Introduction to genetic analysis:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
New York, NY
Freeman
2008
|
Ausgabe: | 9. ed., 3. print. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXIII, 838 S. Ill., graph. Darst. |
ISBN: | 9780716768876 9780716799023 0716768879 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035116626 | ||
003 | DE-604 | ||
005 | 20090429 | ||
007 | t | ||
008 | 081023s2008 xxuad|| |||| 00||| eng d | ||
020 | |a 9780716768876 |9 978-0-7167-6887-6 | ||
020 | |a 9780716799023 |9 978-0-7167-9902-3 | ||
020 | |a 0716768879 |9 0-7167-6887-9 | ||
035 | |a (OCoLC)261200571 | ||
035 | |a (DE-599)BVBBV035116626 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-19 |a DE-703 |a DE-29 |a DE-355 | ||
050 | 0 | |a QH430 | |
082 | 0 | |a 576.5 |2 22 | |
084 | |a WG 1000 |0 (DE-625)148483: |2 rvk | ||
084 | |a BIO 750f |2 stub | ||
084 | |a BIO 180f |2 stub | ||
084 | |a BIO 450f |2 stub | ||
084 | |a CIT 972f |2 stub | ||
245 | 1 | 0 | |a Introduction to genetic analysis |c Anthony J. F. Griffiths .... |
250 | |a 9. ed., 3. print. | ||
264 | 1 | |a New York, NY |b Freeman |c 2008 | |
300 | |a XXIII, 838 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 7 | |a Biotechnologie |2 ram | |
650 | 4 | |a Genetik | |
650 | 4 | |a Génétique | |
650 | 4 | |a Génétique - Méthodologie | |
650 | 2 | |a Génétique - analyse | |
650 | 7 | |a Génétique |2 ram | |
650 | 4 | |a Genetics | |
650 | 0 | 7 | |a Genetik |0 (DE-588)4071711-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Methode |0 (DE-588)4038971-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a CD-ROM |0 (DE-588)4139307-7 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
655 | 7 | |8 2\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Genetik |0 (DE-588)4071711-2 |D s |
689 | 0 | 1 | |a Methode |0 (DE-588)4038971-6 |D s |
689 | 0 | |8 3\p |5 DE-604 | |
689 | 1 | 0 | |a Genetik |0 (DE-588)4071711-2 |D s |
689 | 1 | 1 | |a CD-ROM |0 (DE-588)4139307-7 |D s |
689 | 1 | |8 4\p |5 DE-604 | |
700 | 1 | |a Griffiths, Anthony J. F. |e Sonstige |4 oth | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016784360&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016784360 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804138092146196480 |
---|---|
adam_text | Titel: Introduction to genetic analysis
Autor: Griffiths, Anthony J. F.
Jahr: 2008
Contents in Brief
Contents
Preface xiii
1 The Genetic Approach to Biology 1
PART I TRA|4SMj»IONj^ETJ^_
2 Single-Gene Inheritance 31
3 Independent Assortment of Genes 89
4 Mapping Eukaryote Chromosomes by
Recombination 129
5 The Genetics of Bacteria and Their
Viruses 181
6 Gene Interaction 221
PART II FROM DNA TO PHENOTYPE
7 DNA: Structure and Replication 265
8 RNA: Transcription and Processing 295
9 Proteins and Their Synthesis 319
10 Regulation of Gene Expression in
Bacteria and Their Viruses 351
11 Regulation of Gene Expression
in Eukaryotes 385
12 The Genetic Control of Development 415
13 Genomes and Genomics 453
PART III MUTATION, VARIATION,
ANDEVOUrnON^_________
14 The Dynamic Genome 487
15 Mutation, Repair, and Recombination 000
16 Large-Scale Chromosomal Changes 555
17 Population Genetics 603
18 Quantitative Genetics 639
19 Evolutionary Genetics 679
PART IV TECHNIQUES
20 Gene Isolation and Manipulation
000
A Brief Guide to Model Organisms 000
Appendix A: Genetic Nomenclature 000
Appendix B: Bioinformatics Resources
for Genetics and Genomics 000
Answers to Selected Problems 000
Glossary 000
Index 000
Preface xiii
1 The Genetic Approach to Biology 1
1.1 Genetics and the Questions of Biology 3
1.2 The Molecular Basis of Genetic Information 5
Specifying the amino acid sequence of a protein 6
Gene regulation 9
1.3 The Program of Genetic Investigation 9
The necessity of variation 9
Starting with variation: Forward genetics 10
Starting with DNA: Reverse genetics 13
1.4 Methodologies Used in Genetics 14
An Overview 14
Detecting specific molecules of DNA, RNA,
and protein 15
1.5 Model Organisms 17
Lessons from the first model organisms 17
The need for a variety of model organisms 17
1.6 Genes, the Environment, and the
Organism 21
Model I: Genetic determination 21
Model II: Environmental determination 22
Model III: Genotype-environment interaction 23
The use of genotype and phenotype 23
Developmental noise 24
Three levels of development 26
PART I TRANSMISSION GENETICS
2 Single-Gene Inheritance
2.1 Genes and Chromosomes 33
2.2 Single-Gene Inheritance Patterns 37
Mendel s law of equal segregation 37
2.3 The Chromosomal Basis of Single-Gene
Inheritance Patterns 42
Single-gene inheritance in haploids 46
The molecular basis of single-gene segregation
and expression 50
31
2.4 Discovering Genes by Observing
Segregation Ratios 57
Discovering a gene active in the development
of flower color 57
Discovering a gene for wing development 58
Discovering a gene for spore production 58
The results of gene discovery 59
Forward genetics 60
Predicting progeny proportions or parental genotypes by
applying the principles of single-gene influence 60
2.5 Sex-Linked Single-Gene Inheritance Patterns 61
Sex chromosomes 61
Sex-linked patterns of inheritance 62
Model Organism Box Drosophifa 63
X-linked inheritance 63
2.6 Human Pedigree Analysis 66
Autosomal recessive disorders 66
Autosomal dominant disorders 68
Autosomal polymorphisms 69
X-linked recessive disorders 71
X-linked dominant disorders 73
Y-linked inheritance 73
Calculating risks in pedigree analysis 74
3 Independent Assortment of Genes 89
3.1 Mendel s Law of Independent Assortment 90
