers
602
20.2.3
Quantum dot
saturable
absorber
605
20.2.4
Low timing jitter of quantum dot
mode-locked lasers
609
20.2.5
Summary
610
20.3
InAs/InP quantum dash mode-locked lasers emitting
at
1.55
μ
im
610
20.3.1
Sub-picosecond pulse generation at very high
repetition rate
610
20.3.2
Extremely narrow radio frequency spectrum
612
20.3.3
Phase amplitude characterization
613
20.4
Applications
613
20.4.1
Optical interconnects applications
613
20.4.2
40
Gb/s all-optical clock recovery at
1.55
μτη
615
20.5
Conclusion and perspectives
616
Acknowledgements
616
Quantum Dot
1
Infrared Photodetectors by Metal-Organic
Chemical Vapour Deposition
620
21.1
Introduction
620
21.2
Theoretical modelling of quantum dot infrared detectors
622
21.2.1
Single-band effective mass envelope
function method
622
21.2.2
Oscillator strength
625
21.2.3
Absorption
625
21.2.4
Modelling of responsivity and photocurrent
626
21.2.5
Escape rate
627
21.2.6
Gain
627
21.2.7
Dark current
628
21.2.8
Modelling of detectivity
630
21.2.9
Summary
631
21.3
InP-based QDIP materials growth and characterizations
631
21.3.1
Growth and characterization of matrix material
631
21.3.2
Growth and characterization of InAs QDs
632
21.3.3
Single-layer InAs quantum dots on InP
632
21.3.4
Single-layer InAs quantum dots on GalnAs
634
21.3.5
Doping of InAs quantum dots
635
21.3.6
Conclusions
635
21.4
InP-based QDIP device results
635
21.4.1
InAs/GalnAs/InP QDIP
635
21.4.2
InAs/AIInAs/InP QDIP
639
21.4.3
MWIR InP-based QDIP
643
21.4.4
InAs QD/InGaAs QW/AlInAs barrier MWIR
QDIP
651
21.4.5
Summary
654
xiv Contents
21.5 InP-based QDIP
focal
plane
ar
ray
s
654
21.6
Summary
656
Chapter
22
Quantum Dot Structures for Multi-band Infrared and
Terahertz Radiation Detection
659
22.1
Introduction
659
22.2
Multi-band quantum dots-in-a-well (DWELL) infrared
photodetectors
660
22.2.1
DWELL device structure
662
22.2.2
Device characterization techniques
663
22.2.3
Experimental results and effects of the well
width on response peaks
664
22.3
Tunnelling quantum dot infrared photodetectors (T-QDIPs)
668
22.3.1
Theoretical background and T-QDIP structure
669
22.3.2
Two-colour room temperature T-QDIPs
671
22.3.3
T-QDIPs for terahertz radiation detection
675
22.4
Improvement of ODIP performance
677
22.5
Present performance capabilities of QDIPs
679
22.6
Quantum dot focal plane arrays (FPAs)
680
22.7
Conclusion
683
Acknowledgements
683
Chapter
23
Optically Driven Schemes for Quantum Computation Based on
Self-assembled Quantum dots
687
23.1
Introduction and fundamentals of quantum
information processing
687
23.1.1
Basic requirements for implementing
quantum computation
688
23.2
Semiconductor self-assembled quantum dots as hardware
689
23.3
Exciton representation
691
23.3.1
Single-qubit manipulation
691
23.3.2
Two-qubit manipulation
692
23.4
Spin representation
697
23.4.1
Single-qubit gates
697
23.4.2
Two-qubit gates
700
23.5
General quantum computer architecture and related
quantum devices
701
701
703
23.
.5.1
Quantum dot-based quantum bus
23.
.5.2
Control arrays
23.
5.3
Quantum dot-based quantum computer
architecture
23.
.5.4
Entanglement distributor
Conclusions
703
704
23.6
Conclusions
705
Chapter
24
Quantum Optics with Single CdSe/ZnS Colloidal Nanocrvstals
708
24.1
Introduction
708
24.2
Theoretical background on single-photon sources
709
24.2.1
Introduction: quantum key distribution and
single photons
709
24.2.2
Statistical properties of a light beam
710
Contents xv
24.3
Optical properties of a nanocrystal
715
24.3.1
Colloidal semiconductor nanocrystals
715
24.3.2
Elements of theoretical description
716
24.3.3
Absorption spectrum
717
24.3.4
Exciton and multiexciton relaxation mechanisms
718
24.3.5
Fine structure of the emission level
719
24.4
Nanocrystals as single-photon sources
721
24.4.1
Photon antibunching
721
24.4.2
Single-photon emission on demand
722
24.4.3
Other characterisitics of a single-photon source
722
24.5
Beyond the isolated emitter
-
QD/environment interactions
724
24.5.1
Introduction
724
24.5.2
Quantum dot fluorescence intermittency
724
24.5.3
Blinking kinetics
728
24.5.4
Origin of quantum dot blinking kinetics
730
24.5.5
Conclusion
732
24.6
Time coherence of the single photons emitted by
an individual nanocrystal
732
24.6.1
Monomode
photons and quantum computing
732
24.6.2
Spectroscopy of a single nanocrystal
733
24.6.3
Photon-correlation Fourier spectroscopy
734
24.7
Multiexcitonic emission of colloidal quantum dots
736
24.7.1
Auger processes in colloidal quantum dots
736
24.7.2
Entangled photon pair generation
by solid-state sources
737
24.7.3
Entangled photon pair generation by CdSe
quantum dots
738
24.8
Controlling quantum dot emission with photonic
structures
738
24.8.1
Cavity quantum electodynamics
738
24.8.2
Weak coupling regime
739
24.8.3
Dielectric cavities
739
24.8.4
Metallic photonic cavities
740
24.8.5
Perspectives
741
24.9
Conclusions
742
Chapter
25
PbSe Core, PbSe/PbS and PbSe/PbSe^S, _x Core-Shell
Nanocrystal Quantum Dots: Properties and Applications
749
25.1
Introduction
749
25.2
Synthesis
,
chemical stability, and structural
characterization of PbSe NQDs, PbSe/PbS core-shell
NODs and
PbSe/PbS^eS^ core-alloyed-shell
NQDs
750
25.2.1
Synthesis of PbSe NQDs cores
.