3.2 Working with Independent Assortment 94
Predicting progeny ratios 94
Using the chi-square test on monohybrid
and dihybrid ratios 97
Synthesizing pure lines 99
Hybrid vigor 101
3.3 The Chromosomal Basis of Independent
Assortment 102
Independent assortment in diploid organisms 103
Independent assortment in haploid organisms 103
Independent assortment of combinations of autosomal
and X-linked genes 105
Recombination 106
Model Organism Box Neurospora 107
3.4 Polygenic Inheritance 110
3.5 Organelle Genes: Inheritance Independent
of the Nucleus 112
Patterns of inheritance in organelles 112
Cytoplasmic segregation 114
Cytoplasmic mutations in humans 116
4.1
Mapping Eukaryote Chromosomes
by Recombination 129
Diagnostics of Linkage 131
Using recombinant frequency to recognize linkage 131
How crossovers produce recombinants for linked
genes 133
Linkage symbolism and terminology 134
Evidence that crossing over is a breakage-and-rejoining
process 134
Evidence that crossing over takes place at the four-
chromatid stage 135
Multiple crossovers can include more than two
chromatids 136
4.2 Mapping by Recombinant Frequency 137
Map units 137
Three-point testcross 140
Deducing gene order by inspection 142
Interference 143
Using ratios as diagnostics 145
4.3 Mapping with Molecular Markers 146
Single nucleotide polymorphisms 147
Mapping by using SNP haplotypes 149
Simple sequence length polymorphisms 151
4.4 Centromere Mapping with Linear
Tetrads 154
4.5 Using the Chi-Square Test for Testing Linkage
Analysis 155
4.6 Using Lod Scores to Assess Linkage in Human
Pedigrees 158
4.7 Accounting for Unseen Multiple Crossovers 159
A mapping function 160
The Perkins formula 162
4.8 Using Recombination-Based Maps in Conjunction
with Physical Maps 163
_5_ The Genetics of Bacteria and Their
Viruses 181
5.1 Working with Microorganisms 183
5.2 Bacterial Conjugation 185
Discovery of conjugation 185
Model Organism Box Escherichia coli 185
Discovery of the fertility factor (F) 187
Hfr strains 188
Mapping of bacterial chromosomes 192
F plasmids that carry genomic fragments 195
Rplasmids 196
5.3 Bacterial Transformation 198
Chromosome mapping using transformation 199
5.4 Bacteriophage Genetics 199
Infection of bacteria by phages 200
Mapping phage chromosomes by using
phage crosses 202
5.5 Transduction 204
Discovery of transduction 204
Generalized transduction 205
Specialized transduction 207
Mechanism of specialized transduction 208
5.6 Physical Maps and Linkage Maps
Compared 209
_6_ Gene Interaction 221
6.1 Interactions Between the Alleles of a Single Gene:
Variations on Dominance 223
Complete dominance and recessiveness 223
Incomplete dominance 225
Codominance 225
Recessive lethal alleles 227
Model Organism Box Mouse 228
6.2 Interaction of Genes in Pathways 230
Biosynthetic pathways in Neurospora 230
Gene interaction in other types of pathways 233
6.3 Inferring Gene Interactions 235
Defining the set of genes by using the
complementation test 235
Analyzing double mutants of random mutations 239
6.4 Penetrance and Expressivity 247
PART II FROM DNA TO PHENOTYPE
7_ DNA: Structure and Replication 265
7.1 DNA: The Genetic Material 266
Discovery of transformation 266
Hershey-Chase experiment 268
7.2 The DNA Structure 269
DNA structure before Watson and Crick 270
The double helix 272
7.3 Semiconservative Replication 275
Meselson-Stahl experiment 276
The replication fork 277
DNA polymerases 278
7.4 Overview of DNA Replication 279
7.5 The Replisome: A Remarkable Replication
Machine 281
Unwinding the double helix 283
Assembling the replisome: Replication initiation 284
7.6 Replication in Eukaryotic Organisms 284
The eukaryotic replisome 284
Eukaryotic origins of replication 285
DNA replication and the yeast cell cycle 286
Replication origins in higher eukaryotes 287
7.7 Telomeres and Telomerase: Replication
Termination 287
|f I Telomeres, cancer, and aging 288
J8_ RNA: Transcription and Processing 295
8.1 RNA 297
Early experiments suggest an RNA intermediate 297
Properties of RNA 297
Classes of RNA 298
8.2 Transcription 300
Overview: DNA as transcription template 300
Stages of transcription 301
8.3 Transcription in eukaryotes 304
Transcription initiation in eukaryotes 306
Elongation, termination, and pre-mRNA processing
in eukaryotes 307
8.4 Functional RNAs 309
Small nuclear RNAs (snRNAs): The mechanism of exon
splicing 310
Self-splicing introns and the RNA world 312
Small interfering RNAs (siRNAs) 312
9 Proteins and Their Synthesis 319
9.1 Protein Structure 321
9.2 Colinearity of Gene and Protein 324
9.3 The Genetic Code 325
Overlapping versus nonoverlapping codes 325
Number of letters in the codon 326
Use of suppressors to demonstrate a triplet code 326
Degeneracy of the genetic code 328
Cracking the code 328
Stopcodons 329
9.4 tRNA: The Adapter 330
Codon translation by tRNA 331
Degeneracy revisited 332
9.5 Ribosomes 333
Ribosome features 334
Translation initiation, elongation, and
termination 336
Nonsense suppressor mutations 339
9.6 TheProteome 340
Alternative splicing generates protein isoforms 340
Posttranslational events 340
10 Regulation of Gene Expression in Bacteria
and Their Viruses 351
10.1 Gene Regulation 353
The basics of prokaryotic transcriptional regulation:
Genetic switches 354
A first look at the lac regulatory circuit 355
10.2 Discovery of the lac System: Negative Control 358
Genes controlled together 358
Genetic evidence for the operator and repressor 359
Genetic evidence for allostery 361
Genetic analysis of the lac promoter 362