covered with
organic surfactants (alternative I)
750
2 5.2.2
Synthesis of PbSe NQDs cores, covered with
organic surfactants (alternative II)
751
25.2.3
Synthesis of PbSe/PbS core-shell NQDs by a
two-injection process
751
25.2.4
Synthesis of PbSe/PbSeA^. core-alloyed-shell
NQDs by a single-injection process
751
xvi Contents
25.2.5 PbSe
core and core-shell NQDs, capped with
water-soluble ligands
751
25.2.6
Storage conditions and encapsulation of the NQDs
in a polymer film
752
25.2.7
Synthesis of organically capped and water-soluble
^-Fe2O
з
magnetic nanopartides
752
25.3
Structural characterization of PbSe core, PbSe/PbS
core-shell and PbSe/PbSxeS
!_».
core-alloyed-shell NQDs
753
25.4
Optical properties of PbSe NQDs, PbSe/PbS core-shell
NQDs and PbSe/PbS^eS
λ_χ
core-alloyed-shell NQDs
755
25.5
Passive Q-switching, using PbSe NQDs, PbSe/PbS
core-shell NQDs and
PbSe/PbSeÄ^ core-alloyed-shell
NQDs
761
25.6
PbSe NQDs used in a gain device and integrated
into microcavities
765
25.7
Coupling of PbSe NQDs with ^-Fe^O3 magnetic
nanoparticles, for a future biological application
767
25.8
Electrical properties of PbSe NQDs ordered solids
768
25.9
Summary
770
Acknowledgements
771
Chapter
26
Semiconductor Quantum Dots for Biological Applications
773
26.1
Introduction
773
26.2
Creating a fluorescent
biolabel
out of semiconductor
nanocrystals
776
26.2.1
How did people work out how to control the
particles down to the nanoscale size range?
The evolution of the synthetic procedures
777
26.2.2
Still some problems: quantum dots have
imperfect surfaces! The passivation process
781
26.2.3
How to render QDs soluble (hydrophilic surface)
for biological applications. Solubilization of the
nanoparticles
783
26.2.4
How to target the QDs to biological systems.
The functionalization step
785
26.2.5
Bioconjugation of the QDs
787
26.3
Applications
788
26.3.1
CdS quantum dots for red blood cells antigen
-
A labelling
789
26.3.2
Non-linear microspectroscopy in an optical
tweezers system
-
application to cells marked with
quantum dots
790
26.3.3
Quantum dots as fluorescent bio-labels in cancer
diagnostics
791
Chapter
27
Quantum Dot Modification and Cytotoxicity
799
2 7.1
Quantum dots are born to be an electronic device
799
27.2
Quantum dots acquire a colourful personality with
their environmental magic
799
Contents xvii
2 7.3 Quantum
dots go to the biological field, wearing a
fluorescent dress
803
2 7.4
Quantum dot toxicty:
a forgotton
glass slipper
803
Chapter
28
Colloidal Quantum Dots (QDs) in Optoelectronic Devices
-
Solar Cells, Photodetectors, Light-emitting Diodes
810
28.1
Introduction
810
28.2
Advances in
OD
synthesis,
OD
array synthesis and
properties of the resulting structures
812
28.3
Quantum dot arrays and related studies underlying
photoluminescence
and potential light-emitting diode
applications
815
28.4
Quantum dot arrays as potential photodetectors
816
28.5
Quantum dot arrays as potential solar cells 81b
28.6
Summary
818
Index
821
|
adam_txt |
Contents
Preface
xix
Chapter
1
Self-organized Quantum Dot Multilayer Structures
1
1.1
Introduction
1
1.2
Mechanisms for interlayer correlation formation
2
1.3
Strain-field interactions in multilayer structures
4
1.3.1
The
isotropie
point-source model
5
1.3.2
The effect of elastic
aniso
tropy
7
1.3.3
Near-field strain interactions
12
1.3.4
Stacking conditions and replication angles
16
1.4
Comparison with experimental results
21
1.4.1
Vertically aligned dots
21
1.4.2
Fcc-like dot stacking
2 2
1.4.3
Anticorrelated and staggered dot stackings
2 3
1.4.4
Oblique replication on high-indexed surfaces
26
1.5
Monte Carlo growth simulations
2 7
1.6
InGaAs/GaAs multilayers
30
1.6.1
Pairing probability as a function of
spacer thickness
31
1.6.2
Lateral ordering
3 2
1.6.3
Sizes, shapes and critical wetting layer thickness
З З
1.6.4