Molecular characterization of the Lac repressor
and the lac operator 363
Polar mutations 363
10.3 Catabolic Repression of the lac Operon:
Positive Control 364
The basics of catabolite repression of the lac operon:
Choosing the best sugar to metabolize 364
The structures of target DNA sites 365
A summary of the lac operon 366
10.4 Dual Positive and Negative Control:
The Arabinose Operon 368
10.5 Metabolic Pathways and Additional Levels
of Regulation: Attenuation 369
Transcription of the trp operon is regulated at
two steps 369
10.6 Bacteriophage Life Cycles: More Regulators,
Complex Operons 372
Molecular anatomy of the genetic switch 375
Sequence-specific binding of regulatory proteins
to DNA 376
10.7 Alternative Sigma Factors Regulate Large Sets
of Genes 378
11 Regulation of Gene Expression in
Eukaryotes 385
11.1 Transcriptional Regulation in Eukaryotes:
An Overview 386
Model Organism Box Yeast 390
11.2 Lessons from Yeast: the GAL System 390
Gal4 regulates multiple genes through upstream
activation sequences 391
The Gal4 protein has separable DNA-bindingand
activation domains 392
Gal4 activity is physiologically regulated 392
Gal4 functions in most eukaryotes 393
Activators recruit the transcriptional machinery 393
11.3 Dynamic Chromatin and Eukaryotic Gene
Regulation 394
Chromatin-remodeling proteins and gene
activation 395
Histones and chromatin remodeling 396
11.4 Mechanism of Enhancer Action 398
The ^-interferon enhanceosome 398
The control of yeast mating type: Combinatorial
interactions 399
DNA-binding proteins combinatorially regulate the
expression of cell-type-specific genes 399
Enhancer-blocking insulators 401
11.5 Genomic Imprinting 402
But what about Dolly and other cloned mammals? 404
11.6 Chromatin Domains and Their Inheritance 404
Mating-type switching and gene silencing 404
Heterochromatin and euchromatin compared 405
Position-effect variegation in Drosophila reveals
genomic neighborhoods 406
Genetic analysis of PEV reveals proteins necessary for
heterochromatin formation 407
Silencing an entire chromosome: X-chromosome
inactivation 409
The inheritance of epigenetic marks and chromatin
structure 410
12 The Genetic Control of Development 415
12.1 The Genetic Approach to Development 416
Model Organism Box Drosophila 418
12.2 The Genetic Toolkit for Drosophila
Development 418
Classification of genes by developmental function 419
Homeotic genes and segmental identity 420
Organization and expression of Hox genes 421
The homeobox 423
Clusters of Hox genes control development in most
animals 424
12.3 Defining the Entire Toolkit 427
The anteroposterior and dorsoventral axes 428
Expression of toolkit genes 428
12.4 Spatial Regulation of Gene Expression in
Development 432
Maternal gradients and gene activation 432
Drawing stripes: Integration of gap-protein inputs 434
Making segments different: Integration of Hox
inputs 436
12.5 Posttranscriptional Regulation of Gene Expression
in Development 439
RNA splicing and sex determination in
Drosophila 439
Regulation of mRNA translation and cell lineage in
C. elegans 441
Translational control in the early embryo 441
Model Organism Box Caenorhabditis
elegans 442
miRNA control of developmental timing in C. elegans
and other species 444
12.6 The Many Roles of Individual Toolkit Genes 445
From flies to fingers, feathers, and floor plates 445
12.7 Development and Disease 446
Polydactyly 446
Holoprosencephaly 447
Cancer as a developmental disease 447
13 Genomes and Genomics 453
13.1 The Genomics Revolution 455
13.2 Creating the Sequence Map of a Genome 456
Turning sequence reads into a sequence
map 456
Establishing a genomic library of clones 459
Sequencing a simple genome by using the whole-
genome shotgun approach 459
Using the whole-genome shotgun approach to
create a draft sequence of a complex genome 460
Using the ordered-clone approach to sequence a
complex genome 461
Filling sequence gaps 462
13.3 Bioinformatics: Meaning from Genomic
Sequence 463
The nature of the information content of DNA 463
Deducing the protein-encoding genes from
genomic sequence 464
13.4 The Structure of the Human Genome 468
13.5 Comparative Genomics 470
Of mice and humans 471
Comparative genomics of chimpanzees and
humans 472
Conserved and ultraconserved noncoding
elements 472
Comparative genomics of non-pathogenic and
pathogenic £. coli ATS
13.6 Functional Genomics and Reverse Genetics 475
Ome, Sweet Ome 475
Reverse genetics 479
PART III MUTATION, VARIATION,
AND EVOLUTION
14 The Dynamic Genome 487
14.1 Discovery of Transposable Elements in Maize 488
McClintock s experiments: the Ds element 488
Model Organism Box Maize 489
Autonomous and nonautomous elements 491
Transposable elements: Only in maize? 492
14.2 Transposable Elements in Prokaryotes 492
Bacterial insertion sequences 492
Prokaryotic transposons 493
Mechanism of transposition 495
14.3 Transposable Elements in Eukaryotes 496
Class I: Retrotransposons 496
DNA transposons 499
Utility of DNA transposons for gene discovery 502
14.4 The Dynamic Genome: More Transposable
Elements Than Ever Imagined 504
Large genomes are largely transposable elements 504
Transposable elements in the human genome 505
The grasses: LTR retrotransposons thrive in large
genomes 507
Safe havens 508
Postreplication repair: Mismatch repair 536
Error-prone repair: Translesion DNA Synthesis 538
Repair of double-strand breaks 540
15.5 The Mechanism of Meiotic Crossing Over 542
Programmed double-strand breaks initiate meiotic
recombination 542