Photoluminescence
34
1.7
Ordering in SiGe/Si dot superlattices
3 4
1.8
PbSe/PbEuTe dot superlattices
3 6
1.8.1
Stackings
asa
function of spacer thickness
3 8
1.8.2
Lateral ordering
39
1.8.3
Interlayer correlations as a function of dot size
44
1.8.4
Phase diagram for vertical and lateral dot
ordering
45
1.9
Other mechanisms for interlayer correlation formation
48
1.9.1
Morphologic correlations
4 8
1.9.2
Correlations induced by composition
49
1.10
Summary and outlook
51
Acknowledgements
51
vi
Contents
Chapter
2
InAs Quantum Dots on
A^Ga^As
Surfaces and in an
AlxGan_xAs Matrix
62
2.1
Introduction
62
2.2
Quantum dot formation
62
2.2.1
Strained heteroepitaxial growth
62
2.2.2
Quantum dot nucleation on A^Ga^xAs
surfaces
64
2.2.3
Calibrating InAs growth rate
6 6
2.3
Control of quantum dot size and density
6 7
2.3.1
QD nucleation and growth
6 8
2.4
Changing the confining matrix
69
2.5
Overgrowth of quantum dots
70
2.5.1
QD characterization
72
2.5.2
Inhomogeneous broadening of QD size
73
2.6
Applications
75
2.6.1
Quantum dot detectors
7 5
2.6.2
Quantum dot quantum-cascade emitters
77
Chapter
3
Optical Properties of IniGaJAs/GaAs Quantum Dots for
Optoelectronic Devices
84
3.1
Introduction
84
3.2
Growth of In(Ga)As/GaAs QDs
84
3.3
Stacked QD layers
88
3.4
Energy states in QDs
90
3.5
Single QD spectroscopy
9 9
3.6
Quantum dot lasers
102
3.7
Vertical and resonant cavity structures
109
3.8
Semiconductor optical amplifiers
110
3.9
Single photon sources
112
3.10
Entangled photon sources
114
3.11
Spin-LEDs and the potential for QDs in spintronic devices
116
3.12
Conclusions
121
Acknowledgements
121
Chapter
4
Cavity Quantum Electrodynamics with Semiconductor
Quantum Dots
132
4.1
Introduction
132
4.2
Basics of cavity quantum electrodynamics
133
4.2.1
Optical confinement and light-matter interaction
133
4.2.2
Spontaneous emission control
-
Purceii
effect
134
4.2.3
Strong coupling regime
137
4.3
Implementation of cavity quantum electrodynamics
in the solid state
138
4.3.1
The resonator: a semiconductor microcavity
138
4.3.2
The emitter: a single semiconductor quantum dot
140
4.4
The weak coupling regime
142
4.4.1
Spontaneous emission inhibition
142
4.4.2
Spontaneous emission acceleration
143
4.5
The strong coupling regime
145
4.5.1
First demonstrations of strong coupling regime
145
4.5.2
Some perspectives
148
Contents
vii
4.6
Towards a deterministic cavity-dot coupling
149
4.6.1
Spatial tuning
149
4.6.2
Spectral tuning
150
4.7
Applications of solid-state cavity quantum electrodynamics
150
4.7.1
Efficient single photon source: possibilities and
limitations
151
4.7.2
Indistinguishable single photon sources
152
4.7.3
Proposal for entangled photons sources
154
4.7.4
Proposal for ultra-low threshold lasers
155
4.7.5
Possible applications for quantum information
processing
157
4.8
Summary and conclusions
157
Acknowledgements
158
Chapter
5
InAs Quantum Dot Formation Studied at the Atomic Scale by
Cross-sectional Scanning Tunnelling Microscopy
165
5.1
Introduction
165
5.1.1
Quantum dot formation
165
5.1.2
Cross-sectional scanning tunnelling
microscopy (X-STM)
165
5.2
Formation of the wetting layer
171
5.3
Dependence of the
OD
structural properties on the substrate
material (GaAs vs AlAs)
176
5.4
Capping process of InAs quantum dots
179
5.4.1
Capping temperature and growth interruptions
179
5.4.2
Capping with different materials
183
5.4.3
Double capping process
193
5.5
Conclusions
196
Acknowledgements
197
Chapter
6
Growth and Characterization of Structural and Optical
Properties of Polar and Non-polar GaN Quantum Dots
201
6.1
Introduction
201
6.2
Epitaxial growth of nitrides
202
6.2.1
Generalities
202
6.2.2
Growth of GaN QDs
205
6.3
Structural properties of GaN QDs
210
6.3.1 [0001]
GaN QDs
210
6.3.2 [1120]
GaN QDs
211
6.4
Vertical correlation of stacked QDs
214
6.5