Genetic analyses of tetrads provide clues to the
mechanism of recombination 543
The double-strand break model for meiotic
recombination 544
Ifl 15.6 Cancer: An Important Phenotypic Consequence
* of Mutations 546
How cancer cells differ from normal cells 546
Mutations in cancer cells 547
IS
15.1
15.2
15.3
15.4
Isssssl
Mutation, Repair, and Recombination 513
Phenotypic Consequences of DNA Mutations 514
Types of point mutation 515
The molecular consequences of point mutations in a
coding region 516
The molecular consequences of point mutations in a
noncoding region 517
The Molecular Basis of Spontaneous
Mutations 518
Luriaand Delbriick fluctuation test 518
Mechanisms of spontaneous mutations 520
Spontaneous mutations in humans:
Trinucleotide repeat diseases 523
The Molecular Basis of Induced Mutations 525
Mechanisms of mutagenesis 526
The Ames test: Evaluating mutagens in our
environment 530
Biological Repair Mechanisms 531
Direct reversal of damaged DNA 532
Base-excision repair 532
Nucleotide-excision repair 534
16 Large-Scale Chromosomal Changes 555
16.1 Changes in Chromosome Number 557
Aberrant euploidy 557
Aneuploidy 565
The concept of gene balance 569
16.2 Changes in Chromosome Structure 572
Deletions 574
Duplications 578
Inversions 580
Reciprocal translocations 583
Robertsonian translocations 584
Applications of inversions and translocations 586
Rearrangements and cancer 587
Identifying chromosome mutations by genomics 588
16.3 Overall Incidence of Human Chromosome
Mutations 588
V
17 Population Genetics 603
17.1 Variation and Its Modulation 604
Observations of variation 604
Protein polymorphisms 606
DNA structure and sequence polymorphism 609
17.2 Effect of Sexual Reproduction on Variation 613
Meiotic segregation and genetic equilibrium 613
Heterozygosity 616
Random mating 616
Inbreeding and assortative mating 618
17.3 Sources of Variation 620
Variation from mutation 620
Variation from recombination 620
Variation from migration 622
17.4 Selection 623
Two forms of selection 624
Measuring fitness differences 625
How selection works 626
Rate of change in gene frequency 628
17.5 Balanced Polymorphism 629
Overdominance and underdominance 629
Balance between mutation and selection 630
17.6 Random Events 631
18 Quantitative Genetics 639
18.1 Genes and Quantitative Traits 640
18.2 Some Basic Statistical Notions 642
Statistical distributions 642
Statistical measures 643
18.3 Genotypes and Phenotypic Distribution 644
The critical difference between quantitative
and Mendelian traits 644
Gene number and quantitative traits 645
18.4 Norm of Reaction and Phenotypic
Distribution 646
18.5 Determining Norms of Reaction 647
Domesticated plants and animals 647
Studies of natural populations 649
Results of norm-of-reaction studies 649
18.6 The Heritability of a Quantitative Character 651
Familiality and heritability 651
Phenotypic similarity between relatives 652
18.7 Quantifying Heritability 654
Methods of estimating H2 655
The meaning of H2 656
Narrow heritability 659
Estimating the components of genetic variance 661
Artificial selection 662
The use of h2 in breeding 663
18.8 Locating Genes 664
Marker-gene segregation 666
Quantitative linkage analysis 666
Statistical Appendix 669
Measures of central tendency 669
Measures of dispersion: The variance 670
Measures of relation 671
19 Evolutionary Genetics 679
19.1 Darwinian Evolution 680
19.2 A Synthesis of Forces: Variation and Divergence
of Populations 683
19.3 Multiple Adaptive Peaks 685
Exploration of adaptive peaks 687
19.4 Genetic Variation 689
Heritability of variation 689
Variation within and between populations 690
19.5 Mutation and Molecular Evolution 690
The signature of purifying selection on DNA 691
19.6 Relating Genetic to Functional Change:
Protein Evolution 693
The signature of positive selection on DNA
sequences 693
Morphological evolution 694
Gene inactivation 696
19.7 Regulatory Evolution 697
Regulatory evolution in humans 699
19.8 The Origin of New Genes 699
Polyploidy 700
Duplications 700
Imported DNA 702
19.9 Genetic Evidence of Common Ancestry
in Evolution 703
Comparing the proteomes among distant species 705
Comparing the proteomes among near neighbors:
Human-mouse comparative genomics 706
19.10 The Process of Speciation 707
Genetics of species isolation 709
PART IV TECHNIQUES
20 Gene Isolation and Manipulation 715
20.1 Generating Recombinant Molecules 716
Type of donor DNA 717
Cutting genomic DNA 717
Attaching donor and vector DNA 719
Amplification inside a bacterial cell 720
Entry of recombinant molecules into the
bacterial cell 723
Recovery of amplified recombinant molecules 723
Making genomic and cDNA libraries 724
Finding a specific clone of interest 724
20.2 DNA Amplification in Vitro: The Polymerase
Chain Reaction 731
20.3 Determining the Base Sequence of a DNA
Segment 732
20.4 Forward Genetic Analysis by Using Positional
Cloning 735
A forward analysis to identify a human
disease gene 737
A forward analysis to identify a gene important to corn
domestication 738
20.5 Detecting Human Disease Alleles:
Molecular Genetic Diagnostics 739
20.6 Genetic Engineering 741
Genetic engineering in Saccharomyces cerevisiae 741
Genetic engineering in plants 742
Genetic engineering in animals 745
Human gene therapy 749
A Brief Guide to Model Organisms 759
Appendix A: Genetic Nomenclature 775
Appendix B: Bioinformatics Resources for Genetics
and Genomics 776
Glossary 779
Answers to Selected Problems 803
Index 815
|
adam_txt |
Titel: Introduction to genetic analysis
Autor: Griffiths, Anthony J. F.