X-ray diffraction analysis of GaN QDs
215
6.6
Optical properties of single GaN QDs
217
6.6.1
Photoluminescence
of ensembles of non-polar
GaN QDs
217
6.6.2
Single dot PL
-
spectral diffusion and temperature
broadening
219
6.6.3
Phonon coupling and oscillator strength: the
localization hypothesis
222
6.7
Rare earth doping of GaN QDs
226
6.8
Conclusion
227
Acknowledgements
227
viii Contents
Chapter
7
Optical and Vibrational Properties of Self-assembled
GaN Quantum Dots
230
7.1
Introduction
230
7.2
Growth and structural characterization
231
7.2.1
Growth and structural properties
231
7.2.2
Strain field distribution
236
7.3
Raman scattering
240
7.3.1
Vibrational modes in bulk GaN and A1N
240
7.3.2
Vibrational modes in GaN QDs
241
7.3.3
Non-resonant Raman scattering
242
7.3.4
Resonant Raman scattering
245
7.3.5
QDs grown along non-polar directions
247
7.4
Luminescence
248
7.4.1
Confinement effects
249
7.4.2
Electric field effects: quantum-confined
Stark effect
252
7.4.3
Electric field effects on the exciton dynamics
258
7.4.4
Single quantum dot studies
260
7.4.5
QDs grown along non-polar directions
263
7.5
Intraband absorption
264
Acknowledgements
266
Chapter
8
GaSb/GaAs Quantum Nanostructures by Molecular
Beam Epitaxy
271
8.1
Introduction
271
8.2
Surface and interface structures of GaSb/GaAs
271
8.2.1
Surface reconstruction of GaSb on GaAs and
in situ STM observation
2 72
8.2.2
Heterointerface
structure of GaSb/GaAs
2 75
8.3
GaSb quantum dots on GaAs
280
8.3.1
MBE growth of self-assembled GaSb/GaAs
quantum dots
280
8.3.2
Optical properties of GaSb/GaAs quantum dots
285
Chapter
9
Growth and Characterization of ZnO
Nano-
and
Microstructures
293
9.1
Introduction
293
9.2
Growth of nanowires
PLD
294
9.2.1
Synthesis strategies for ZnO nanostructures
294
9.2.2
High-pressure
PLD
process
296
9.2.3
Growth morphology
297
9.2.4
Structural characterization
300
9.3
Optical properties I: whispering gallery modes
302
9.3.1
Nanowire luminescence
302
9.3.2
Theory of hexagonal whispering gallery modes
304
9.3.3
Whispering gallery modes in hexagonal ZnO
microcrystals
306
9.3.4
Whispering gallery modes in ZnO nanostructures
306
Contents ix
9.4
Optical properties II: stimulated emission from
ZnO microcrystals
311
9.4.1
Experiments
311
9.4.2
Results and discussion
312
9.5
Electrical characterization of ZnO microcrystals
313
9.6
Conclusion
319
Acknowledgements
319
Chapter
10
Miniband-related
1.4-1.8
μπι
Luminescence of Ge/Si
Quantum Dot Superlattices
324
10.1
Introduction
324
10.2
Experimental techniques
325
10.3
Experimental data and interpretation
326
10.3.1
Structural properties of Ge/Si QDSL
326
10.3.2
Luminescence properties and initial
electronic structure
328
10.3.3
Effect of Sb doping
334
10.4
Miniband
model for the Ge/Si QDSL
336
10.4.1
PL excitation power dependence
336
10.4.2
Miniband
calculation
337
10.4.3
PL dependence on the number of periods
338
10.4.4
Temporal profile of QDSL PL
3 39
10.4.5
Temperature and power dependence of
miniband
340
10.5
Conclusions
342
Acknowledgements
343
Chapter
11
Effects of the Electron-Phonon Interaction in Semiconductor
Quantum Dots
346
11.1
Introduction
346
11.2
Non-adiabaticity of the exciton-phonon systems in
spherical quantum dots
347
11.3
Photoluminescence
of spherical quantum dots
348
11.3.1
The light absorption by quantum dots
348
11.3.2
The photoluminescence spectrum
351
11.3.3
Models for quantum dots
351
11.3.4
Numerical results and comparison with
the experiment
353
11.4
Non-adiabaticity of the exciton-phonon systems in
stacked quantum dots
356
11.5
Excitonic polarons in quantum dots: modification of
the optical spectra
361
11.6
Recent studies
3 64
11.7
Conclusions
367
Acknowledgements
367
Chapter
12
Slow Oscillation and Random Fluctuation in Quantum Dots:
Can we Overcome?
371
12.1
Introduction
371
12.2
What is a quantum dot?
372
χ
Contents
12.3
Slow oscillation and random switching instability
in a distribution of QDs
373
12.4
Many-body effects in coupled quantum dots
383
12.5
Conventional optical study of QDs
385
12.6
Single quantum dot spectroscopy
387
12.7
Instability in the PL of quantum dots
387
12.8
Summary
390
Acknowledgements
390
Chapter
13
Radiation Effects in Quantum Dot Structures
392
13.1
Introduction
392
13.2
Radiation hardness of quantum dot heterostructures
399
13.2.1
General remarks
399
13.2.2
In(Ga)As/GaAs quantum dots
400
13.2.3
Other quantum dots
407
13.2.4
Quantum dots embedded in a superlattice
409
13.2.5
Amorphizing damage
410
13.2.6
Low-dose effect
411
13.2.7
Irradiation with electrons of subthreshold
energies and x-rays
411
13.2.8
Hydrogen passivation
412
13.2.9
Influence of defects on the thermal stability of
the luminescence
412
13.3
Radiation hardness of
OD
lasers
413
13.4
Radiation technology
415
13.4.1
Intermixing
415
13.4.2
Self-organization upon irradiation
421
13.4.3
Ion-beam synthesis
422
13.4.4
Creation of magnetic nanocrystals
424
13.4.5
Other nanotechnological applications of radiation
433
13.5
Conclusions
434
Acknowledgements
434
Chapter
14
Probing and Controlling the Spin State of Single Magnetic
Atoms in an Individual Quantum Dot
448
14.1
Introduction
448
14.2
П
-VI
diluted magnetic semiconductors quantum dots
449
14.2.1
Carrier-Mn coupling
449
14.2.2
CdTe:Mn/ZnTe quantum dots
451
14.3
Optical probing of the spin state of a single magnetic
atom in a QD
453
14.3.1
Confined carriers-Mn exchange interaction
453
14.3.2
The exciton as a probe of the Mn spin state
456
14.3.3
Exciton-Mn thermalization process
457
14.4
Geometrical effects on the optical properties of quantum
dots doped with a single magnetic atom
460
14.4.1
Influence of an anisotropic strain distribution
460
14.4.2
Influence of the shape anisotropy
462
14.5
Carrier-controlled spin properties of a single magnetic atom
465
Contents xi
14.5.1
Carrier-induced spin splitting of a single Mn
atom in a quantum dot
465
14.5.2
Electrical control of a single Mn atom in
a quantum dot
468
14.6
Conclusion
473
Acknowledgements
473
Chapter
15
Quantum Dot Charge and Spin Memory Devices
476
15.1
Introduction
476
15.1.1
Self-assembled quantum dots
477
15.1.2
Fundamental optical properties and single
particle non-linearities
477
15.1.3
Optical memory structures based on quantum dots
480
15.2
Optically induced charge storage
481
15.2.1
Electrical detection of stored charge
481
15.2.2
Optically detected charge storage
486
15.2.3
Thermal redistribution and loss of electrons
and holes
490
15.3
Optical spin orientation
493
15.3.1
Selection rules for the neutral exciton
transition in QDs
493
15.3.2
Spin relaxation in semiconductor nanostructures
495
15.3.3
Polarization dynamics as a probe of electron
spin relaxation dynamics
496
15.3.4
Hole spin relaxation in QDs
49 8
15.4
Outlook
501
Acknowledgements
501
Chapter
16
Engineering of Quantum Dot Nanostructures for
Photonic Devices
505
16.1
Introduction
505
16.2
QD nanostructures for long wavelength emission
506
16.3
Quantum dot strain engineering
507
16.3.1
The quantum dot strain engineering approach:
experimental
509
16.3.2
The quantum dot strain engineering approach:
model and discussion
511
16.3.3
Further steps towards QD emission at
1.5 5
μπι
at room temperature
517
16.4
QD nanostructures for
0.98-1.04
μπι
emission
520
16.4.1
InGaAs/AlGaAs QDs: the effect of CL composition
521
16.4.2
InGaAs/AlGaAs QDs: the effect of QD composition
522
16.5
Conclusions
524
Acknowledgements
525
Chaper
17
Advanced Growth Techniques of InAs-system Quantum
Dots for Integrated Nanophotonic Circuits
529
17.1
Introduction
529
17.2
Selective-area-growth of InAs quantum dots using the
metal-mask/MBE method
530
xii Contents
17.2.1
Introduction
530
17.2.2
Experimental
apparatus and procedures for
MM/MBE method
531
17.2.3
Structural and optical properties of
SA-grownQDs
533
17.2.4
PL wavelength control of InAs QDs with a
strain-reducing-layer
535
17.2.5
Selective area-grown QD embedded in PC-
WG
535
17.2.6
Summary
538
17.3
Site control of InAs QDs using the
nano-jet
probe (NJP)
539
17.3.1
Introduction
539
17.3.2
Experimental apparatus and procedures
539
17.3.3
Fabrication of site-controlled QDs
541
17.3.4
Summary
549
Chapter
18
Nanostructured Solar Cells
552
18.1
Introduction
552
18.2
Quantum dot solar cells
553
18.2.1
Intermediated band solar cells
553
18.3
Quantum dot growth
556
18.3.1
Stranksi-Kranstanow quantum dots