Jahr: 2008
Contents in Brief
Contents
Preface xiii
1 The Genetic Approach to Biology 1
PART I TRA|4SMj»IONj^ETJ^_
2 Single-Gene Inheritance 31
3 Independent Assortment of Genes 89
4 Mapping Eukaryote Chromosomes by
Recombination 129
5 The Genetics of Bacteria and Their
Viruses 181
6 Gene Interaction 221
PART II FROM DNA TO PHENOTYPE
7 DNA: Structure and Replication 265
8 RNA: Transcription and Processing 295
9 Proteins and Their Synthesis 319
10 Regulation of Gene Expression in
Bacteria and Their Viruses 351
11 Regulation of Gene Expression
in Eukaryotes 385
12 The Genetic Control of Development 415
13 Genomes and Genomics 453
PART III MUTATION, VARIATION,
ANDEVOUrnON^_
14 The Dynamic Genome 487
15 Mutation, Repair, and Recombination 000
16 Large-Scale Chromosomal Changes 555
17 Population Genetics 603
18 Quantitative Genetics 639
19 Evolutionary Genetics 679
PART IV TECHNIQUES
20 Gene Isolation and Manipulation
000
A Brief Guide to Model Organisms 000
Appendix A: Genetic Nomenclature 000
Appendix B: Bioinformatics Resources
for Genetics and Genomics 000
Answers to Selected Problems 000
Glossary 000
Index 000
Preface xiii
1 The Genetic Approach to Biology 1
1.1 Genetics and the Questions of Biology 3
1.2 The Molecular Basis of Genetic Information 5
Specifying the amino acid sequence of a protein 6
Gene regulation 9
1.3 The Program of Genetic Investigation 9
The necessity of variation 9
Starting with variation: Forward genetics 10
Starting with DNA: Reverse genetics 13
1.4 Methodologies Used in Genetics 14
An Overview 14
Detecting specific molecules of DNA, RNA,
and protein 15
1.5 Model Organisms 17
Lessons from the first model organisms 17
The need for a variety of model organisms 17
1.6 Genes, the Environment, and the
Organism 21
Model I: Genetic determination 21
Model II: Environmental determination 22
Model III: Genotype-environment interaction 23
The use of genotype and phenotype 23
Developmental noise 24
Three levels of development 26
PART I TRANSMISSION GENETICS
2 Single-Gene Inheritance
2.1 Genes and Chromosomes 33
2.2 Single-Gene Inheritance Patterns 37
Mendel's law of equal segregation 37
2.3 The Chromosomal Basis of Single-Gene
Inheritance Patterns 42
Single-gene inheritance in haploids 46
The molecular basis of single-gene segregation
and expression 50
31
2.4 Discovering Genes by Observing
Segregation Ratios 57
Discovering a gene active in the development
of flower color 57
Discovering a gene for wing development 58
Discovering a gene for spore production 58
The results of gene discovery 59
Forward genetics 60
Predicting progeny proportions or parental genotypes by
applying the principles of single-gene influence 60
2.5 Sex-Linked Single-Gene Inheritance Patterns 61
Sex chromosomes 61
Sex-linked patterns of inheritance 62
Model Organism Box Drosophifa 63
X-linked inheritance 63
2.6 Human Pedigree Analysis 66
Autosomal recessive disorders 66
Autosomal dominant disorders 68
Autosomal polymorphisms 69
X-linked recessive disorders 71
X-linked dominant disorders 73
Y-linked inheritance 73
Calculating risks in pedigree analysis 74
3 Independent Assortment of Genes 89
3.1 Mendel's Law of Independent Assortment 90
3.2 Working with Independent Assortment 94
Predicting progeny ratios 94
Using the chi-square test on monohybrid
and dihybrid ratios 97
Synthesizing pure lines 99
Hybrid vigor 101
3.3 The Chromosomal Basis of Independent
Assortment 102
Independent assortment in diploid organisms 103
Independent assortment in haploid organisms 103
Independent assortment of combinations of autosomal
and X-linked genes 105
Recombination 106
Model Organism Box Neurospora 107
3.4 Polygenic Inheritance 110
3.5 Organelle Genes: Inheritance Independent
of the Nucleus 112
Patterns of inheritance in organelles 112
Cytoplasmic segregation 114
Cytoplasmic mutations in humans 116
4.1
Mapping Eukaryote Chromosomes
by Recombination 129
Diagnostics of Linkage 131
Using recombinant frequency to recognize linkage 131
How crossovers produce recombinants for linked
genes 133
Linkage symbolism and terminology 134
Evidence that crossing over is a breakage-and-rejoining
process 134
Evidence that crossing over takes place at the four-
chromatid stage 135
Multiple crossovers can include more than two
chromatids 136
4.2 Mapping by Recombinant Frequency 137
Map units 137
Three-point testcross 140
Deducing gene order by inspection 142
Interference 143
Using ratios as diagnostics 145
4.3 Mapping with Molecular Markers 146
Single nucleotide polymorphisms 147
Mapping by using SNP haplotypes 149
Simple sequence length polymorphisms 151
4.4 Centromere Mapping with Linear
Tetrads 154
4.5 Using the Chi-Square Test for Testing Linkage
Analysis 155
4.6 Using Lod Scores to Assess Linkage in Human
Pedigrees 158
4.7 Accounting for Unseen Multiple Crossovers 159
A mapping function 160
The Perkins formula 162
4.8 Using Recombination-Based Maps in Conjunction
with Physical Maps 163
_5_ The Genetics of Bacteria and Their
Viruses 181
5.1 Working with Microorganisms 183
5.2 Bacterial Conjugation 185
Discovery of conjugation 185
Model Organism Box Escherichia coli 185
Discovery of the fertility factor (F) 187
Hfr strains 188
Mapping of bacterial chromosomes 192
F plasmids that carry genomic fragments 195
Rplasmids 196
5.3 Bacterial Transformation 198
Chromosome mapping using transformation 199
5.4 Bacteriophage Genetics 199
Infection of bacteria by phages 200
Mapping phage chromosomes by using
phage crosses 202
5.5 Transduction 204
Discovery of transduction 204
Generalized transduction 205
Specialized transduction 207
Mechanism of specialized transduction 208
5.6 Physical Maps and Linkage Maps
Compared 209
_6_ Gene Interaction 221
6.1 Interactions Between the Alleles of a Single Gene:
Variations on Dominance 223
Complete dominance and recessiveness 223
Incomplete dominance 225
Codominance 225
Recessive lethal alleles 227
Model Organism Box Mouse 228
6.2 Interaction of Genes in Pathways 230
Biosynthetic pathways in Neurospora 230
Gene interaction in other types of pathways 233
6.3 Inferring Gene Interactions 235
Defining the set of genes by using the
complementation test 235
Analyzing double mutants of random mutations 239
6.4 Penetrance and Expressivity 247
PART II FROM DNA TO PHENOTYPE
7_ DNA: Structure and Replication 265
7.1 DNA: The Genetic Material 266
Discovery of transformation 266
Hershey-Chase experiment 268
7.2 The DNA Structure 269
DNA structure before Watson and Crick 270
The double helix 272
7.3 Semiconservative Replication 275