556
18.4
Organic quantum dot solar cells
558
18.5
Quantum dot solar cell behaviour
559
18.5.1
ПІ
-V
quantum dot solar cell behaviour
559
18.5.2
Organic bulk heterojunction solar cells
561
18.6
Conclusions
563
Chapter
19
Quantum Dot
Superluminescent
Diodes
565
19.1
Introduction
565
19.1.1
Superluminescent
diodes and their applications
565
19.1.2
Application requirements and markets
566
19.1.3
Quantum dots for
superluminescent
diodes
567
19.2
QD growth for SLEDs
569
19.2.1
Chirped multiple QD structure
570
19.2.2
Increasing the inhomogeneous spectral
width of a single layer of QDs
5 72
19.2.3
Conclusions and perspectives
574
19.3
Wide-spectrum InAs/GaAs QD SLEDs
5 74
19.3.1
Gain and length requirements
5 74
19.3.2
Narrow-gain devices
578
19.3.3
Wide-gain devices
579
19.3.4
Coherence properties
582
19.3.5
Temperature characteristics
583
19.4
Modelling QD SLEDs
587
19.4.1
Travelling-wave rate-equation models
587
19.4.2
Modelling of spectral characteristics
-
towards
flat-top spectra
590
19.5
Conclusion and perspectives
595
19.5.1
Comparison of present performance with
commercial devices and application needs
595
19.5.2
Potential improvements
596
Chapter
20
Chapter
21
Contents
xiii
Quantum
Dot-based Mode-locked Lasers and Applications
600
20.1
Introduction
600
20.2
InAs/GaAs quantum dot mode-locked lasers
600
20.2.1
Quantum dot active medium for ultra-short
pulse generation
601
20.2.2
Gain properties of quantum dot
mode-locked lasers
602
20.2.3
Quantum dot
saturable
absorber
605
20.2.4
Low timing jitter of quantum dot
mode-locked lasers
609
20.2.5
Summary
610
20.3
InAs/InP quantum dash mode-locked lasers emitting
at
1.55
μ
im
610
20.3.1
Sub-picosecond pulse generation at very high
repetition rate
610
20.3.2
Extremely narrow radio frequency spectrum
612
20.3.3
Phase amplitude characterization
613
20.4
Applications
613
20.4.1
Optical interconnects applications
613
20.4.2
40
Gb/s all-optical clock recovery at
1.55
μτη
615
20.5
Conclusion and perspectives
616
Acknowledgements
616
Quantum Dot
1
Infrared Photodetectors by Metal-Organic
Chemical Vapour Deposition
620
21.1
Introduction
620
21.2
Theoretical modelling of quantum dot infrared detectors
622
21.2.1
Single-band effective mass envelope
function method
622
21.2.2
Oscillator strength
625
21.2.3
Absorption
625
21.2.4
Modelling of responsivity and photocurrent
626
21.2.5
Escape rate
627
21.2.6
Gain
627
21.2.7
Dark current
628
21.2.8
Modelling of detectivity
630
21.2.9
Summary
631
21.3
InP-based QDIP materials growth and characterizations
631
21.3.1
Growth and characterization of matrix material
631
21.3.2
Growth and characterization of InAs QDs
632
21.3.3
Single-layer InAs quantum dots on InP
632
21.3.4
Single-layer InAs quantum dots on GalnAs
634
21.3.5
Doping of InAs quantum dots
635
21.3.6
Conclusions
635
21.4
InP-based QDIP device results
635
21.4.1
InAs/GalnAs/InP QDIP
635
21.4.2
InAs/AIInAs/InP QDIP
639
21.4.3
MWIR InP-based QDIP
643
21.4.4
InAs QD/InGaAs QW/AlInAs barrier MWIR
QDIP
651
21.4.5
Summary
654
xiv Contents
21.5 InP-based QDIP
focal
plane
ar
ray
s
654
21.6
Summary
656
Chapter
22
Quantum Dot Structures for Multi-band Infrared and
Terahertz Radiation Detection
659
22.1
Introduction
659
22.2
Multi-band quantum dots-in-a-well (DWELL) infrared
photodetectors
660
22.2.1
DWELL device structure
662
22.2.2
Device characterization techniques
663
22.2.3
Experimental results and effects of the well
width on response peaks
664
22.3
Tunnelling quantum dot infrared photodetectors (T-QDIPs)
668
22.3.1
Theoretical background and T-QDIP structure
669
22.3.2
Two-colour room temperature T-QDIPs
671
22.3.3
T-QDIPs for terahertz radiation detection
675
22.4
Improvement of ODIP performance
677
22.5
Present performance capabilities of QDIPs
679
22.6
Quantum dot focal plane arrays (FPAs)
680
22.7
Conclusion
683
Acknowledgements
683
Chapter
23
Optically Driven Schemes for Quantum Computation Based on
Self-assembled Quantum dots
687
23.1
Introduction and fundamentals of quantum
information processing
687
23.1.1
Basic requirements for implementing
quantum computation
688
23.2
Semiconductor self-assembled quantum dots as hardware
689
23.3
Exciton representation
691
23.3.1
Single-qubit manipulation
691
23.3.2
Two-qubit manipulation
692
23.4
Spin representation
697
23.4.1
Single-qubit gates
697
23.4.2
Two-qubit gates
700
23.5
General quantum computer architecture and related
quantum devices
701
701
703
23.
.5.1
Quantum dot-based quantum bus
23.
.5.2
Control arrays
23.
5.3
Quantum dot-based quantum computer
architecture
23.
.5.4
Entanglement distributor
Conclusions
703
704
23.6
Conclusions
705
Chapter
24
Quantum Optics with Single CdSe/ZnS Colloidal Nanocrvstals
708
24.1
Introduction
708
24.2
Theoretical background on single-photon sources
709
24.2.1
Introduction: quantum key distribution and
single photons
709
24.2.2
Statistical properties of a light beam
710
Contents xv
24.3
Optical properties of a nanocrystal
715
24.3.1
Colloidal semiconductor nanocrystals
715
24.3.2
Elements of theoretical description
716
24.3.3
Absorption spectrum
717
24.3.4
Exciton and multiexciton relaxation mechanisms
718
24.3.5
Fine structure of the emission level
719
24.4
Nanocrystals as single-photon sources
721
24.4.1
Photon antibunching
721
24.4.2
Single-photon emission on demand
722
24.4.3
Other characterisitics of a single-photon source
722
24.5
Beyond the isolated emitter
-
QD/environment interactions
724
24.5.1
Introduction
724
24.5.2
Quantum dot fluorescence intermittency
724
24.5.3
Blinking kinetics
728
24.5.4
Origin of quantum dot blinking kinetics
730
24.5.5
Conclusion
732
24.6
Time coherence of the single photons emitted by
an individual nanocrystal
732
24.6.1
Monomode
photons and quantum computing
732
24.6.2
Spectroscopy of a single nanocrystal
733
24.6.3
Photon-correlation Fourier spectroscopy
734
24.7
Multiexcitonic emission of colloidal quantum dots
736
24.7.1
Auger processes in colloidal quantum dots
736
24.7.2
Entangled photon pair generation
by solid-state sources
737
24.7.3
Entangled photon pair generation by CdSe
quantum dots
738
24.8
Controlling quantum dot emission with photonic
structures
738
24.8.1
Cavity quantum electodynamics
738
24.8.2
Weak coupling regime
739
24.8.3
Dielectric cavities
739
24.8.4
Metallic photonic cavities
740
24.8.5
Perspectives
741
24.9
Conclusions
742
Chapter
25
PbSe Core, PbSe/PbS and PbSe/PbSe^S, _x Core-Shell
Nanocrystal Quantum Dots: Properties and Applications
749
25.1
Introduction
749
25.2
Synthesis
,
chemical stability, and structural
characterization of PbSe NQDs, PbSe/PbS core-shell
NODs and
PbSe/PbS^eS^ core-alloyed-shell
NQDs
750
25.2.1
Synthesis of PbSe NQDs cores
.
covered with
organic surfactants (alternative I)
750
2 5.2.2
Synthesis of PbSe NQDs cores, covered with
organic surfactants (alternative II)
751
25.2.3
Synthesis of PbSe/PbS core-shell NQDs by a
two-injection process
751
25.2.4
Synthesis of PbSe/PbSeA^. core-alloyed-shell
NQDs by a single-injection process
751
xvi Contents
25.2.5 PbSe
core and core-shell NQDs, capped with
water-soluble ligands
751
25.2.6
Storage conditions and encapsulation of the NQDs
in a polymer film
752
25.2.7
Synthesis of organically capped and water-soluble
^-Fe2O
з
magnetic nanopartides
752
25.3
Structural characterization of PbSe core, PbSe/PbS
core-shell and PbSe/PbSxeS
!_».
core-alloyed-shell NQDs
753
25.4
Optical properties of PbSe NQDs, PbSe/PbS core-shell
NQDs and PbSe/PbS^eS
λ_χ
core-alloyed-shell NQDs
755
25.5
Passive Q-switching, using PbSe NQDs, PbSe/PbS
core-shell NQDs and
PbSe/PbSeÄ^ core-alloyed-shell
NQDs
761
25.6
PbSe NQDs used in a gain device and integrated
into microcavities
765
25.7
Coupling of PbSe NQDs with ^-Fe^O3 magnetic
nanoparticles, for a future biological application
767
25.8
Electrical properties of PbSe NQDs' ordered solids
768
25.9
Summary
770
Acknowledgements
771
Chapter
26
Semiconductor Quantum Dots for Biological Applications
773
26.1
Introduction
773
26.2
Creating a fluorescent
biolabel
out of semiconductor
nanocrystals
776
26.2.1
How did people work out how to control the
particles down to the nanoscale size range?
The evolution of the synthetic procedures
777
26.2.2
Still some problems: quantum dots have
imperfect surfaces! The passivation process
781
26.2.3
How to render QDs soluble (hydrophilic surface)
for biological applications. Solubilization of the
nanoparticles
783
26.2.4
How to target the QDs to biological systems.