Meselson-Stahl experiment 276
The replication fork 277
DNA polymerases 278
7.4 Overview of DNA Replication 279
7.5 The Replisome: A Remarkable Replication
Machine 281
Unwinding the double helix 283
Assembling the replisome: Replication initiation 284
7.6 Replication in Eukaryotic Organisms 284
The eukaryotic replisome 284
Eukaryotic origins of replication 285
DNA replication and the yeast cell cycle 286
Replication origins in higher eukaryotes 287
7.7 Telomeres and Telomerase: Replication
Termination 287
|f I Telomeres, cancer, and aging 288
J8_ RNA: Transcription and Processing 295
8.1 RNA 297
Early experiments suggest an RNA intermediate 297
Properties of RNA 297
Classes of RNA 298
8.2 Transcription 300
Overview: DNA as transcription template 300
Stages of transcription 301
8.3 Transcription in eukaryotes 304
Transcription initiation in eukaryotes 306
Elongation, termination, and pre-mRNA processing
in eukaryotes 307
8.4 Functional RNAs 309
Small nuclear RNAs (snRNAs): The mechanism of exon
splicing 310
Self-splicing introns and the RNA world 312
Small interfering RNAs (siRNAs) 312
9 Proteins and Their Synthesis 319
9.1 Protein Structure 321
9.2 Colinearity of Gene and Protein 324
9.3 The Genetic Code 325
Overlapping versus nonoverlapping codes 325
Number of letters in the codon 326
Use of suppressors to demonstrate a triplet code 326
Degeneracy of the genetic code 328
Cracking the code 328
Stopcodons 329
9.4 tRNA: The Adapter 330
Codon translation by tRNA 331
Degeneracy revisited 332
9.5 Ribosomes 333
Ribosome features 334
Translation initiation, elongation, and
termination 336
Nonsense suppressor mutations 339
9.6 TheProteome 340
Alternative splicing generates protein isoforms 340
Posttranslational events 340
10 Regulation of Gene Expression in Bacteria
and Their Viruses 351
10.1 Gene Regulation 353
The basics of prokaryotic transcriptional regulation:
Genetic switches 354
A first look at the lac regulatory circuit 355
10.2 Discovery of the lac System: Negative Control 358
Genes controlled together 358
Genetic evidence for the operator and repressor 359
Genetic evidence for allostery 361
Genetic analysis of the lac promoter 362
Molecular characterization of the Lac repressor
and the lac operator 363
Polar mutations 363
10.3 Catabolic Repression of the lac Operon:
Positive Control 364
The basics of catabolite repression of the lac operon:
Choosing the best sugar to metabolize 364
The structures of target DNA sites 365
A summary of the lac operon 366
10.4 Dual Positive and Negative Control:
The Arabinose Operon 368
10.5 Metabolic Pathways and Additional Levels
of Regulation: Attenuation 369
Transcription of the trp operon is regulated at
two steps 369
10.6 Bacteriophage Life Cycles: More Regulators,
Complex Operons 372
Molecular anatomy of the genetic switch 375
Sequence-specific binding of regulatory proteins
to DNA 376
10.7 Alternative Sigma Factors Regulate Large Sets
of Genes 378
11 Regulation of Gene Expression in
Eukaryotes 385
11.1 Transcriptional Regulation in Eukaryotes:
An Overview 386
Model Organism Box Yeast 390
11.2 Lessons from Yeast: the GAL System 390
Gal4 regulates multiple genes through upstream
activation sequences 391
The Gal4 protein has separable DNA-bindingand
activation domains 392
Gal4 activity is physiologically regulated 392
Gal4 functions in most eukaryotes 393
Activators recruit the transcriptional machinery 393
11.3 Dynamic Chromatin and Eukaryotic Gene
Regulation 394
Chromatin-remodeling proteins and gene
activation 395
Histones and chromatin remodeling 396
11.4 Mechanism of Enhancer Action 398
The ^-interferon enhanceosome 398
The control of yeast mating type: Combinatorial
interactions 399
DNA-binding proteins combinatorially regulate the
expression of cell-type-specific genes 399
Enhancer-blocking insulators 401
11.5 Genomic Imprinting 402
But what about Dolly and other cloned mammals? 404
11.6 Chromatin Domains and Their Inheritance 404
Mating-type switching and gene silencing 404
Heterochromatin and euchromatin compared 405
Position-effect variegation in Drosophila reveals
genomic neighborhoods 406
Genetic analysis of PEV reveals proteins necessary for
heterochromatin formation 407
Silencing an entire chromosome: X-chromosome
inactivation 409
The inheritance of epigenetic marks and chromatin
structure 410
12 The Genetic Control of Development 415
12.1 The Genetic Approach to Development 416
Model Organism Box Drosophila 418
12.2 The Genetic Toolkit for Drosophila
Development 418
Classification of genes by developmental function 419
Homeotic genes and segmental identity 420
Organization and expression of Hox genes 421
The homeobox 423
Clusters of Hox genes control development in most
animals 424
12.3 Defining the Entire Toolkit 427
The anteroposterior and dorsoventral axes 428
Expression of toolkit genes 428
12.4 Spatial Regulation of Gene Expression in
Development 432
Maternal gradients and gene activation 432
Drawing stripes: Integration of gap-protein inputs 434
Making segments different: Integration of Hox
inputs 436
12.5 Posttranscriptional Regulation of Gene Expression
in Development 439
RNA splicing and sex determination in
Drosophila 439
Regulation of mRNA translation and cell lineage in
C. elegans 441
Translational control in the early embryo 441
Model Organism Box Caenorhabditis
elegans 442
miRNA control of developmental timing in C. elegans
and other species 444
12.6 The Many Roles of Individual Toolkit Genes 445
From flies to fingers, feathers, and floor plates 445
12.7 Development and Disease 446
Polydactyly 446
Holoprosencephaly 447
Cancer as a developmental disease 447
13 Genomes and Genomics 453
13.1 The Genomics Revolution 455
13.2 Creating the Sequence Map of a Genome 456
Turning sequence reads into a sequence
map 456
Establishing a genomic library of clones 459
Sequencing a simple genome by using the whole-
genome shotgun approach 459
Using the whole-genome shotgun approach to
create a draft sequence of a complex genome 460
Using the ordered-clone approach to sequence a
complex genome 461
Filling sequence gaps 462
13.3 Bioinformatics: Meaning from Genomic
Sequence 463
The nature of the information content of DNA 463
Deducing the protein-encoding genes from
genomic sequence 464
13.4 The Structure of the Human Genome 468
13.5 Comparative Genomics 470
Of mice and humans 471
Comparative genomics of chimpanzees and
humans 472
Conserved and ultraconserved noncoding
elements 472
Comparative genomics of non-pathogenic and
pathogenic £. coli ATS
13.6 Functional Genomics and Reverse Genetics 475
Ome, Sweet Ome 475
Reverse genetics 479
PART III MUTATION, VARIATION,
AND EVOLUTION
14 The Dynamic Genome 487
14.1 Discovery of Transposable Elements in Maize 488
McClintock's experiments: the Ds element 488
Model Organism Box Maize 489
Autonomous and nonautomous elements 491
Transposable elements: Only in maize? 492
14.2 Transposable Elements in Prokaryotes 492
Bacterial insertion sequences 492
Prokaryotic transposons 493
Mechanism of transposition 495
14.3 Transposable Elements in Eukaryotes 496
Class I: Retrotransposons 496
DNA transposons 499
Utility of DNA transposons for gene discovery 502
14.4 The Dynamic Genome: More Transposable
Elements Than Ever Imagined 504
Large genomes are largely transposable elements 504
Transposable elements in the human genome 505
The grasses: LTR retrotransposons thrive in large
genomes 507
Safe havens 508
Postreplication repair: Mismatch repair 536
Error-prone repair: Translesion DNA Synthesis 538
Repair of double-strand breaks 540
15.5 The Mechanism of Meiotic Crossing Over 542
Programmed double-strand breaks initiate meiotic
recombination 542
Genetic analyses of tetrads provide clues to the
mechanism of recombination 543
The double-strand break model for meiotic
recombination 544
Ifl 15.6 Cancer: An Important Phenotypic Consequence
"""* of Mutations 546
How cancer cells differ from normal cells 546
Mutations in cancer cells 547
IS
15.1
15.2
15.3
15.4
Isssssl
Mutation, Repair, and Recombination 513
Phenotypic Consequences of DNA Mutations 514
Types of point mutation 515
The molecular consequences of point mutations in a
coding region 516
The molecular consequences of point mutations in a
noncoding region 517
The Molecular Basis of Spontaneous
Mutations 518
Luriaand Delbriick fluctuation test 518
Mechanisms of spontaneous mutations 520
Spontaneous mutations in humans:
Trinucleotide repeat diseases 523
The Molecular Basis of Induced Mutations 525
Mechanisms of mutagenesis 526
The Ames test: Evaluating mutagens in our
environment 530
Biological Repair Mechanisms 531
Direct reversal of damaged DNA 532
Base-excision repair 532
Nucleotide-excision repair 534
16 Large-Scale Chromosomal Changes 555
16.1 Changes in Chromosome Number 557
Aberrant euploidy 557
Aneuploidy 565
The concept of gene balance 569
16.2 Changes in Chromosome Structure 572
Deletions 574
Duplications 578
Inversions 580
Reciprocal translocations 583
Robertsonian translocations 584
Applications of inversions and translocations 586
Rearrangements and cancer 587
Identifying chromosome mutations by genomics 588
16.3 Overall Incidence of Human Chromosome
Mutations 588
V
17 Population Genetics 603
17.1 Variation and Its Modulation 604
Observations of variation 604
Protein polymorphisms 606
DNA structure and sequence polymorphism 609
17.2 Effect of Sexual Reproduction on Variation 613
Meiotic segregation and genetic equilibrium 613
Heterozygosity 616
Random mating 616
Inbreeding and assortative mating 618
17.3 Sources of Variation 620
Variation from mutation 620
Variation from recombination 620
Variation from migration 622
17.4 Selection 623
Two forms of selection 624
Measuring fitness differences 625
How selection works 626
Rate of change in gene frequency 628
17.5 Balanced Polymorphism 629
Overdominance and underdominance 629
Balance between mutation and selection 630
17.6 Random Events 631
18 Quantitative Genetics 639
18.1 Genes and Quantitative Traits 640
18.2 Some Basic Statistical Notions 642
Statistical distributions 642
Statistical measures 643
18.3 Genotypes and Phenotypic Distribution 644
The critical difference between quantitative
and Mendelian traits 644
Gene number and quantitative traits 645
18.4 Norm of Reaction and Phenotypic
Distribution 646
18.5 Determining Norms of Reaction 647
Domesticated plants and animals 647
Studies of natural populations 649
Results of norm-of-reaction studies 649
18.6 The Heritability of a Quantitative Character 651
Familiality and heritability 651
Phenotypic similarity between relatives 652
18.7 Quantifying Heritability 654
Methods of estimating H2 655
The meaning of H2 656
Narrow heritability 659
Estimating the components of genetic variance 661
Artificial selection 662
The use of h2 in breeding 663
18.8 Locating Genes 664
Marker-gene segregation 666
Quantitative linkage analysis 666
Statistical Appendix 669
Measures of central tendency 669
Measures of dispersion: The variance 670
Measures of relation 671
19 Evolutionary Genetics 679
19.1 Darwinian Evolution 680
19.2 A Synthesis of Forces: Variation and Divergence
of Populations 683
19.3 Multiple Adaptive Peaks 685
Exploration of adaptive peaks 687
19.4 Genetic Variation 689
Heritability of variation 689
Variation within and between populations 690
19.5 Mutation and Molecular Evolution 690
The signature of purifying selection on DNA 691
19.6 Relating Genetic to Functional Change:
Protein Evolution 693
The signature of positive selection on DNA
sequences 693
Morphological evolution 694
Gene inactivation 696
19.7 Regulatory Evolution 697
Regulatory evolution in humans 699
19.8 The Origin of New Genes 699
Polyploidy 700
Duplications 700
Imported DNA 702
19.9 Genetic Evidence of Common Ancestry
in Evolution 703
Comparing the proteomes among distant species 705
Comparing the proteomes among near neighbors:
Human-mouse comparative genomics 706
19.10 The Process of Speciation 707
Genetics of species isolation 709
PART IV TECHNIQUES
20 Gene Isolation and Manipulation 715
20.1 Generating Recombinant Molecules 716
Type of donor DNA 717
Cutting genomic DNA 717
Attaching donor and vector DNA 719
Amplification inside a bacterial cell 720
Entry of recombinant molecules into the
bacterial cell 723
Recovery of amplified recombinant molecules 723
Making genomic and cDNA libraries 724
Finding a specific clone of interest 724
20.2 DNA Amplification in Vitro: The Polymerase
Chain Reaction 731
20.3 Determining the Base Sequence of a DNA
Segment 732
20.4 Forward Genetic Analysis by Using Positional
Cloning 735
A forward analysis to identify a human
disease gene 737
A forward analysis to identify a gene important to corn
domestication 738
20.5 Detecting Human Disease Alleles:
Molecular Genetic Diagnostics 739
20.6 Genetic Engineering 741
Genetic engineering in Saccharomyces cerevisiae 741
Genetic engineering in plants 742
Genetic engineering in animals 745
Human gene therapy 749
A Brief Guide to Model Organisms 759
Appendix A: Genetic Nomenclature 775