The functionalization step
785
26.2.5
Bioconjugation of the QDs
787
26.3
Applications
788
26.3.1
CdS quantum dots for red blood cells antigen
-
A labelling
789
26.3.2
Non-linear microspectroscopy in an optical
tweezers system
-
application to cells marked with
quantum dots
790
26.3.3
Quantum dots as fluorescent bio-labels in cancer
diagnostics
791
Chapter
27
Quantum Dot Modification and Cytotoxicity
799
2 7.1
Quantum dots are born to be an electronic device
799
27.2
Quantum dots acquire a colourful personality with
their environmental magic
799
Contents xvii
2 7.3 Quantum
dots go to the biological field, wearing a
fluorescent dress
803
2 7.4
Quantum dot toxicty:
a forgotton
glass slipper
803
Chapter
28
Colloidal Quantum Dots (QDs) in Optoelectronic Devices
-
Solar Cells, Photodetectors, Light-emitting Diodes
810
28.1
Introduction
810
28.2
Advances in
OD
synthesis,
OD
array synthesis and
properties of the resulting structures
812
28.3
Quantum dot arrays and related studies underlying
photoluminescence
and potential light-emitting diode
applications
815
28.4
Quantum dot arrays as potential photodetectors
816
28.5
Quantum dot arrays as potential solar cells 81b
28.6
Summary
818
Index
821 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV035122426 |
callnumber-first | T - Technology |
callnumber-label | TA418 |
callnumber-raw | TA418.9.N35 |
callnumber-search | TA418.9.N35 |
callnumber-sort | TA 3418.9 N35 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | UP 3150 |
ctrlnum | (OCoLC)213839568 (DE-599)GBV574289364 |
dewey-full | 621.38152 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.38152 |
dewey-search | 621.38152 |
dewey-sort | 3621.38152 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
edition | 1. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01649nam a2200433 c 4500</leader><controlfield tag="001">BV035122426</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090406 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081027s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080463258</subfield><subfield code="9">0-08-046325-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080463254</subfield><subfield code="9">978-0-08-046325-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)213839568</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV574289364</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-526</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA418.9.N35</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.38152</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 3150</subfield><subfield code="0">(DE-625)146377:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Handbook of self assembled semiconductor nanostructures for novel devices in photonics and electronics</subfield><subfield code="c">edited by Mohamed Henini</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 841 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanomatériaux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanostructured materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photonics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semiconductors</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Halbleitertechnologie</subfield><subfield code="0">(DE-588)4158814-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Halbleitertechnologie</subfield><subfield code="0">(DE-588)4158814-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Henini, Mohamed</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016790063&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016790063</subfield></datafield></record></collection> |
id | DE-604.BV035122426 |
illustrated | Illustrated |
index_date | 2024-07-02T22:21:42Z |
indexdate | 2024-07-09T21:22:49Z |
institution | BVB |
isbn | 0080463258 9780080463254 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016790063 |
oclc_num | 213839568 |
open_access_boolean | |
owner | DE-703 DE-526 |
owner_facet | DE-703 DE-526 |
physical | XVII, 841 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Elsevier |
record_format | marc |
spelling | Handbook of self assembled semiconductor nanostructures for novel devices in photonics and electronics edited by Mohamed Henini 1. ed. Amsterdam [u.a.] Elsevier 2008 XVII, 841 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Nanomatériaux Nanostructured materials Photonics Semiconductors Halbleitertechnologie (DE-588)4158814-9 gnd rswk-swf Nanostrukturiertes Material (DE-588)4342626-8 gnd rswk-swf Nanostrukturiertes Material (DE-588)4342626-8 s Halbleitertechnologie (DE-588)4158814-9 s DE-604 Henini, Mohamed Sonstige oth Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016790063&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Handbook of self assembled semiconductor nanostructures for novel devices in photonics and electronics Nanomatériaux Nanostructured materials Photonics Semiconductors Halbleitertechnologie (DE-588)4158814-9 gnd Nanostrukturiertes Material (DE-588)4342626-8 gnd |
subject_GND | (DE-588)4158814-9 (DE-588)4342626-8 |
title | Handbook of self assembled semiconductor nanostructures for novel devices in photonics and electronics |
title_auth | Handbook of self assembled semiconductor nanostructures for novel devices in photonics and electronics |
title_exact_search | Handbook of self assembled semiconductor nanostructures for novel devices in photonics and electronics |
title_exact_search_txtP | Handbook of self assembled semiconductor nanostructures for novel devices in photonics and electronics |
title_full | Handbook of self assembled semiconductor nanostructures for novel devices in photonics and electronics edited by Mohamed Henini |
title_fullStr | Handbook of self assembled semiconductor nanostructures for novel devices in photonics and electronics edited by Mohamed Henini |
title_full_unstemmed | Handbook of self assembled semiconductor nanostructures for novel devices in photonics and electronics edited by Mohamed Henini |
title_short | Handbook of self assembled semiconductor nanostructures for novel devices in photonics and electronics |
title_sort | handbook of self assembled semiconductor nanostructures for novel devices in photonics and electronics |
topic | Nanomatériaux Nanostructured materials Photonics Semiconductors Halbleitertechnologie (DE-588)4158814-9 gnd Nanostrukturiertes Material (DE-588)4342626-8 gnd |
topic_facet | Nanomatériaux Nanostructured materials Photonics Semiconductors Halbleitertechnologie Nanostrukturiertes Material |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016790063&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT heninimohamed handbookofselfassembledsemiconductornanostructuresfornoveldevicesinphotonicsandelectronics |