Appendix B: Bioinformatics Resources for Genetics
and Genomics 776
Glossary 779
Answers to Selected Problems 803
Index 815 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV035116626 |
callnumber-first | Q - Science |
callnumber-label | QH430 |
callnumber-raw | QH430 |
callnumber-search | QH430 |
callnumber-sort | QH 3430 |
callnumber-subject | QH - Natural History and Biology |
classification_rvk | WG 1000 |
classification_tum | BIO 750f BIO 180f BIO 450f CIT 972f |
ctrlnum | (OCoLC)261200571 (DE-599)BVBBV035116626 |
dewey-full | 576.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 576 - Genetics and evolution |
dewey-raw | 576.5 |
dewey-search | 576.5 |
dewey-sort | 3576.5 |
dewey-tens | 570 - Biology |
discipline | Biologie Chemie-Ingenieurwesen Biotechnologie |
discipline_str_mv | Biologie Chemie-Ingenieurwesen Biotechnologie |
edition | 9. ed., 3. print. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02483nam a2200661 c 4500</leader><controlfield tag="001">BV035116626</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090429 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081023s2008 xxuad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780716768876</subfield><subfield code="9">978-0-7167-6887-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780716799023</subfield><subfield code="9">978-0-7167-9902-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0716768879</subfield><subfield code="9">0-7167-6887-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)261200571</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035116626</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH430</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">576.5</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WG 1000</subfield><subfield code="0">(DE-625)148483:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 750f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 180f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 450f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CIT 972f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to genetic analysis</subfield><subfield code="c">Anthony J. F. Griffiths ....</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">9. ed., 3. print.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Freeman</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIII, 838 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Biotechnologie</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Génétique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Génétique - Méthodologie</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Génétique - analyse</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Génétique</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Genetik</subfield><subfield code="0">(DE-588)4071711-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Methode</subfield><subfield code="0">(DE-588)4038971-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">CD-ROM</subfield><subfield code="0">(DE-588)4139307-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">2\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Genetik</subfield><subfield code="0">(DE-588)4071711-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Methode</subfield><subfield code="0">(DE-588)4038971-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Genetik</subfield><subfield code="0">(DE-588)4071711-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">CD-ROM</subfield><subfield code="0">(DE-588)4139307-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Griffiths, Anthony J. F.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016784360&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016784360</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content 2\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Einführung Lehrbuch |
id | DE-604.BV035116626 |
illustrated | Illustrated |
index_date | 2024-07-02T22:19:53Z |
indexdate | 2024-07-09T21:22:41Z |
institution | BVB |
isbn | 9780716768876 9780716799023 0716768879 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016784360 |
oclc_num | 261200571 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-703 DE-29 DE-355 DE-BY-UBR |
owner_facet | DE-19 DE-BY-UBM DE-703 DE-29 DE-355 DE-BY-UBR |
physical | XXIII, 838 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Freeman |
record_format | marc |
spelling | Introduction to genetic analysis Anthony J. F. Griffiths .... 9. ed., 3. print. New York, NY Freeman 2008 XXIII, 838 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Biotechnologie ram Genetik Génétique Génétique - Méthodologie Génétique - analyse Génétique ram Genetics Genetik (DE-588)4071711-2 gnd rswk-swf Methode (DE-588)4038971-6 gnd rswk-swf CD-ROM (DE-588)4139307-7 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content 2\p (DE-588)4123623-3 Lehrbuch gnd-content Genetik (DE-588)4071711-2 s Methode (DE-588)4038971-6 s 3\p DE-604 CD-ROM (DE-588)4139307-7 s 4\p DE-604 Griffiths, Anthony J. F. Sonstige oth HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016784360&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Introduction to genetic analysis Biotechnologie ram Genetik Génétique Génétique - Méthodologie Génétique - analyse Génétique ram Genetics Genetik (DE-588)4071711-2 gnd Methode (DE-588)4038971-6 gnd CD-ROM (DE-588)4139307-7 gnd |
subject_GND | (DE-588)4071711-2 (DE-588)4038971-6 (DE-588)4139307-7 (DE-588)4151278-9 (DE-588)4123623-3 |
title | Introduction to genetic analysis |
title_auth | Introduction to genetic analysis |
title_exact_search | Introduction to genetic analysis |
title_exact_search_txtP | Introduction to genetic analysis |
title_full | Introduction to genetic analysis Anthony J. F. Griffiths .... |
title_fullStr | Introduction to genetic analysis Anthony J. F. Griffiths .... |
title_full_unstemmed | Introduction to genetic analysis Anthony J. F. Griffiths .... |
title_short | Introduction to genetic analysis |
title_sort | introduction to genetic analysis |
topic | Biotechnologie ram Genetik Génétique Génétique - Méthodologie Génétique - analyse Génétique ram Genetics Genetik (DE-588)4071711-2 gnd Methode (DE-588)4038971-6 gnd CD-ROM (DE-588)4139307-7 gnd |
topic_facet | Biotechnologie Genetik Génétique Génétique - Méthodologie Génétique - analyse Genetics Methode CD-ROM Einführung Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016784360&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT griffithsanthonyjf introductiontogeneticanalysis |